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Abstract. In this paper we take up the problem of completeness in
the context of L-locally uniform spaces[11]. The primary object of this
paper is to study about the comparison of compactness and completeness
in a totally bounded L-locally uniform space. For this purpose, we have
developed the notion of strong completeness in the context of L-locally
uniform spaces. The problem of its hereditary property, unimorphic in-
variance and productivity in an L-local uniformity are then discussed. In
one of our future paper we will consider the problem of compactifications
and completions in L-locally uniform spaces.
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1. Introduction

To study about the uniform properties (such as completeness, uniform continu-
ity and uniform convergence) in the setting of general topological spaces, uniform
spaces were developed. Further, many generalizations of uniform spaces have been
developed leading to a broad spectrum of theory and applications in related fields.
One of the generalization of uniform spaces namely locally uniform spaces were de-
veloped by James Williams [13] via localization of the triangle axiom. In [13], a
topological space was shown to have a compatible local uniformity if and only if
it is regular. Following this generalization of uniform spaces many interesting and
useful results on compactness, completeness and pseudo-metrizability were obtained
in [13].

Consequent to the development of the theory fuzzy topology, many spectacular
and creative work about the theory of uniformities on various categories of fuzzy
topological spaces have been accomplished by several authors including Hutton,
Katsarsas, Lowen, Hu Cheng-Ming et. al. [4, 7, 9, 10].
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However, the localization aspect of uniformity has not been considered in any of
the above settings. In one of our previous work [11], we developed locally uniform
spaces in the category L-TOP. Subsequently, many interesting results on compact-
ness, pseudo-metrization and weakly uniform continuity were obtained in L-locally
uniform spaces.

The problem of completeness has occupied an important place in the study of
uniform spaces. Having developed the theory of L-locally uniform spaces[11] and the
problem of completeness in L-semi-uniform spaces[3], we now consider the problem
of completeness in the context of L-local uniformity U on LX , for which xα ∈ U(xα),
instead of our earlier assumption xα ⊆ U(xα), ∀ U ∈ U , ∀ xα ∈ LX in [11]. In the
process we have obtained a subclass of the class of the L-local uniformities developed
in [11]. This change has been necessitated in order to accommodate the system
of Q-nbd at an L-fuzzy point xα. The Q-nbd system, as may be noted, plays an
important role in the theory of convergence. We shall continue to call this subclass of
L-locally uniform spaces as L-locally uniform spaces for sake of convenience. With
this assumption, we have introduced the notion of strong completeness for an L-
locally uniform space. Its hereditary property with respect to a closed subspace and
its unimorphic invariance are then discussed. Our main achievement is to establish
that in an L-locally uniform space, compactness in the sense of Hutton [5] can be
decomposed into strong completeness and totally boundedness. The productivity of
this notion is also taken up towards the end of this paper.

Throughout the paper (L, ≤,
∧
,
∨
) denotes a fuzzy lattice with order reversing

involution ′; 0L and 1L are respectively inf and sup in L. X is an arbitrary (ordinary)
set and LX denotes the collection of all mappings A : X → L. Any member of LX

is an L-fuzzy set. The L-fuzzy sets xα : X → L defined by xα(y) = 0L if x ̸= y
and xα(y) = α if x = y are the L-fuzzy points. The mappings A : X → L and
B : X → L defined by A(x) = 1L, ∀x ∈ X and B(x) = 0L, ∀x ∈ X are denoted by
1 and 0 respectively. For any A, B ∈ LX , the union and intersection of A and B
are defined as A ∪ B(x) = A(x) ∨ B(x) and A

∩
B(x) = A(x) ∧ B(x) respectively.

Further, we say that A ⊆ B iff A(x) ≤ B(x) and xα ∈ A iff α < A(x), where xα is
an L-fuzzy point; complement A′ of A is defined as A′(x) = A(x)′. An L-topology
F on LX is a subset of LX closed under finite intersection and arbitrary union. The
elements of F are called open sets and their complements are the closed sets. For
basic fuzzy topological definitions we refer to Chang [2]. Uniformity referred to in
this paper is in the sense of Hutton [4].

2. Preliminaries

This section includes basic definitions and results that are used in the subsequent
sections.

Definition 2.1. Let X be a nonempty ordinary set and L be a fuzzy lattice.
Then a mapping i : LX → LX is called an interior operator on LX , if it fulfills

the following conditions:
(IO1) i(1

¯
) = 1

¯
.

