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Abstract. In the present paper, considering the fuzzy normed linear
space (X,N) defined by Bag and Samanta. We construct a fuzzy topology
on this space and show that fuzzy normed linear space (X,N) equipped
with this fuzzy topology is not topological vector space. So, we define
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(X,N) equipped with this topology is a locally convex topological vector
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1. Introduction

The notion of fuzzy norm on a linear space was first introduced by Katrasas [12].
Feblin [7] gave an idea of a fuzzy norm on a linear space whose associated metric is
Kalva type [10]. Cheng and Menderson [4] considered a fuzzy norm on a linear space
whose associated metric is Kramosil and Michalek type [11]. Felbin [7] definition of
a fuzzy norm of a linear operator between two fuzzy normed spaces was generalized
by Xiao and Zhu [13]. Bag and Samanta [3] introduced a notion of boundedness
of a linear operator between fuzzy normed spaces, and studied the relation between
fuzzy continuity and fuzzy boundedness. They also considered fuzzy bounded linear
functionals, the concept of fuzzy dual spaces, and established some fundamental
theorems in the area of fuzzy functional analysis. Furthermore, Golet [8] generalized
the definition of fuzzy normed linear space and studied some properties of this space.
In [5], Das and Das define a fuzzy topology on the fuzzy normed linear space defined
by Felbin and study some basic properties of this fuzzy topology. After that, Fang
[6] show that X with this topology is not topological vector space and modifies
the fuzzy topology and proved some results. Also, Xu and Fang define another
fuzzy topological space and study these spaces [14]. This concept has been used
in developing fuzzy functional analysis and its applications and a large number of
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papers by different authors have been published (see [2, 9]).
In this paper, we define a fuzzy topology on fuzzy normed linear space defined by
Bag and Samanta and study some properties of this fuzzy topology. It is shown that
(X, τN ) is not topological vector space. So, we define a fuzzy topology τ∗N coarser
than a fuzzy topology τN and show that (X, τ∗N ) is a locally convex topological vector
space.

2. Preliminaries

We give below some basic preliminaries required for this paper.

Definition 2.1 ([1]). Let X be a linear space over R (real number). Let N be A
fuzzy subset of X ×R such that for all x, u ∈ X and c ∈ R:
(N1) N(x, t) = 0 for all t ≤ 0,
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0,
(N3) If c ̸= 0 then N(cx, t) = N(x, t/|c|) for all t ∈ R,
(N4) N(x+ u, s+ t) ≥ min{N(x, s), N(u, t)} for all s, t ∈ R,
(N5) N(x, .) is a nondecreasing function of R and lim

t→∞
N(x, t) = 1.

Then N is called a fuzzy norm on X.

We assume that
(N6) N(x, t) > 0 for all t > 0 implies x = 0,
(N7) For x ̸= 0, N(x, .) is a continuous function of R and strictly increasing on the
subset {t : 0 < N(x, t) < 1} of R.

Definition 2.2 ([3]). Let (X,N,N∗) be a fuzzy normed linear space.
i) A sequence {xn} ⊆ X is said to converge to x ∈ X, if lim

n→∞
N(xn − x, t) = 1, for

all t > 0.
ii) A sequence {xn} ⊆ X is called Cauchy, if lim

n,m→∞
N(xn−xm, t) = 1, for all t > 0.

Definition 2.3 ([3]). Let (X,N1) and (Y,N2) be fuzzy normed linear spaces. A
function f : X −→ Y is said to be fuzzy continuous at x ∈ X, if for given ϵ > 0 and
α ∈ (0, 1) there exist δ > 0 and β ∈ (0, 1) such that N1(x − y, δ) > β implies that
N2(f(x)− f(y), ϵ) > α, for all y ∈ X.

Definition 2.4 ([5]). A fuzzy subset µ of a vector space X is said to be convex if

µ(kx+ (1− k)y) ≥ min(µ(x), µ(y)), for all x, y ∈ X and k ∈ [0, 1].

