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Abstract. In this paper, “ interval-valued fuzzy ” denote briefly by
“ IVF ”. We defined new level sets of interval-valued fuzzy sets, discuss
propositions and decomposition theorem in interval-valued fuzzy approxi-
mation spaces and list respectively some equivalent conditions of interval-
valued fuzzy relation R which is reflexive, symmetric or transitive. Then
we introduce relationships between interval-valued fuzzy approximation
spaces and interval-valued fuzzy topological spaces. First, the conditions
that they may change into each other are given. Second, questions how to
transformation are discussed. Third, relationships between the transfor-
mation and itself are studied. Specially, internal selectivity and structure
of the interval-valued fuzzy topology induced by approximation space are
presented. A necessary conditions and sufficient conditions on two topolo-
gies induced equal with each other are list. Finally, An interval-valued
fuzzy pseudo-closure operator is illustrated.
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1. Introduction

Rough set theory, proposed by Pawlak [8], is a mathematical tool for dealing
with incomplete and vague information. It may be seen as an extension of classical
set theory and has been successfully applied to machine learning, intelligent systems,
inductive reasoning, pattern recognition, mereology, image processing, signal anal-
ysis, knowledge discovery, decision analysis, expert systems and many other fields
[9, 10, 11, 12].

Zadeh’s fuzzy set theory [17] addresses the problem of how to understand and
manipulate imperfect knowledge. Recent investigations have shown that these two
theories can be combined into a more flexible and expressive framework for modeling
and processing incomplete information in information systems. Various notions that
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combine rough sets and fuzzy sets are introduced, such as rough fuzzy sets, fuzzy
rough sets, and intuitionistic fuzzy rough sets (see [1, 2, 5, 7, 13, 16, 19]).

As a generalization of Zadeh’s fuzzy set, Interval-valued fuzzy (IVF, for short)
sets were introduced by Gorzalczany [3] and Turksen [15], and they were applied to
the fields of approximate inference, signal transmission and controller, etc. Mondal
et al. [6] defined topology of IVF sets and studied their properties.

By integrating Pawlak rough set theory with IVF set theory, Sun et al. [14]
introduced IVF rough sets based on an IVF approximation space, defined IVF in-
formation systems and discussed their attribute reduction. Gong et al. [4] presented
IVF rough sets based on approximation spaces, studied the knowledge discovery in
IVF information systems. Zhang et al. [20] discussed general IVF rough sets based
on an IVF approximation space on two universes of discourse. However, topological
structures of IVF rough sets based on an an IVF approximation space have not been
studied.

To improve and develop the applications of topology and rough sets on IVF
uncertain information, topological properties of IVF rough sets need to be studied.
The purpose of this paper is to investigate IVF topologies based on IVF relations.

2. Preliminaries

Throughout this paper, U denotes a non-empty finite universe. I denotes [0, 1]
and [I] denotes {[a, b] : a, b ∈ I and a ≤ b}. P(U) denotes the family of all subsets of
U . F (U) denotes the family of all fuzzy sets in U . ā denotes [a, a] for any a ∈ [0, 1].
“interval-valued fuzzy” is briefly “IVF”.

For any [ai, bi] ∈ [I]( i = 1, 2), we define

[a1, b1] = [a2, b2] ⇐⇒ a1 = a2, b1 = b2;

[a1, b1] ≤ [a2, b2] ⇐⇒ a1 ≤ a2, b1 ≤ b2,

[a1, b1] < [a2, b2] ⇐⇒ [a1, b1] ≤ [a2, b2] and [a1, b1] ̸= [a2, b2];

1̄− [a, b] or [a, b]c = [1− b, 1− a].

Definition 2.1 ([3, 15]). For any {[ai, bi] : i ∈ J} ⊆ [I], we define∨
i∈J

[ai, bi] = [
∨
i∈J

ai,
∨
i∈J

bi] and
∧
i∈J

[ai, bi] = [
∧
i∈J

ai,
∧
i∈J

bi],

where
∨
i∈J

ai = sup{ai : i ∈ J} and
∧
i∈J

ai = inf{ai : i ∈ J}.

Definition 2.2 ([3, 15]). An IVF set A in U is defined by a mapping A : U 7→ [I].
Denote

A(x) = [A−(x), A+(x)] (x ∈ U).

Then A−(x) (resp. A+(x) ) is called the lower (resp. upper) degree to which x
belongs to A. A− and A+ are called the lower fuzzy set and the upper fuzzy set of
A, respectively.

The set of all IVF sets in U is denoted by F (i)(U).