(IO2) i(A) ⊆ A, ∀A ∈ LX .
(IO3) i(A

∩
B) = i(A)

∩
i(B), ∀A,B ∈ LX .
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LX together with an interior operator ‘i’ shall be called an interior space.

For any A ∈ LX , we shall call (i(A′))′ is the closure of A with respect to the
interior operator ‘i’ [denoted by c(A) ] and A is called closed or open with respect
to that interior operator according as A = c(A) or A = i(A) respectively.

Obviously, for any interior operator ‘i’ and A ∈ LX , we have A is open with
respect to ‘i’ iff A′ is closed with respect to that interior operator.

An interior operator ‘i’ shall be called an L-topological interior operator if in
addition it satisfies the axiom

(IO4) i(i(A)) = i(A), ∀A ∈ LX .

Definition 2.2 ([8]). For any ordinary mapping f : X → Y , the induced L-fuzzy
mapping f→ : LX → LY and its L-fuzzy reverse mapping f← : LY → LX are
respectively defined as:

f→(A)(y) =
∨
{A(x) | x ∈ X, f(x) = y}, ∀A ∈ LX , ∀ y ∈ Y

and f←(B)(x) = B(f(x)), ∀B ∈ LY , ∀x ∈ X.
It has stated in [8], that f→ is bijective iff f is bijective.

Definition 2.3 ([8]). For any xα, A, B ∈ LX , xα is said to be quasi coincide with
A, denoted by xα ≪ A if xα ⊈ A′ i.e., α ≰ A′(x).

A is said to be quasi coincides with B at y if A(y) ≰ B′(y). A is said to be quasi
coincides with B, denoted by Aq̂B, if A quasi coincides with B at some y ∈ X.

Definition 2.4. For any L-topological space (LX ,F) and xα ∈ LX , in our discus-
sion N is said to be neighborhood (nbd) at xα if there is G ∈ F such that G ⊈ xα

and G ⊆ N .

Definition 2.5 ([8]). Let (LX ,F) be any L-topological space and xα ∈ LX . Then,
U ∈ F is said to be a quasi-coincident neighborhood (Q-nbd) at xα if xα ≪ U .

The family of all Q-nbd at xα in (LX ,F) is denoted by Q(xα).

Definition 2.6 ([8]). A subfamily A ⊆ Q(xα) is called a Q-nbd base of xα, if for
every U ∈ Q(xα), ∃ V ∈ A s.t. V ⊆ U .

Definition 2.7. For any xα ∈ LX we define its dual point as an L-fuzzy point x∗α
such that

x∗α(y) =

{
α′, if y = x,
0L, if y ̸= x.

Hence, in this framework the Q-nbd system and the nbd system are dual to each
other generalizing the similar notion in [10].

Definition 2.8 ([8]). Let (LX ,F1) be a L-topological space. Then for any A ∈ LX ,
the interior and closure of A, denoted by Ao and A respectively, defined respectively
as the largest open set contained in A and smallest closed set containing A.

Theorem 2.9 ([8]). Let (LX ,F1) be a L-topological space. Then for any A, B ∈ LX ,
we have the following:

(1) A = ((A
′
)o)

′
.

(2) A = A.
717
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(3) A ⊆ B ⇒ A ⊆ B.

(4) (A
∪
B) = A

∪
B.

Definition 2.10 ([8]). Let (LX ,F1) and (LY ,F2) be two L- topological spaces.
Then f→ : LX → LY is called continuous, if f← : LY → LX maps every open set in
(LY ,F2) as an open set in (LX ,F1).

Definition 2.11 ([8]). Let (LX ,F1) and (LY ,F2) be two L- topological spaces.
Then f→ : LX → LY is called an open, if it maps every open set in (LX ,F1) as an
open set in (LY ,F2).

Definition 2.12 ([8]). Let (LX ,F1) and (LY ,F2) be two L- topological spaces. Then
f→ : LX → LY is called an L-fuzzy homeomorphism, if it is bijective, continuous
and open.

Definition 2.13 ([8, 6]). Let (LX , F) be an L-topological space. A non empty sub
collection F of LX is said to be a filter if:

(F1) 0 ̸∈ F .
(F2) U, V ∈ F ⇒ U

∩
V ∈ F .