Definition 2.5 ([6]). Let X be a vector space over the field K (K = R or C),
A,B ∈ IX and t ∈ K where IX = {F : F : X −→ [0, 1] is a function}. Then A+ B
and tA are defined by

(A+B)(x) = sup
u+v=x

(A(u) ∧B(v))

and
(tA)(x) = A(x/t), t ̸= 0,

(0A)(x) =

{
sup
y∈X

A(y) , x = 0

0 , x ̸= 0.
640
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Definition 2.6 ([5]). A fuzzy topology on a set X is a family τ of fuzzy subsets of
X satisfying the following:
(i) The fuzzy subsets 1 and 0 are in τ ,
(ii) τ is closed under finite intersection of fuzzy subsets,
(iii) τ is closed under arbitrary union of fuzzy subsets.
The pair (X, τ) is called a fuzzy topological space.

Definition 2.7 ([5]). A fuzzy set µ in a fuzzy topological space (X, τ) is called a
neighborhood of a point x ∈ X if and only if there is ρ in τ such that ρ ⊆ µ and
µ(x) = ρ(x) > 0.

Definition 2.8 ([5]). Let (X, τ) be a fuzzy topological space. A sequence {xn} in
X is said to converge to a point x and is denoted by lim

n→∞
xn = x if for every open

neighborhood µ of x, there exists N ∈ N such that µ(xn) > 0 for all n > N .

Definition 2.9 ([5]). Let (X, τ1) and (Y, τ2) be fuzzy topological spaces. A function
f : X −→ Y is called fuzzy continuous at some point x ∈ X if and only if f−1(µ) is
a neighborhood of x for each neighborhood µ of f(x). f is called fuzzy continuous
if f is fuzzy continuous at every x ∈ X. This is equivalent to inverse of every fuzzy
open subset of Y is fuzzy open in X.

Definition 2.10 ([5]). A fuzzy topological space (X, τ) is said to be fuzzy Hausdorff
if for x, y ∈ X and x ̸= y there exist η, µ ∈ τ with µ(x) = η(y) = 1 and η ∩ µ = ∅.

Definition 2.11 ([6]). A stratified fuzzy topology τ on a vector space X is said to
be an fuzzy vector topology, if the following two mappings

f : X ×X −→ X, (x, y) −→ x+ y and g : K×X −→ X, (t, x) −→ tx,

are continuous, where K is equipped with the fuzzy topology induced by the usual
topology and X ×X and K×X are equipped with the corresponding product fuzzy
topologies. A vector space X with an fuzzy vector topology τ , denoted by (X, τ) is
called an fuzzy topological vector space (FTVS).

Definition 2.12 ([6]). Let (X, τ) be an fuzzy topological space and xα ∈ Pt(IX).
(i) A fuzzy set U on X is called Q-neighborhood of xα iff there exists G ∈ τ such
that xα∈̃G ⊆ U .
(ii) A family Uxα of Q-neighborhoods of xα is called a Q-neighborhood base of xα

iff for every Q-neighborhood A of xα, there exists U ∈ Uxα such that U ⊆ A.

Definition 2.13 ([6]). An fuzzy topological vector space (X, τ) is said to be of
QL-type, if there exists a family U of fuzzy sets on X such that for each α ∈ (0, 1],

Uα = {U ∩ r : U ∈ U, r ∈ (1− α, 1]}
is a Q-neighborhood base of 0α in (X, τ). The family U is called a Q-prebase for τ .

Theorem 2.14 ([6]). Let (X, τ) be a fuzzy topological space, U ∈ IX and x ∈ X.
Then U is a neighborhood of x if and only if U is a Q-neighborhood of xα for each
α ∈ (1− U(x), 1].

Theorem 2.15 ([6]). Let (X, τ) be a fuzzy topological vector spaces. Then
(i) U is an (open) Q-neighborhood of Oα iff x + U is an (open) Q-neighborhood of
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xα, where x ∈ X.
(ii) U is an (open) Q-neighborhood of xα iff tU is an (open) Q-neighborhood of (tx)α,
where t ∈ K, t ̸= 0.

Lemma 2.16 ([6]). Let τ be a stratified fuzzy topology on a vector space X. Then
(i) the mapping f (addition) is continuous iff for every fuzzy point (x, y)α in X ×X
and every Q-neighborhood W of (x+ y)α, there exist a Q-neighborhood U of xα and
a Q-neighborhood V of yα such that U + V ⊆ W ,
(ii) the mapping g (scalar multiplication) is continuous iff for every fuzzy point (t, x)α
in K×X and every Q-neighborhood W of (tx)α, there exist a Q-neighborhood U of
xα and δ > 0 such that sU ⊆ W for all s ∈ K with |s− t| < δ.

