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ABSTRACT. The object of the present article is to introduce and study a
generalized class [Â, f, p](F ) of sequences of fuzzy numbers using the modu-
lus function f , where p = (pk) is a bounded sequence of positive real numbers,
A = (ank)n,k=1,2,3... is an infinite matrix of non-negative real numbers. With the
help of the paranorm, it is proved that [Â, f, p](F ) is a complete paranormed space.
Besides studying the topological properties of this class, some inclusion relations
and the properties like, solidity, convergence free etc. also studied.
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1. INTRODUCTION

Zadeh [33] has introduced the concept of fuzzy set theory. The theory of fuzzy sets has
become an active area of research for the last forty years. It has wide range of applications
in the field of science and engineering e.g. export system, fuzzy control, operations research
etc. In recent years, the topological aspects of fuzzy sets have received serious consideration
from the wider mathematical community.

Recently, Matloka [17], Nanda [19], Mursaleen and Basarır [18], Talo and Basar [32],
Raj et al. [23], Raj and Sharma [24], Raj et al. [25] and others have studied various classes of
sequences of fuzzy numbers in an analogous way as Simons [29], Maddox [13, 16], Connor
[1] and so on studied these spaces for scalar valued field of real or complex numbers.

Nakano [21] has introduced the concept of modulus function. Later on, Ruckle [26],
Maddox [16] and several authors have constructed various types of sequence spaces by
using modulus function. Using the concept of modulus function Talo and Basar [32], Sarma
[27], Esi [4], Esi and Açikg̈oz [7, 8, 9] and several authors have generalized different types
of sequence spaces of fuzzy numbers.
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A sequence x ∈ ℓ∞ is said to be almost convergent if all Banach limits of x coincide.
Lorentz [12] has defined

ĉ =

{
x ∈ w : lim

n→∞

1

n

n∑
k=1

xk+m exists, uniformly in m

}
.

Maddox [15] has defined x to be strongly almost convergent to a number L if

lim
n→∞

1

n

n∑
k=1

|xk+m − L| = 0 uniformly in m.

[ĉ] denotes the space of all strongly almost convergent sequences. Later on, Nanda [20],
Khan [11] and many authors have constructed different types of sequence spaces by using
the concept of strongly almost convergent sequences of real or complex numbers.

Using the concept of strongly almost convergent sequences Esi [5, 6], Gökhan et al.
[10], Savaş [28], Subramanian and Esi [30] and many authors have constructed various
sequence spaces of fuzzy numbers.

Motivated by the development of various classes of sequence spaces of fuzzy numbers
by the earlier authors, the present work is aimed to introduce a general class [Â, f, p](F )
of sequences of fuzzy numbers using infinite matrix and modulus function. Various topo-
logical properties and algebraic properties such as solidity, convergence free etc. and some
inclusion relations are also obtained for this class.

2. PRELIMINARIES

Let D denote the set of all closed and bounded intervals A = [a1, a2] on the real line R.
For A,B ∈ D, we define

d(A,B) = max{|a1 − b1|, |a2 − b2|}

, where A = [a1, a2] and B = [b1, b2]. It is known that (D, d) is a complete metric space.

A fuzzy number X is a fuzzy set on R, i.e. a mapping X : R → [0, 1] associating each
real number t with its grade of membership X(t), which is normal and fuzzy convex.

A fuzzy number X is said to be upper-semicontinuous if, for each ε > 0, X−1([0, a+ε)),
for all a ∈ [0, 1] is open in the usual topology of R.

The set of all upper-semicontinuous, normal, convex fuzzy numbers with compact sup-
port is denoted by L(R). Throughout this paper, by a fuzzy number we mean that the number
belongs to L(R).

The set R of all real numbers can be embedded in L(R). For r ∈ R, r ∈ L(R) is defined
by r(t) = 1 for r = t and 0 for r ̸= t.