(F3) U ∈ F and G ∈ LX such that U ⊆ G then G ∈ F .

Definition 2.14 ([5]). Let (LX ,F) be a fuzzy topological space. Then a filter F is
said to be closed if for any F ∈ F implies F ′ ∈ F.

Definition 2.15 ([8, 6]). Let (LX , F) be an L-topological space. A subfamily B of
LX is called a filter base in (LX ,F) if

(B1) 0 ̸∈ B.
(B2) For any U, V ∈ B, there exists W ∈ B such that W ⊆ U

∩
V .

Definition 2.16 ([5]). Let A ∈ LX be any L-fuzzy set. Then a filter F is said to
be relative to A, if for any F ⊆ A implies F ̸∈ F .

Obviously every filter F is a filter relative to 0.

Definition 2.17 ([8]). Let xα ∈ LX and F be a filter. Then F is said to be
convergent to xα, denoted by F → xα, if for any U ∈ Q(xα) there exists F ∈ F such
that F ⊆ U , that is, Q(xα) ⊆ F . The cluster set of F is given by

∩
{F | F ∈ F}.

For any xα ∈ LX , if xα is in the cluster set of F , then we denote it by, F ⇝ xα.

Definition 2.18. Let A ∈ LX . We shall call the maximal filter (partially ordered
by set inclusion) F/ relative to A as an ultrafilter relative to A. If A = 0, then we
simply call F/ as an ultrafilter.

By Proposition 4.3(2) in [6], we have the following:

Lemma 2.19. Let F/ be an ultrafilter relative to C ∈ LX and A, B ∈ LX such that
A
∪

B ∈ F/. Then either A ∈ F/ or B ∈ F/.

We now adopt all the necessary definitions and results of L- locally uniform spaces
in the setting of our discussion.

Definition 2.20. Let U ∗ be the collection of all maps U : LX → LX which satisfy:
(s1) xα ∈ U(xα).
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(s2) U(
∪

λ Vλ) =
∪

λ U(Vλ), Vλ ∈ LX .
For any U ∈ U ∗, we say (xα, yβ) ∈ U ⇔ yβ ∈ U(xα), where xα, yβ ∈ LX .
For any U, V ∈ U ∗, U ◦ V is the composition of functions.

Definition 2.21 ([4]). For any U ∈ U ∗, Ur(xα) =
∩
{yβ | U(y′β) ⊆ x′α}.

Obviously, Ur ∈ U ∗ and by Proposition 10.2 in [4], (Ur)r = U .
If U = Ur, then U is said to be symmetric.

Lemma 2.22. For any U ∈ U ∗ and xα, yβ ∈ LX , yβ ⊆ U(xα) iff xα ⊆ Ur(yβ).

Proof. Since (Ur)r = U , therefore, we need to prove only one way implication.
Here, Ur(yβ) =

∩
{zγ | U(z′γ) ⊆ y′β}.

Let yβ ⊆ U(xα), A = {zγ | U(z′γ) ⊆ y′β} and B = {wη | U(wη) ⊆ [U(xα)]
′}.

Since wη ∈ B′, we have, w′η ∈ B. Then, U(w′η) ⊆ [U(xα)]
′. This implies that

U(w′η) ⊆ y′β as yβ ∈ U(xα), which implies [U(xα)]
′ ⊆ y′β . Therefore, B′ ⊆ A and

consequently,
∪

A′ ⊆
∪
B. Also, aµ ∈ B gives U(aµ) ⊆ [U(xα)]

′. Then, U(aµ) ⊆ x′α
as xα ∈ U(xα). Therefore, aµ ⊆ x′α implying

∪
B ⊆ x′α, and hence,

∪
A′ ⊆ x′α.

Therefore, xα ⊆
∩
A and the conclusion follows. □

Lemma 2.23. For any U ∈ U ∗, U ◦ U =
∪

zγ
Ur(zγ)× U(zγ).

Proof. For any (xα, yβ) ∈ U ◦ U , we have

(xα, yβ) ∈ U ◦ U ⇔ (xα, zγ) ∈ U, (zγ , yβ) ∈ U for some zγ ∈ LX

⇔ (zγ , xα) ∈ Ur, (zγ , yβ) ∈ U for some zγ ∈ LX by Lemma 2.22

⇔ (xα, yβ) ∈ Ur(zγ)× U(zγ) for some zγ ∈ LX

⇔ (xα, yβ) ∈
∪
zγ

Ur(zγ)× U(zγ).