Lemma 2.17 ([6]). Let (X, τ) be an FTVS and Uα a Q-neighborhood base of 0α in
X, α ∈ (0, 1]. Then the following conclusions hold
(i) If U ∈ Uα or U = r, where r ∈ (1− α, 1], then there exists α0 ∈ (0, α) such that
for each µ ∈ [α0, 1] there is a V ∈ Uµ such that V ⊆ U ,
(ii) If U, V ∈ Uα, then there exists W ∈ Uα such that W ⊆ U ∩ V ,
(iii) If U ∈ Uα, then there exists V ∈ Uα such that V + V ⊆ U ,
(iv) If U ∈ Uα, then there exists V ∈ Uα such that tV ⊆ U for all t ∈ K with |t| ≤ 1,
(v) If U ∈ Uα and x ∈ X, there exists λ > 0 such that xα∈̃λU .
Conversely, let X be a vector space over K such that every α ∈ (0, 1] has a family
Uα of fuzzy sets on X satisfying the conditions (i)-(v), then there exists a unique
fuzzy topology τ on X such that (X, τ) is an FTVS and Uα is a Q-neighborhood base
of 0α.

Definition 2.18 ([6]). An fuzzy topological vector space (X, τ) is said to be locally
convex, if for each α ∈ (0, 1], there is a base of Q-neighborhoods of 0α consisting of
convex fuzzy sets.

3. Fuzzy Topology

Definition 3.1. Let (X,N) be a fuzzy normed linear space and let x ∈ X, α ∈ (0, 1)
and ϵ > 0 the fuzzy set µα(x, ϵ) defined in X by

µα(x, ϵ)(y) =

{
1− α , N(x− y, ϵ) > α
0 , o.w.

is said to be an α-open sphere in X.

Example 3.2. Let (X, ∥.∥) be a normed space. We define

N(x, t) =

{
t/(t+ ∥x∥) , t > 0, x ∈ X
0 , t ≤ 0, x ∈ X.

Then (X,N) is a fuzzy normed linear space such that N satisfying (N7). By Defi-
nition 3.1, we have

µα(x, ϵ)(y) =

{
1− α , ∥x− y∥ < ((1− α)/a)ϵ
0 , o.w.

is a α-open sphere in X.

Definition 3.3. Fuzzy set µ ∈ IX is called N -open if for µ(x) > 0, there exists
ϵ > 0 such that µα(x, ϵ) ⊆ µ, for some α ∈ (0, 1).
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Theorem 3.4. Let (X,N) be a fuzzy normed linear space. Then a family

τN = {µ ∈ IX : µ is N − open}
is a fuzzy topology on X.

Proof. (i) We have 1(x) = 1, for all x ∈ X. So µα(x, ϵ) ⊆ 1, for all ϵ > 0 and
α ∈ (0, 1). Hence 1 ∈ τ . Since 0(x) = 0, for all x ∈ X. Thus 0 ∈ τ .
(ii) Let µ1, µ2 ∈ τ and (µ1∩µ2)(x) > 0. We have µ1(x) > 0 and µ2(x) > 0. So there
exist α1, α2 ∈ (0, 1) and ϵ1, ϵ2 > 0 such that µα1(x, ϵ1) ⊆ µ1 and µα2(x, ϵ2) ⊆ µ2.
Suppose that α = max{α1, α2} and ϵ = min{ϵ1, ϵ2}. If N(x − y, ϵ) > α then
N(x − y, ϵ1) ≥ N(x − y, ϵ) > α ≥ α1 and N(x − y, ϵ2) ≥ N(x − y, ϵ) > α ≥ α2.
Thus µα(x, ϵ)(y) = 1 − α ≤ 1 − α1 = µα1(x, ϵ1)(y) and µα(x, ϵ)(y) = 1 − α ≤
1 − α2 = µα2(x, ϵ2)(y). Therefore µα(x, ϵ) ⊆ µα1(x, ϵ1) and µα(x, ϵ) ⊆ µα2(x, ϵ2).
Hence µα(x, ϵ) ⊆ µα1(x, ϵ1) ∩ µα2(x, ϵ2) ⊆ µ1 ∩ µ2. So µ1 ∩ µ2 ∈ τ .
(iii) Let {µi} ∈ τ and

∪
i µi(x) > 0. Then there exists i0 such that µi0(x) > 0. So

there exist ϵ > 0 and α ∈ (0, 1) such that µα(x, ϵ) ⊆ µi0 . Therefore µα(x, ϵ) ⊆
∪

i µi.
Hence

∪
i µi ∈ τ .