The α−level set Xα of X ∈ L(R) is defined as

Xα =

{
t : X(t) ≥ α if α ∈ (0, 1],
t : X(t) > 0 if α = 0.
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The set L(R) forms a linear space under addition X + Y and scalar multiplication
λX, λ ∈ R in terms of α− level sets as defined below:

[X + Y ]α = [X]α + [Y ]α and [λX]α = λ[X]α for each 0 ≤ α ≤ 1.

For each α ∈ [0, 1], the set Xα is a closed, bounded and nonempty interval of R.

Let d : L(R)× L(R) → R be defined by

d(X,Y ) = sup
0≤α≤1

d(Xα, Y α).

Then Diamond and Kloeden [3] proved that d defines a metric on L(R) and (L(R, d) is a
complete metric space.

Definition 2.1. A metric d on L(R) is said to be translation invariant if d(X+Z, Y +Z) =
d(X,Y ) for all X,Y, Z ∈ L(R).

Lemma 2.2 ([14]). Let ak, bk for all k be sequences of complex numbers and (pk) be a
bounded sequence of positive real numbers, then

|ak + bk|pk ≤ C(|ak|pk + |bk|pk)

and
|λ|pk ≤ max(1, |λ|H)

, where C = max(1, 2H−1),H = sup pk and λ is any complex number.

Lemma 2.3 ([14]). Let ak ≥ 0, bk ≥ 0 for all k be sequences of complex numbers and
1 ≤ pk ≤ sup pk < ∞, then(∑

k

|ak + bk|pk

) 1
M ≤

(∑
k

|ak|pk

) 1
M

+
(∑

k

|bk|pk

) 1
M

, where M = max(1,H), H = sup pk.

Lemma 2.4 ([31]). (i) d(XY, 0) ≤ d(X, 0)d(Y, 0) for all X, Y ∈ L(R).
(ii) If Xk → X as k → ∞ then d(Xk, 0) → d(X, 0) as k → ∞.

Lemma 2.5 ([31]). Let X,Y, Z, V ∈ L(R) and k ∈ R. Then,
(i) d(kX, kY ) = |k|d(X,Y ).

(ii) d(X + Z, Y + Z) = d(X,Y ).
(iii) d(X + Z, Y + V ) ≤ d(X,Y ) + d(Z, V ).
(iv) |d(X, 0)− d(Y, 0)| ≤ d(X,Y ) ≤ d(X, 0) + d(Y, 0).

Lemma 2.6 ([22]). Let f be a modulus and let 0 < δ < 1. Then for each x ≥ δ, we have
f(x) ≤ 2f(1)δ−1x.

Lemma 2.7 ([16]). Let f be any modulus with lim
t→∞

f(t)

t
= γ > 0. Then there is a constant

β > 0 such that f(t) ≥ βt for all t ≥ 0.

Definition 2.8 ([2]). A sequence space E is said to be normal (or solid) if, whenever
x = (xk) is in E and |yk| ≤ |xk| for every k, then y = (yk) is in E.
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Definition 2.9 ([2]). A sequence space E is said to be convergence free when, if x =
(xk) is in E and if yk = 0 whenever xk = 0 then the sequence y = (yk) is in E.

3. MAJOR SECTION

Consider a new class of fuzzy numbers as follows:

[Â, f, p](F ) =
{
X = (Xk) ∈ W (F ) :

∞∑
k=1

ank(f(d(Xk+m, X0)))
pk converges for each n and

∞∑
k=1

ank(f(d(Xk+m, X0)))
pk → 0 as n → ∞, uniformly in m

}

where f is a modulus function, p = (pk) is a bounded sequence of positive real numbers and

A = (ank)n,k=1,2,3... is an infinite matrix of non-negative real numbers such that
∞∑
k=1

ank

converges for each n and sup
n

∞∑
k=1

ank < ∞ but
∞∑
k=1

ank ↛ 0 as n → ∞.

It can be seen that for f(x) = x and A as a regular matrix, this space [Â, f, p](F ) reduces
to the space [Â, p](F ) defined by Savaş [28].