Let a, b ∈ I. ˜[a, b] represents the IVF set which satisfies ˜[a, b](x) = [a, b] for each

x ∈ U . We denoted [̃a, a] by ã.
620
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We recall some basic operations on F (i)(U) as follows ([3, 15]): for any A,B ∈
F (i)(U) and [a, b] ∈ [I],

(1) A = B ⇐⇒ A(x) = B(x) for any x ∈ U .
(2) A ⊆ B ⇐⇒ A(x) ≤ B(x) for any x ∈ U .
(3) A = Bc ⇐⇒ A(x) = B(x)c for any x ∈ U .
(4) (A ∩B)(x)=A(x) ∧B(x) for any x ∈ U .
(5) (A ∪B)(x)=A(x) ∨B(x) for any x ∈ U .
Moreover,

(
∪
i∈J

A)(x) =
∨
i∈J

A(x) and (
∩
i∈J

A)(x) =
∧
i∈J

A(x),

where {Ai : i ∈ J} ⊆ F (i)(U).
(6) ([a, b]A)(x) = [a, b] ∧ [A−(x), A+(x)] for any x ∈ U .
Obviously, A = B ⇐⇒ A− = B− and A+ = B+.
For any A ∈ F (i)(U), we denote

RA = {(x, y) ∈ U × U : A(x) ̸= A(y)}, RA− = {(x, y) ∈ U × U : A−(x) > A−(y)}
and RA+ = {(x, y) ∈ U × U : A+(x) > A+(y)}.

Remark 2.3. Let A ∈ F (i)(U). Then

(1) RA = ∅ ⇐⇒ There exist [a, b] ∈ [I] such that A = ˜[a, b].
(2) a) RA− = ∅ ⇐⇒ There exist a ∈ I such that A− = ā.

b) RA+ = ∅ ⇐⇒ There exist a ∈ I such that A+ = ā.
(3) RA = ∅ ⇐⇒ RA− = ∅ and RA+ = ∅.

Definition 2.4 ([6]). A ∈ F (i)(U) is called an IVF point in U , if there exist [a, b] ∈
[I]− {0̄} and x ∈ U such that

A(y) =

{
[a, b], y = x,

0̄, y ̸= x.

We denote A by x[a,b].

If [a, b] = 1̄, then

x1̄(y) =

{
1̄, y = x,

0̄, y ̸= x.

Remark 2.5. Let A ∈ F (i)(U). Then

A =
∪
y∈U

(A(y)y1̄) and A =
∩
y∈U

(Ã(y) ∪ (y1̄)
c).

Definition 2.6 ([6]). τ ⊆ F (i)(U) is called an IVF topology on U , if
(1) 0̃, 1̃ ∈ τ ,
(2) A,B ∈ τ =⇒ A ∩B ∈ τ ,
(3) {Ai, i ∈ J} ⊆ τ =⇒

∪
i∈J

Ai ∈ τ .

The pair (U, τ) is called an IVF topological space. Every member of τ is called
an IVF open set in U . B is called an IVF closed set in U if B ∈ τ c with τ c = {A :
Ac ∈ τ}
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Let A ∈ F (i)(U). Then interior and closure of A denoted respectively by int(A)
and cl(A), are defined as follows:

int(A) or intτ (A) =
∪

{B ∈ τ : B ⊆ A}

and

cl(A)) or clτ (A) =
∩

{B ∈ τ c : B ⊇ A}.

Proposition 2.7 ([6]). Let (U, τ) be an IVF topological space and A,B ∈ F (i)(U).
Then, the following properties hold:

(1) int(1̃) = 1̃, cl(0̃) = 0̃;
(2) int(A) ⊆ A ⊆ cl(A);
(3) A ⊆ B =⇒ int(A) ⊆ int(B), cl(A) ⊆ cl(B);
(4) int(Ac) = (cl(A))c, cl(Ac) = (int(A))c;
(5) int(A ∩B) = int(A) ∩ int(B), cl(A ∪B) = cl(A) ∪ cl(B);
(6) int(int(A)) = int(A), cl(cl(A)) = cl(B).

3. IVF rough approximation operators

Recall that R is called an IVF relation on U if R ∈ F (i)(U × U).

Definition 3.1 ([14]). Let R be an IVF relation on U . Then R is called
(1) reflexive if R(x, x) = 1̄ for any x ∈ U .
(2) symmetric if R(x, y) = R(y, x) for any x, y ∈ U .
(3) transitive if R(x, z) ≥ R(x, y) ∧R(y, z) for any x, y, z ∈ U .

If R is a reflexive, symmetric and transitive IVF relation on U , then R is called
an equivalence IVF relation on U .

Definition 3.2 ([14]). Let R be an IVF relation on U . The pair (U,R) is called
an IVF approximation space. For any A ∈ F (i)(U), the IVF lower and the IVF
upper approximation of A with regard to (U,R), denoted by R(A) and R(A) are
respectively, defined as follows:

R(A)(x) =
∧
y∈U

(A(y) ∨ (1̄−R(x, y))) (x ∈ U)

and

R(A)(x) =
∨
y∈U

(A(y) ∧R(x, y)) (x ∈ U).

R : F (i)(U) 7→ F (i)(U) and R : F (i)(U) 7→ F (i)(U) are called the IVF lower approx-
imation operator and the IVF upper approximation operator, respectively.