Thus τ is a fuzzy topology on X. □

Theorem 3.5. Let (X,N) be a fuzzy normed linear space such that N satisfying
(N7). Then α-open sphere is a N -open set, for all α ∈ (0, 1).

Proof. Let x ∈ X, ϵ > 0 and α ∈ (0, 1). Suppose that µα(x, ϵ)(y) > 0. Therefore
N(x− y, ϵ) > α. Assume that 0 < α < α1 < N(x− y, ϵ). By (N7), we obtain that
there exists 0 < t < ϵ such that N(x−y, t) > α1. Let δ = ϵ−t > 0 and µα1(y, δ)(z) >
0. HenceN(y−z, δ) > α1. ThusN(x−z, ϵ) ≥ min{N(y−z, δ), N(x−y, t)} > α1 > α.
So µα1

(y, δ)(z) = 1−α1 ≤ 1−α = µα(x, ϵ)(z). Therefore µα1
(y, δ) ⊆ µα(x, ϵ). Hence

µα(x, ϵ) is a fuzzy open set in (X, τN ). □

Theorem 3.6. Let (X,N) be a fuzzy normed linear space. Then α-open sphere is
a fuzzy convex set, for all α ∈ (0, 1).

Proof. Let x ∈ X, ϵ > 0 and α ∈ (0, 1). Assume that y, z ∈ X and k ∈ [0, 1]. We
have

N(x− (ky + (1− k)z), ϵ) ≥ min{N(k(x− y), kϵ), N((1− k)(x− z), (1− k)ϵ)}
= min{N(x− y, ϵ), N((x− z), ϵ)}.

Hence µα(x, ϵ)(ky + (1 − k)z) ≥ min(µα(x, ϵ)(y), µα(x, ϵ)(z)). Thus µα(x, ϵ) is a
fuzzy convex set. □

Theorem 3.7. Let (X,N) be a fuzzy normed linear space such that N satisfying
(N7). Also, let {xn} ⊆ X and x ∈ X. Then {xn} converges to x in (X,N) if and
only if {xn} converges to x in (X, τN ).

Proof. let xn −→ x in fuzzy normed linear space (X,N). Hence lim
n→∞

N(xn −
x, t) = 1, for all t > 0. Suppose that µ is a fuzzy open subset of (X, τN ) and
µ(x) > 0. Then there exist ϵ > 0 and α ∈ (0, 1) such that µα(x, ϵ) ⊆ µ. We have
lim

n→∞
N(xn − x, ϵ) = 1. Thus there exists N > 0 such that N(xn − x, ϵ) > α, for all

n > N . So µα(x, ϵ)(xn) = 1 − α > 0, for all n > N . By Theorem 3.5, xn −→ x in
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(X, τN ).
let xn −→ x in fuzzy topological space (X, τN ). Assume that t > 0 and 0 < ϵ < 1.
We have µ1−ϵ(x, t)(x) = ϵ > 0. Then there exists N ∈ N such that µ1−ϵ(x, t)(xn) >
0, for all n > N . Therefore N(xn − x, t) > 1− ϵ, for all n > N . Hence lim

n→∞
N(xn −

x, t) = 1. Thus xn −→ x in (X,N). □

Theorem 3.8. Let (X,N1) and (Y,N2) be fuzzy normed linear spaces such that N1

and N2 satisfying (N7). Then f : (X, τN1) −→ (Y, τN2) is fuzzy continuous at a
point if and only if f : (X,N1) −→ (Y,N2) is fuzzy continuous at that point.