Hence, U ◦ U =
∪

zγ
Ur(zγ)× U(zγ), ∀ U ∈ U ∗. □

Definition 2.24. An L-semi uniformity on LX is a non void subset U of U ∗ such
that,

(S1) If U ∈ U , then Ur ∈ U .
(S2) U

∩
V ∈ U whenever U, V ∈ U .

(S3) If V ∈ U ∗ such that U ⊆ V , for some U ∈ U , then V ∈ U .
The pair (LX ,U ) is then called an L−semi uniform space.

Definition 2.25. The non void subfamily B of U ∗ is called a base for some L-semi
uniformity if it satisfies axiom (S1) and if U, V ∈ B, then there is W ∈ B such that
W ⊆ U

∩
V .

Collection of all symmetric members of an L-semi uniformity U is a base for U .

Definition 2.26. A base B for a L-semi uniformity on LX is called L-local unifor-
mity iff for each U ∈ B and xα ∈ LX , ∃V ∈ B such that V ◦ V (xα) ⊆ U(xα). If
U is an L-semi uniformity which is L-local uniformity, we call U to be an L-local
uniformity and (LX ,U ) to be an L-locally uniform space.
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Lemma 2.27. Let (LX ,U ) be an L-locally uniform space. Define int : LX → LX

as int(G) =
∪
{yβ | ∃ U ∈ U s.t. U(yβ) ⊆ G}. Then ‘int’ is an L-topological

interior operator.

Proof. Axioms (IO1) int(1) = 1 and (IO2) int(A) ⊆ A for A ∈ LX are trivially
satisfied.
Also, if G is an L- fuzzy set and U ∈ U is such that U(xα) ⊆ G, then we can find
V ∈ U such that V ◦ V (xα) ⊆ U(xα). So, in particular, V (V (xα)) ⊆ G.
Thus, V (xα) ⊆ int(G), which implies xα ∈ int(int(G)) and since the other inclusion
follows by (IO2), so we have (IO3) int(G) = int(int(G)).
(IO4) int(A

∩
B) = int(A)

∩
int(B) follows by (S2).

Thus, the given mapping ‘int’ is an L-topological interior operator. □

Now, by Proposition 4 in [4], we conclude the following:

Theorem 2.28. Every L-locally uniform space is L-topological.

We shall use F(U ) to denote the L-topology induced by an L-local uniformity U
on LX .

Then by Theorem 2.9(1), we may conclude that in the L-topological space (LX , F(U )),
for any A ∈ LX , A = c(A).

Definition 2.29. If U and V are L−semi uniformities on LX , V is said to be
coarser than U iff V ⊆ U .

We have the following notations:
For any V ∈ U ∗, V 2 = V ◦V ; V 2r = V r◦V r; V n+1 = V n◦V ; V (n+1)r = V nr◦V r;

U n = {U : LX → LX | ∃ V ∈ U such that V n ⊆ U} for each n ∈ N, where U is an
L-local uniformity.

Theorem 2.30. If U is an L-local uniformity, then for each n ∈ N, U n is an
L-local uniformity with the same L−topology generated by U .

Proof. It suffices to prove the theorem for U 2. Clearly U 2 is an L-semi uniformity.
Now, for W ∈ U 2 and xα ∈ LX , there exists U, V ∈ U such that U4(xα) ⊆ V (xα)
and V 2 ⊆ W . But U2 ∈ U 2 as U ⊆ U2 for any U ∈ U . Also, (U2 ◦ U2)(xα) ⊆
V (xα) ⊆ V 2(xα) ⊆ W (xα). Hence, U 2 is an L−local uniformity.
Also by the definition of U 2, the relative L−topology of U 2 is weaker than that of
U . Again since, U2 ∈ U 2, so it is also stronger. Thus U 2 and U generated the
same L-topology. Hence the theorem follows. □

Definition 2.31 ([4]). Let (LX ,U ) and (LY ,V ) be uniform spaces. A map f→ :
LX → LY is said to be uniformly continuous if for every V ∈ V , there exists

U ∈ U such that f̂→(U) ⊆ V , where f̂→(xα, yβ) = (f→(xα), f
→(yβ)), that is, for

A ∈ LX , U(A) ⊆ f←(V )(f→(A)).