Theorem 3.1. The class [Â, f, p](F ) of sequences of fuzzy numbers is closed under addition
and scalar multiplication over the real field R.

Proof. Using Lemma 2.2, Lemma 2.5, subadditivity property of modulus function f and the
result f(λx) ≤ (1+[|λ|])f(x), it is easy to prove that the class [Â, f, p](F ) of sequences of
fuzzy numbers is closed under addition and scalar multiplication over the real field R. □

Lemma 3.2. For any modulus function f , the class [Â, f, p](F ) is a complete paranormed

space with respect to the paranorm g(X−Y ) = sup
n,m

( ∞∑
k=1

ank

(
f(d(Xk+m, Yk+m))

)pk
) 1

M

where (Xk) ∈ [Â, f, p](F ) and (pk) is a bounded sequence of positive real numbers such
that inf pk > 0.

Proof. Obviously g(θ) = 0, g(−X) = g(X) for all X ∈ [Â, f, p](F ) and subadditivity
property of g follows from Lemma 2.3 and subadditivity property of f .

Next, we prove the continuity of scalar multiplication under g.
For X → 0, λ → 0 implies λX → 0 and also for X → 0, λ fixed implies λX → 0. Now,
let λ → 0, X be fixed. For |λ| < 1, consider

708



S. Mohanta/Ann. Fuzzy Math. Inform. 10 (2015), No. 5, 705–714

∑
k

ank

(
f(d(λXk+m, 0))

)pk

≤
∑
k

ank

(
f(d(λXk+m, λX0) + d(λX0, 0))

)pk
)

=
∑
k

ank

(
f(|λ|d(Xk+m, X0) + |λ|d(λX0, 0))

)pk
)

≤
∑
k

ank

(
f(|λ|d(Xk+m, X0)) + f(d(λX0, 0))

)pk
)

≤ C
∑
k

ank

(
f(|λ|d(Xk+m, X0))

)pk

+C
∑
k

ank

(
f(|λ|d(X0, 0))

)pk

≤ C(1 + [|λ|])H
∑
k>N0

ank

(
f(d(Xk+m, X0))

)pk

+C
∑
k≤N0

ank

(
f(|λ|d(Xk+m, X0))

)pk

+C
∑
k

ank

(
f(|λ|d(X0, 0))

)pk

.(3.1)

Since X ∈ [Â, f, p](F ), so given ε > 0, there exist a positive integer N0 such that∑
k>N0

ank

(
f(d(Xk+m, X0))

)pk

<
ε

2C(1 + [|λ|])H
for all k > N0 and for all m.(3.2)

For each k ≤ N0, and for all m, by the continuity of f , as λ → 0,∑
k≤N0

ank

(
f(|λ|d(Xk+m, X0))

)pk

+
∑
k

ank

(
f(|λ|d(X0, 0))

)pk

→ 0.

Then choose δ < 1 such that |λ| < δ implies

C
∑
k≤N0

ank

(
f(|λ|d(Xk+m, X0))

)pk

+ C
∑
k

ank

(
f(|λ|d(X0, 0))

)pk

<
ε

2
for all m.(3.3)

Using equation (3.2) and equation (3.3) in equation (3.1), we get∑
k

ank

(
f(d(λXk+m, 0))

)pk

< ε for all n and for all m.

i.e.

sup
n,m

(∑
k

ank

(
f(d(λXk+m, 0))

)pk

) 1
M

< ε

and hence g(λX) → 0 as λ → 0 which implies that g is a paranorm.
To prove the completeness, let (Xu) be any Cauchy sequence in [Â, f, p](F ) where

Xu = (Xu
k ) ∈ [Â, f, p](F ). Then given ε > 0, there exist u0 ∈ N such that

g(Xu −Xv) < ε for all u, v ≥ u0.
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i.e.

sup
n,m

(∑
k

ank

(
f(d(Xu

k+m, Xv
k+m))