Proof. Let f : (X,N1) −→ (Y,N2) be fuzzy continuous at x ∈ X. Suppose that µ is a
fuzzy open subset of (Y, τN2

) and µ(f(x)) > 0. Then there exist ϵ > 0 and α ∈ (0, 1)
such that µα(f(x), ϵ) ⊆ µ. Since f : (X,N1) −→ (Y,N2) is fuzzy continuous at
x ∈ X, there exist β0 ∈ (0, 1) and δ > 0 such that N1(x − y, δ) > β0 implies that
N2(f(x) − f(y), ϵ) > α, for all y ∈ X. Let β = max{β0, α} and µβ(x, ϵ)(y) > 0.
Hence N1(x − y, δ) > β ≥ β0, this implies that N2(f(x) − f(y), ϵ) > α. Therefore
µα(f(x), ϵ)(f(y)) = 1−α. Hence µβ(x, δ)(y) = 1− β ≤ 1−α = µα(f(x), ϵ)(f(y)) ≤
µ(f(y)) = f−1(µ)(y). Thus µβ(x, δ) ⊆ f−1(µ). So f−1(µ) is a neighborhood of x.
Hence f : (X, τN1) −→ (Y, τN2) is fuzzy continuous at x.
Conversely, let f : (X, τN1) −→ (Y, τN2) is fuzzy continuous at x. Suppose that
ϵ > 0 and α ∈ (0, 1). We have µα(f(x), ϵ)(f(x)) > 0. Since f : (X, τN1) −→ (Y, τN2)
is fuzzy continuous at x it follows that f−1(µα(f(x), ϵ)) is a neighborhood of x. So
there is ρ in τN1 such that ρ ⊆ f−1(µα(f(x), ϵ)) and ρ(x) = f−1(µα(f(x), ϵ))(x) > 0.
Hence there exist δ > 0 and β ∈ (0, 1) such that µβ(x, δ) ⊆ ρ. Assume that
N1(x− y, δ) > β. Therefore 0 < µβ(x, δ)(y) = 1−β ≤ ρ(y) ≤ f−1(µα(f(x), ϵ))(y) =
µα(f(x), ϵ)(f(y)). Hence N2(f(x) − f(y), ϵ) > α. Thus f : (X,N1) −→ (Y,N2) is
fuzzy continuous at x. □

Theorem 3.9. Let (X,N) be fuzzy normed linear space such that N satisfying (N7).
Then the fuzzy topological space (X, τN ) is fuzzy Hausdorff.

Proof. Let x, y ∈ X and x ̸= y. By (N2), there exists t0 > 0 such that N(x−y, t0) <
1. Assume that α ∈ (0, 1) and N(x − y, t0) < α. We define the fuzzy sets µ and ρ
on X as follows:

µ(z) =

{
1 , z = x
µα(x, t0/2)(z) , o.w.,

and

ρ(z) =

{
1 , z = y
µα(y, t0/2)(z) , o.w.,

It is claer that µ and ρ are open and µ(x) = 1 = ρ(y). If µ ∩ ρ ̸= ∅. Then
there exists x0 ∈ X such that (µ ∩ ρ)(x0) > 0. Hence µα(x, t0/2)(x0) > 0 and
µα(y, t0/2)(x0) > 0. Thus N(x− x0, t0/2) > α and N(y − x0, t0/2) > α. Therefore
N(x − y, t0) ≥ min{N(x − x0, t0/2), N(y − x0, t0/2)} ≥ α, this is a contradiction.
Hence µ1(x, t0/2) ∩ µ1(y, t0/2) = ∅. So (X, τN ) is fuzzy Hausdorff. □

Lemma 3.10. Let (X,N) be fuzzy normed linear space and x ∈ X, α ∈ (0, 1) and
ϵ > 0. Then

µα(x, ϵ) = (x+ Uα,ϵ) ∩ (1− α),
644
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where Uα,ϵ = {z ∈ X : N(z, ε) > α}.

Proof. Let x ∈ X, α ∈ (0, 1) and ϵ > 0. Suppose that µα(x, ϵ)(y) = 1 − α. Hence
N(y − x, ϵ) > α. Thus y − x ∈ Uα,ϵ. So y ∈ (x + Uα,ϵ). Therefore ((x + Uα,ϵ) ∩
(1− α))(y) = 1− α. Similarly, if µα(x, ϵ)(y) = 0 then ((x+Uα,ϵ) ∩ (1− α))(y) = 0.
Hence µα(x, ϵ) = (x+ Uα,ϵ) ∩ (1− α). □

Theorem 3.11. Let (X,N) be fuzzy normed linear space such that N satisfying
(N7). Then
(i) the mapping f : (X, τN )× (X, τN ) −→ (X, τN ), (x, y) −→ x+ y, is continuous,
(ii) the mapping g : R× (X, τN ) −→ (X, τN ), (t, x) −→ tx, is not continuous.