Definition 2.32 ([11]). Two L-local uniformities V and U are said to be weakly
equivalent if for some n,m ∈ N, V n ⊆ U and U m ⊆ V .

In view of Theorem 2.30, it is observed that two weakly equivalent L-local uni-
formities generate the same L−topology.
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Definition 2.33 ([11]). Let (LX ,U ) and (LY ,V ) be L−locally uniform spaces, a
function f→ : (LX ,U ) → (LY ,V ) is L−weakly uniformly continuous iff for some
n ∈ N, f→ : (LX ,U ) → (LY ,V n) is uniformly continuous.

Definition 2.34. Let f→ : LX → LY be a mapping, then f→ is said to be L-
weakly uniform isomorphism iff f→ is bijective and both f→ and f← are L-weakly
uniformly continuous.

Theorem 2.35. L-weakly uniformly continuous functions on L−locally uniform
spaces are continuous with respect to the relative L−topologies.

Proof. Let (LX ,U ) and (LY ,V ) be L−locally uniform spaces. Let for some n ∈
N, f→ : (LX ,U ) → (LY ,V n) be uniformly continuous. For each xα and each open
set N containing f→(xα), we may choose V ∈ V and U ∈ U so that V n(f(xα)) ⊆ N

and f̂→(U) ⊆ V n. This implies, f→(U(xα)) = f̂→(U)(f→(xα)) ⊆ V n(f→(xα)) ⊆
N and consequently, f→ : (LX ,F(U )) → (LY ,F(V )) is continuous.
Hence the theorem follows. □

3. Completeness and strong completeness

In this section we introduce the notion of strong completeness, and study about
its hereditary property and unimorphic invariance.

Definition 3.1. Let (LX ,U ) be an L-locally uniform space, then a Cauchy filter
F is a filter s.t. for any U ∈ U , there exists F ∈ F such that F × F ⊆ U .

Definition 3.2. Let (LX ,U ) be an L-locally uniform space and n ∈ N, then a weak
Cauchy filter of degree ‘n’ is a filter F such that for any U ∈ U , there exists F ∈ F
such that F × F ⊆ Un, and F × F ⊈ Um, ∀m < n and ∀F ∈ F .

Clearly, Cauchy filters are weak Cauchy filters of degree 1.

Definition 3.3. An L-locally uniform space (LX ,U ) is said to be (strongly) com-
plete if every (weak) Cauchy filter relative to an F(U )-open set is convergent.

Theorem 3.4. Every convergent filter in an L-locally uniform space is a weak
Cauchy filter of degree 2.

Proof. Let (LX ,U ) be an L-locally uniform space and F be a filter such that for
some xα ∈ LX , F → xα in (LX ,F(U )). Let Q(xα) = {U(x∗α) | U ∈ U } and
QB(xα) = {V (x∗α) | V ∈ B}, where B = {U ∈ U | Ur = U}. Then, Q(xα) is
Q-nbd system at xα in F(U ). Since for any U ∈ U , there exists V ∈ B s.t. V ⊆ U .
This implies that V (x∗α) ⊆ U(x∗α) and hence, QB(xα) is a base for Q(xα).
Now since F → xα, therefore for V (x∗α) ∈ QB(xα), there exists F ∈ F s.t. F ⊆
V (x∗α). Now, if (yβ , zγ) ⊆ F × F , then, yβ ⊆ F, zγ ⊆ F .
Therefore, yβ ⊆ V (x∗α), zγ ⊆ V (x∗α) and hence, x∗α ⊆ V r(yβ). (By Lemma 2.22.)
Then, x∗α ⊆ V (yβ) and zγ ⊆ V (x∗α). (since V = V r.)
Now, zγ ⊆ V 2(yβ) and consequently, (yβ , zγ) ⊆ V 2 ⊆ U2.
Thus, for any U ∈ U , there exists F ∈ F such that F × F ⊆ U2.
Hence F be a Cauchy filter of degree 2.
This completes the proof. □
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Definition 3.5. Let (LX ,U ) be an L-locally uniform space and A ∈ LX .
Let for any U ∈ U , UA : LX → LX be a mapping such that

UA(xα)={U(xα) if xα⊆A

0 if xα⊈A

Then, UA = {UA | U ∈ U } is an L-local uniformity on A, which we call a sub
L-local uniformity on A and (A,UA) to be the subspace.
UA is called open or closed sub L-local uniformity provided A ∈ F(U ) or A′ ∈ F(U )
respectively.