)pk

) 1
M

< ε for all u, v ≥ u0.(3.4)

i.e. ∑
k

ank

(
f(d(Xu

k+m, Xv
k+m))

)pk

< ε for all u, v ≥ u0, for all n and m.(3.5)

Proceeding successively, we get g(Xu −X) < ε for all u ≥ u0.
Now to show X = (Xk) ∈ [Â, f, p](F ).
Since Xu = (Xu

k ) ∈ [Â, f, p](F ), so for each u, there exist Xu
0 ∈ L(R) and nu ∈ N such

that ∑
k

ank

(
f(d(Xu

k+m, Xu
0 ))
)pk

< ε for all n ≥ nu and for all m.(3.6)

Similarly, Xv = (Xv
k ) ∈ [Â, f, p](F ), so for each u, there exist Xv

0 ∈ L(R) and nv ∈ N
such that ∑

k

ank

(
f(d(Xv

k+m, Xv
0 ))
)pk

< ε for all n ≥ nv and for all m.(3.7)

Now let u, v ≥ u0 and n0 = max(nu, nv). Then by using equation (3.4), equation (3.5),
equation (3.7), subadditivity property of f and Lemma 2.2, we have∑

k

ank

(
f(d(Xu

0 , X
v
0 ))
)pk

≤ C
∑
k

ank

(
f(d(Xu

0 , X
u
k+m))

)pk

+C
∑
k

ank

(
f(d(Xu

k+m, Xv
k+m))

)pk

+C
∑
k

ank

(
f(d(Xv

k+m, Xv
0 ))
)pk

< 3Cε for all u, v ≥ u0, for all n ≥ n0 and for all m.(3.8)

Now using the fact that modulus function is monotone and for suitable choice of ε3 > 0,
we have d(Xu

0 , X
v
0 ) < ε3 for all u, v ≥ u0. ⇒ (Xu

0 ) is a Cauchy sequence in L(R). But
(L(R), d) is a complete metric space. So let Xu

0 → X0 as u → ∞. Substituting this value
in equation (3.8), we get∑

k

ank

(
f(d(Xu

0 , X0))
)pk

< 3Cε for all u, v ≥ u0 and for all n ≥ n0.(3.9)

Now consider∑
k

ank

(
f(d(Xk+m, X0))

)pk

≤ C
∑
k

ank

(
f(d(Xk+m, Xu0

k+m))
)pk

+C
∑
k

ank

(
f(d(Xu0

k+m, Xu0
0 ))

)pk

+C
∑
k

ank

(
f(d(Xu0

0 , X0))
)pk

< 2Cε+ 3C2ε for all n ≥ n0 and for all m.
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Which implies X = (Xk) ∈ [Â, f, p](F ) and hence [Â, f, p](F ) is a complete paranormed
space. □

Theorem 3.3. If 1 < h = inf pk ≤ sup pk < ∞, then for any modulus function f and for
any regular matrix A, we have [Â, p](F ) ⊆ [Â, f, p](F ) where

[Â, p](F ) =
{
X = (Xk) :

∑
k

ank[d(Xk, 0)]
pk → 0 as n → ∞, uniformly in m

}
.

Proof. Since A is a regular matrix, by using Lemma 2.6, this theorem can be easily proved.
□

Theorem 3.4. If γ = lim
t→∞

f(t)

t
> 0, then for any non-negative infinite matrix A and any

bounded sequence of positive real numbers (pk), [Â, f, p](F ) = [Â, p](F ) where

[Â, p](F ) =
{
X = (Xk) :

∑
k

ank[d(Xk, 0)]
pk → 0 as n → ∞, uniformly in m

}
.

Proof. In Theorem 3.3, we have shown that [Â, p](F ) ⊆ [Â, f, p](F ).

Next we prove that [Â, f, p](F ) ⊆ [Â, p](F ). Let X ∈ [Â, f, p](F ) i.e.
∞∑
k=1

ank

(
f(d(Xk+m, X0))

)pk

→

0 as n → ∞, uniformly in m.