Proof. (i) Let x0, y0 ∈ X and α0 ∈ (0, 1). Suppose that W is a Q-neighborhood of
(x0 + y0)α0 , then there exists µ ∈ τN such that (x0 + y0)α0∈̃µ ⊆ W . Hence there
exist ϵ > 0 and α ∈ (0, 1) such that µα(x0 + y0, ϵ) ⊆ µ ⊆ W . We have N(x+ y, ϵ) ≥
min{N(x, ϵ/2), N(y, ϵ/2)}, for all x, y ∈ X. Thus Uα,ϵ/2 + Uα,ϵ/2 ⊆ Uα,ϵ. Therefore
(x0 + Uα,ϵ/2) + (y0 + Uα,ϵ/2) ⊆ (x0 + y0) + Uα,ϵ. Hence (x0 + Uα,ϵ/2) ∩ (1− α) +
(y0 + Uα,ϵ/2) ∩ (1− α) ⊆ ((x0 + y0) + Uα,ϵ) ∩ (1− α). By Lemma 3.10, we obtain
that µα(x0, ϵ/2) + µα(y0, ϵ/2) ⊆ µα(x0 + y0, ϵ) ⊆ W .
If α < α0, then it is easy to see that µα(x0, ϵ/2), µα(y, ϵ/2) are the open Q-
neighborhoods of x0α0

and y0α0
, respectively.

If α ≥ α0, we define the fuzzy sets A and B on X as follows:

A(z) =

{
β , z = x
µα(x0, ϵ/2)(z) , o.w.,

and

B(z) =

{
β , z = y
µα(x0, ϵ/2)(z) , o.w.,

where β = µ(x0 + y0) > 1− α0. It is claer that A and B are open Q-neighborhoods
of x0α0

and y0α0
, respectively, and A+ B ⊆ µ ⊆ W . By Lemma 2.16, the addition

is continuous.
(ii) Let (t0, x0) ∈ R × X, x ̸= 0 and α0 ∈ (0, 1). Assume that α, β ∈ (0, 1) and
α < 1− α0 < β. We define a fuzzy set µ on X by

µ(z) =

{
β , z = t0x0

α , o.w..

Hence µ is a open Q-neighborhood of (t0x0)α0 . If U is a Q-neighborhood x0α0
,

then (t0 + δ)U ⊈ µ, for all δ > 0. By Lemma 2.16, the scalar multiplication is not
continuous. □

Definition 3.12. Let (X,N) be fuzzy normed linear space. A fuzzy set µ on X is
said to be N -linearly open if for every x ∈ supµ and α ∈ (1− µ(x), 1), there exists
ϵ > 0 such that µα(x, ϵ) ⊆ µ.

Theorem 3.13. Let (X,N) be a fuzzy normed linear space. Then a family

τ∗N = {µ ∈ IX : µ is N − linearly open}
is a fuzzy topology on X.

Proof. The proof is similar to proof of Theorem 3.4. □
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Theorem 3.14. Let (X,N) be a fuzzy normed linear space such that N satisfying
(N7). Then α-open sphere is a N -linearly open, for all α ∈ (0, 1).

Proof. The proof is similar to proof of Theorem 3.5. □

Theorem 3.15. Let (X,N) be a fuzzy normed linear space such that N satisfying
(N7) and (X, τN ) be a fuzzy topological space generated by the fuzzy norm N . Also,
let {xn} ⊆ X and x ∈ X. Then {xn} converges to x in (X,N) if and only if {xn}
converges to x in (X, τ∗N ).

Proof. The proof is similar to proof of Theorem 3.7. □

Theorem 3.16. Let (X,N1) and (Y,N2) be fuzzy normed linear spaces such that N1

and N2 satisfying (N7) and (X, τN1), (y, τN2) be fuzzy topological spaces generated
by the fuzzy norms N1 and N2 respectively. Then f : (X, τ∗N1

) −→ (Y, τ∗N2
) is fuzzy

continuous at a point if and only if f : (X,N1) −→ (Y,N2) is fuzzy continuous at
that point.

Proof. The proof is similar to proof of Theorem 3.8. □

Theorem 3.17. Let (X,N) be a fuzzy normed linear space such that N satisfying
(N7). Then (X, τ∗N ) is a locally convex FTVS and for every α ∈ (0, 1),

Uα = {Uβ,ϵ ∩ (1− β) : ϵ > 0, β ∈ (0, α)} = {µβ(0, ϵ) : ϵ > 0, β ∈ (0, α)}

is a Q-neighborhood base of 0α, where Uα,ϵ = {z ∈ X : N(z, ε) > α}.