Theorem 3.6. Every closed subspace in a strongly complete L-locally uniform space
is strongly complete.

Proof. Let (LX ,U ) be a strongly complete L-locally uniform space and A ∈ LX

such that A′ ∈ F(U ).
Let F = {F | F ⊆ A} be a weak Cauchy filter relative to an open set B in F(UA),
where F(UA) is the L-topology on A induced by UA. Then, B ̸∈ F . If B′ ∈ F ,
then B′ ⊆ A, as F is a filter in (LA,F(UA)). Then, A′ ⊆ B and consequently,
A′ ̸∈ F . Also if, B′ ̸∈ F , then as B ⊆ A implies A′ ⊆ B′, so A′ ̸∈ F. Now since
for any U ∈ U we have UA

n ⊆ Un, so in either case F is a weak Cauchy filter
in LX relative to the open set A′ and consequently there exists xα ∈ LX such that
F → xα. But as A′ ∈ F(U ), so by Theorem 5.2.19 in [8], we have xα ∈ A and
hence (A,UA) is strongly complete. □

Theorem 3.7. Let (LX ,U ) and (LY ,V ) be L-locally uniform spaces and let f→ :
LX → LY be L-weakly uniformly continuous. If F is a weak Cauchy filter in
(LX ,U ), then f→(F ) is weak Cauchy filter in (LY ,V ).

Proof. Let F be a weak Cauchy filter of degree n on LX . Let V ∈ V . Since
f→ : LX → LY is L-weakly uniformly continuous, therefore there exists U ∈ U
such that f̂→(U) ⊆ V m for some m ∈ N. Now F is a weak Cauchy filter of
degree n on LX . Hence, there exists F ∈ F such that F × F ⊆ Un. Therefore,
f→(F ) × f→(F ) ⊆ V mn. Hence, f→(F ) is a weak Cauchy filter of degree nm on
(LY ,V ). □

Theorem 3.8. Let (LX ,U ) and (LY ,V ) be two L-locally uniform spaces and f→ :
LX → LY be a L-weakly uniformly isomorphism, then (LX ,U ) is strongly complete
iff (LY ,V ) is so.

Proof. Let (LY ,V ) be L-strongly complete and F be a weak Cauchy filter of degree
n on LX relative to an open set G. Let V ∈ V , then by Theorem 3.7, f→(F ) is
a weak Cauchy filter on (LY ,V ). Again, since f← is L-weakly uniform continuous,
therefore by Theorem 2.35, f← is continuous and so f→ is open. This implies
f→(G) is open in LY . Also as G ⊆ f←(f→(G)) and G ̸∈ F , therefore f→(F ) is a
weak Cauchy filter relative to the open set f→(G). Thus f→(F ) is convergent on
(LY ,V ), being strongly complete. But f→ is an L- fuzzy homeomorphism being an
L-weakly uniform isomorphism and consequently, F converges on (LX ,U ). This
implies (LX ,U ) is strongly complete. In a similar way, one can show the other way
implication. Hence the theorem. □
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4. Compactness and totally boundedness

In this section we establish the equivalence of the compactness and completeness
in an L-locally uniform space.

Definition 4.1 ([5]). A subset F of LX is said to satisfy the finite intersection
property or the F. I. P. relative to an L-fuzzy set G if F1, ..., Fn ∈ F ⇒

∩n
i=1 Fi ⊈ G.

Obviously by Lemma 4.2 in [6], we may conclude that, every subset F of LX

which satisfy the F. I. P. relative to G is contained in a filter relative to G.

Definition 4.2. An L-locally uniform space (LX ,U ) is said to be totally bounded
if ∀ U ∈ U there is finite A ⊆ Pt(LX) such that 1 = U(A) =

∪
{U(xα) | xα ∈ A}.

This is a generalization of the same notion in the sense of G. Artico and R.
Moresco[1].

In the sequel, we refer to the definitions of compactness in L-topology in the sense
of Hutton, that is,

Definition 4.3 ([5]). Let (LX , F) be an L-topological spaces. Then (LX , F) is said
to be compact if it satisfies any of following equivalent statements:

(1) Every open cover C of each closed set A has a finite subcover.
(2) Every collection of closed sets F satisfying the F. I. P. relative to an open

set G satisfies
∩

F∈F F ⊈ G.