Since γ = lim
t→∞

f(t)

t
> 0, there is a constant β > 0 such that f(t) > βt for every t ∈ R.

This gives

βd(Xk+m, X0) < f(d(Xk+m, X0)).

Now

βpk > βH if β < 1 and βpk < βH if β > 1.

While

βpk > βh if β > 1 and βpk < βh if β < 1.

So, consider T = H if β < 1, otherwise T = h where h = inf(pk) and H = sup(pk).

⇒
∞∑
k=1

ankβ
T
(
d(Xk+m, X0)

)pk

<
∞∑
k=1

ank

(
f(d(Xk+m, X0))

)pk

⇒
∞∑
k=1

ank

(
d(Xk+m, X0)

)pk

<
1

βT

∞∑
k=1

ank

(
f(d(Xk+m, X0))

)pk

As X ∈ [Â, f, p](F ), which implies
∞∑
k=1

ank

(
d(Xk+m, X0)

)pk

→ 0 as n → ∞.

That is X ∈ [Â, p](F ) and hence [Â, f, p](F ) ⊆ [Â, p](F ). □

Theorem 3.5. For any two modulus functions f and g we have

(i) If f(t) ≤ g(t) for all t ∈ [0,∞), then [Â, g, p](F ) ⊆ [Â, f, p](F ).
(ii) [Â, f, p](F ) ∩ [Â, g, p](F ) ⊆ [Â, f + g, p](F ).
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Proof. It can be established using standard technique. □

Theorem 3.6. The class [Â, f, p](F ) is not solid, in general.

Proof. The result follows from the following example. □

Example 3.7. Let A=I, the identity matrix, f(x) = x and pk = 1 for all k ∈ N.
Consider the sequence X = (Xk) as Xk = 2 for all k ∈ N and X0 = 2. Then
X ∈ [Â, f, p](F ).
Now consider the sequence Y = (Yk) as follows:

Yk =

{
Xk if k = 2n

0 if k ̸= 2n

Then d(Yk, 0) ≤ d(Xk, 0) for all k ∈ N. But Y /∈ [Â, f, p](F ).

Theorem 3.8. The class [Â, f, p](F ) is not convergence free, in general.

Proof. The result follows from the following example. □

Example 3.9. Let A=I, the identity matrix, f(x) = x and pk = 1 for all k ∈ N.
Consider the sequence X = (Xk) as follows:

Xk(t) =

 kt− k + 1 if 1− 1
k ≤ t ≤ 1

k − kt+ 1 if 1 ≤ t ≤ 1 + 1
k

0 otherwise

and the fuzzy number X0 = 1. Then
∞∑
k=1

ank

(
f(d(Xk+m, X0))

)pk

→ 0 as k → ∞.

Which implies X ∈ [Â, f, p](F ). Now consider the sequence Y = (Yk) as follows:

Yk(t) =


1
k (t− 1 + k) if 1− k ≤ t ≤ 1
1
k (1 + k − t) if 1 ≤ t ≤ 1 + k
0 otherwise

and the fuzzy number Y0 = 1. Then
∞∑
k=1

ank

(
f(d(Yk+m, Y0))

)pk

→ 0 as k → ∞. Which

implies Y /∈ [Â, f, p](F ) and hence the sequence space [Â, f, p](F ) is not convergence
free.

4. CONCLUSIONS

The sequence spaces of fuzzy numbers are introduced by Matloka [17]. In this paper,
we have introduced a general class [Â, f, p](F ) of scalar valued sequence space of fuzzy
numbers using infinite matrices and modulus function. It is shown that if (pk) is a bounded
sequence of positive real numbers such that inf pk > 0, then [Â, f, p](F ) is a complete
paranormed space with respect to the paranorm

g(X − Y ) = sup
n,m

( ∞∑
k=1

ank

(
f(d(Xk+m, Yk+m))

)pk
) 1

M

where (Xk) ∈ [Â, f, p](F ).

Various topological properties and inclusion relations are obtained for this sequence space.
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