Proof. First, we show that Uα satisfies conditions (i)ÔÇô(v) of Lemma 2.17, for all
α ∈ (0, 1).
(i) Let U = Uβ,ϵ ∩ (1− β) ∈ Uα. We have 0 < β < α. So there exists α0 ∈ (0, α)

such that β < α0. Hence V = Uβ,ϵ ∩ (1− β) ∈ Uµ and V ⊆ U , for all µ ∈ [α0, 1].

Let U = r with r ∈ (1 − α, 1). Then there exists α0 ∈ (0, α) such that r > 1 − α0.
So V = U1−r,ϵ ∩ (r) ∈ Uµ and V ⊆ U , for all µ ∈ [α0, 1].

(ii) Let Uβ1,ϵ1 ∩ (1− β1), Uβ2,ϵ2 ∩ (1− β2) ∈ Uα. Suppose that ϵ = min{ϵ1, ϵ2} and

β = max{β1, β2}. Hence Uβ,ϵ∩(1− β) ∈ Uα and Uβ,ϵ∩(1− β) ⊆ (Uβ1,ϵ1∩(1− β1))∩
(Uβ2,ϵ2 ∩ (1− β2)).

(iii) Let Let Uβ,ϵ ∩ (1− β) ∈ Uα. Since N(x+ y, ϵ) ≥ min{N(x, ϵ/2), N(y, ϵ/2)}, for
all x, y ∈ X, it follows that Uβ,ϵ/2 ∩ (1− β) ∈ Uα and Uβ,ϵ/2 ∩ (1− β) + Uβ,ϵ/2 ∩
(1− β) ⊆ Uβ,ϵ ∩ (1− β).

(iv) Let Uβ,ϵ∩ (1− β) ∈ Uα. We have N(x/t, ϵ) = N(x, |t|ϵ) ≤ N(x, ϵ), for all x ∈ X

and all t ∈ R with 0 < |t| ≤ 1. Therefore t(Uβ,ϵ ∩ (1− β)) ⊆ Uβ,ϵ ∩ (1− β), for all

t ∈ R with |t| ≤ 1.
(v) Let Uβ,ϵ ∩ (1− β) ∈ Uα and x ∈ X. By (N5), we have lim

t−→∞
N(x, t) = 1. Thus

there exists t > 0 such that N(x, tϵ) > β. So (Uβ,ϵ ∩ (1− β))(x/t) = µβ(0, ϵ)(x/t) =

1− β > 1− α. Hence xα∈̃t(Uβ,ϵ ∩ (1− β)).

By Lemma 2.17, there exists a unique fuzzy topology τ on X such that (X, τ) is
an FTVS and Uα is a Q-neighborhood base of 0α. By Lemma 3.6, Uβ,ϵ ∩ (1− β) =

µβ(0, ϵ) is a fuzzy convex set. Therefore (X, τ) is locally convex.
Now we prove τ = τ∗N . Let µ ∈ τ∗N and α > 1−µ(x). Then there exist ϵ > 0 and α >
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β > 1−µ(x) such that µβ(x, ϵ) ⊆ µ. By Theorem 2.15, µβ(x, ϵ) = x+Uβ,ϵ ∩ (1− β)
is a Q-neighborhood of xα for τ . Hence µ is is a Q-neighborhood of xα for τ . By
Theorem 2.14, µ is is a neighborhood of x for τ . Thus µ ∈ τ . So τ∗N ⊆ τ .
On the other hand, let µ ∈ τ and x ∈ suppµ. Assume that α(1− µ(x), 1). Then we
have xα∈̃µ. Thus there exists ϵ > 0 and β ∈ (0, α) such that x+Uβ,ϵ ∩ (1− β) ⊆ µ.

Therefore µβ(x, ϵ) ⊆ µ. This shows that µ ∈ τ∗N . So τ ⊆ τ∗N . Thus τ = τ∗N . □
Theorem 3.18. Let (X,N) be fuzzy normed linear space such that N satisfying
(N7). Then the fuzzy topological space (X, τ∗N ) is fuzzy Hausdorff.

Proof. The proof is similar to proof of Theorem 3.9. □
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