Theorem 4.4. Every compact L-locally uniform space (LX ,U ) is totally bounded.

Proof. Let (LX ,U ) be a compact space. Then for any U ∈ U , the collection
{int U(xα) | xα ∈ Pt(LX)} is an open cover of 1.

Since 1 is closed. Therefore, by compactness there exists a collection of finite L-fuzzy
points µi, 1 ≤ i ≤ n, n ∈ N s.t. 1 =

∪n
i=1 intU(µi).

Therefore, 1 =
∪n

i=1 U(µi). Hence, (L
X ,U ) is totally bounded. □

Theorem 4.5. In a totally bounded L-locally uniform space (LX ,U ), every ultra-
filter relative to an F(U )-open set G is a weak Cauchy filter relative to G.

Proof. Let F/ be an ultrafilter relative to an F(U )-open set G.
Let B = {U ∈ U | Ur = U}. Then B is a base for U .
Let U ∈ B. By totally boundedness there is a finite A ⊆ Pt(LX) such that

1 = U(A) =
∪
{U(xα) | xα ∈ A}.

But 1 ∈ F/. So, by Lemma 2.19, there is F ∈ F/ such that
F ⊆ U(xα) for some xα ∈ A.

This implies F × F ⊆ U(xα)× U(xα) = Ur(xα)× U(xα), since U = Ur.
Now by Lemma 2.23, we get F × F ⊆ U2.
Hence F/ is a weak Cauchy filter relative to G. □

Corollary 4.6. In a totally bounded L-locally uniform space (LX ,U ), every ultra-
filter is a weak Cauchy filter.

Theorem 4.7. In a compact L-locally uniform space (LX ,F(U )) every filter relative
to an F(U )-open set has a cluster point.
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Proof. Let (LX ,F(U )) be a compact L-locally uniform space and F be a filter
relative to the F(U )-open set G. Then, G = {F | F ∈ F} is a closed-filter relative
to the F(U )-open set G. Now, by the Proposition 9 in [5] we have,

∩
G ≰ G

which implies ∃ xα ∈ LX s.t. xα ∈
∩

G . Hence, xα is a cluster point of F as∩
G =

∩
{F | F ∈ F}. □

Theorem 4.8. Every compact L-locally uniform space is a strongly complete.

Proof. Let (LX ,F(U )) be a compact L-locally uniform space and F be a weak
Cauchy filter of degree n relative to the F(U )-open set G. Then, for any U ∈ U ,
there exists F ∈ F such that F × F ⊆ V n−1. Now by Theorem 4.7, there exists
xα ∈ LX such that xα ∈ ∩F for all F ∈ F. For any U ∈ U , choose V ∈ U such
that V n(x∗α) ⊆ U(x∗α) and F × F ⊆ V n−1.
Also, since for any A, B ∈ LX , Aq̂B implies A ∩B ̸= 0, therefore for F ∈ F , there
exists yβ ∈ LX such that yβ ∈ F ∩ V (x∗α). This implies yβ ∈ F and yβ ∈ V (x∗α).
But yβ ∈ F implies F ⊆ V n−1(yβ), which further implies that F ⊆ U(x∗α) (as
V n−1(yβ) ⊆ V n(x∗α)). Thus, U(x∗α) ∈ F , ∀ U ∈ U and consequently, F → xα.
Hence, the given space is strongly complete. □

Theorem 4.9. Let (LX , U ) be an L-locally uniform space, then the space is compact
iff

(i) (LX , U ) is totally bounded, and
(ii) (LX , U ) is strongly complete.

Proof. Let (LX , U ) be an L-locally uniform space which is compact then by Theo-
rem 4.4, (i) (LX , U ) is totally bounded.

Also, by Theorem 4.8, (ii) (LX , U ) is strongly complete.
Conversely, let (LX , U ) be totally bounded and strongly complete.
Let F be a collection of closed sets satisfying F. I. P. relative to an F(U )-open
set G. Then F is contained in a filter F ∗(say) relative to G. This implies F ∗ is
contained in a ultrafilter F/(say) relative to G. Then, by Theorem 4.5, F/ is a weak
Cauchy filter relative to G. So, by strong completeness, F/ is convergent to xα(say).
This implies Q(xα) ⊆ F/. This implies F

∩
Q ̸= 0, ∀ F ∈ F/, ∀ Q ∈ Q(xα). This

implies F
∩
Q ̸= 0, ∀ F ∈ F ∗, ∀ Q ∈ Q(xα). [Since F ∗ ⊆ F/].

This implies F
∩
Q ̸= 0, ∀ F ∈ F , ∀ Q ∈ Q(xα). [Since F ⊆ F ∗].

This implies (
∩

F∈F F )
∩
Q ̸= 0, ∀ Q ∈ Q(xα).

This implies (
∩

F∈F F )
∩
(
∩

Q∈Q(xα) Q) ̸= 0.

But Since F/ is relative to G. Therefore by Definition 2.16, G ̸∈ F/.
This implies Q ⊈ G, ∀ Q ∈ Q(xα). [Since Q(xα) ⊆ F/.]
This implies (

∩
Q∈Q(xα) Q) ⊈ G.

This implies (
∩

F∈F F ) ⊈ G. [Since (
∩

F∈F F )
∩
(
∩

Q∈Q(xα) Q) ̸= 0.]

Hence the space is compact. □

Thus in a totally bounded L- locally uniform space, the notions of compactness
and strong completeness are equivalent.
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5. Product Space and Strong Complete

We proceed to establish the productivity of strongly complete spaces in an L-
locally uniform space.

Definition 5.1. Let {(LXα

,U α) | α ∈ Λ} be an indexed collection of L-locally
uniform spaces. Then the product L-local uniformity on LX = Πα∈ΛL

Xα

is the
coarsest L-local uniformity such that projections π→α : LX → LXα

are L-weakly
uniformly continuous.

Theorem 5.2. A filter F converges to (xα
β) in ΠLXα

iff π→α (F ) converges to

π→α ((xα
β)) in LXα

, ∀ α.

Proof. By Theorem 2.35, we have L-weakly uniformly continuity implies continuity.
Therefore for any α, π→α is continuous and consequently by Theorem 5.2.27 in [8],
one part follows.
By equivalence of convergence of nets and filters, the second part follows from the
Theorem 5.2.27 in [8] and the Theorem 2.4 in [12]. □

Theorem 5.3. Product of strongly complete spaces is strongly complete.

Proof. Let {(LXα

,U α) | α ∈ Λ} be a collection of strongly complete spaces and U
be the product L-local uniformity on LX = Πα∈ΛL

Xα

. Let F(U ) be the L-topology
on LX induced by U and F be a weak Cauchy filter relative to an F(U )-open set
G′. Then for any

B ∈ LX with B ⊆ G′ implies B ̸∈ F(1)

For any α ∈ Λ, π→α (F ) is a weak Cauchy filter on LXα

. Let C = π→α (G). By
Theorem 2.1.25(i) in [8] we have, G ⊆ π←α (π→α (G)). Then, [π←α (π→α (G))]′ ⊆ G′,
which implies [π←α (C)]′ ⊆ G′ and hence, [π←α (C)]′ ̸∈ F [By 1]. Again by Proposition
2.2.5 in [8], since, [π←α (C)]′ = π←α (C ′), therefore π←α (C ′) ̸∈ F . Then, C ′ ̸∈ π→α (F ).
For if C ′ ∈ π→α (F ), then C ∈ [π→α (F )]′, which implies π←α (C) ∈ π←α ([π→α (F )]′) =
[π←α (π→α (F ))]′. But as F ⊆ π←α (π→α (F )), we have, [π←α (π→α (F ))]′ ⊆ F ′, and
therefore, π←α (C) ∈ F ′, which implies [π←α (C)]′ ∈ F , contradicting the fact that
[π←α (C)]′ = π←α (C ′) ̸∈ F .
Now C ′ = [π→α (G)]′ ̸∈ π→α (F ). Hence, [[π→α (G)]′]o ̸∈ π→α (F ), as [[π→α (G)]′]o ⊆
[π→α (G)]′. Hence for any Fα ⊆ [[π→α (G)]′]o, we have Fα ̸∈ π→α (F ).
Thus, π→α (F ) is a weak Cauchy filter relative to the open set [[π→α (G)]′]o. So ∃ xα

β ∈
Xα such that π→α (F ) → xα

β . Therefore, by Theorem 5.2, F → (xα
β).

Hence (LX ,U ) is strongly complete. □
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