Remark 3.3 ([14]). Let (U,R) be an IVF approximation space. Then

R(x1̄)(y) = R(y, x) and R((x1̄)
c)(y) = 1̄−R(y, x) (x, y ∈ U).

Proposition 3.4. Let (U,R) be an IVF approximation space. Then

R(A)− = R+(A−), (R(A))+ = R−(A+),

(R(A))− = R−(A−) and (R(A))+ = R+(A+) (A ∈ F (i)(U)).
622
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Proposition 3.5 ([18]). Let (U,R) be an IVF approximation space. Then for any
A,B ∈ F (i)(U) and [a, b] ∈ [I],

(1) R(1̃) = 1̃, R(0̃) = 0̃;
(2) A ⊆ B =⇒ R(A) ⊆ R(B), R(A) ⊆ R(B);
(3) R(Ac) = (R(A))c, R(Ac) = (R(A))c;
(4) R(A ∩B) = R(A) ∩R(B), R(A ∪B) = R(A) ∪R(B);

(5) R([a, b]A) = [a, b]R(A), R( ˜[a, b] ∪A) = ˜[a, b] ∪R(A)

Theorem 3.6 ([18]). Let (U,R) be an IVF approximation space. Then

(1) R is reflexive ⇐⇒ (ILR) ∀A ∈ F (i)(U), R(A) ⊆ A.

⇐⇒ (IUR) ∀A ∈ F (i)(U), A ⊆ R(A).

(2) R is symmetric ⇐⇒ (ILS) ∀(x, y) ∈ U × U,R((x1̄)
c)(y) = R((y1̄)

c)(x).

⇐⇒ (IUS) ∀(x, y) ∈ U × U,R(x1̄)(y) = R(y1̄)(x).

(3) R is transitive ⇐⇒ (ILT ) ∀A ∈ F (i)(U), R(A) ⊆ R(R(A)).

⇐⇒ (IUT ) ∀A ∈ F (i)(U), R(R(A)) ⊆ R(A).

Corollary 3.7. Let (U,R) be an IVF approximation space. If R is reflexive and
transitive, then

R(R(A)) = R(A) for any A ∈ F (i)(U).

R(R(A)) = R(A) for any A ∈ F (i)(U).

Proposition 3.8. Let (U,R) be an IVF approximation space. If R is reflexive, then
for any [a, b] ∈ [I],

R( ˜[a, b]) = ˜[a, b] = R( ˜[a, b]).
Proof. (1) For any [a, b] ∈ [I] and x ∈ U , since

R( ˜[a, b])(x) = ∧
y∈U

([a, b] ∨ (1̄−R(x, y))) = [a, b] ∨ (
∧
y∈U

(1̄−R(x, y)) ≥ [a, b],

R( ˜[a, b]) ⊇ ˜[a, b]. Note that R( ˜[a, b]) ⊆ ˜[a, b] by the reflexivity of R and Theorem

3.5(1). Then R( ˜[a, b]) = ˜[a, b].
By Theorem 3.5(3),

R( ˜[a, b]) = (R([̃a, b]c))c = ([̃a, b]c)c = ˜[a, b].
□

4. IVF topologies based on IVF relations

Let R be an IVF relation on U . Denote

σR = {A ∈ F (i)(U) : A ⊆ R(A)},

τR = {A ∈ F (i)(U) : R(A) = A} and θR = {R(A) : A ∈ F (i)(U)}.
623
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Theorem 4.1. Let R be an IVF relation on U .
(1) τR ⊆ σR, τR ⊆ θR.
(2) If R is transitive, then τR ⊆ θR ⊆ σR.
(3) If R is reflexive, then τR = σR.
(4) If R is reflexive and transitive, then τR = θR = σR.

Proof. This is obvious. □

4.1. The IVF topology induced by an IVF relation.

Theorem 4.2. Let R be an IVF relation on U . Then
(1) σR is an IVF topology on U .
(2) intσR

(A) ⊆ R(A) and clσR
(A) ⊇ R(A) (A ∈ F (i)(U)).

(3) (U, σR) is not connected.

Proof. (1) This is obvious.
(2) For any A ∈ F (i)(U), by Proposition 3.5(2),

intσR
(A) =

∪
{B ⊆ R(B) : B ⊆ A} ⊆

∪
{B ⊆ R(B) : R(B) ⊆ R(A)} ⊆ R(A).

By Proposition 2.12 (4) and Proposition 3.5(3),

clσR
(A) = (intσR

(Ac))c ⊇ (R(Ac))c = R(A) (A ∈ F (i)(U)).

(3) Pick 0̄ < [a, b] < 1̄, by (1), ˜[a, b] is closed and open. Then (U, σR) is not
connected. □

Definition 4.3. Let R be an IVF relation on U . σR is called the IVF topology
induced by R on U .

Theorem 4.4. Let R1 and R2 be two IVF relations on U . Let σR1 and σR2 be the
IVF topologies induced by R1 and R2 on U , respectively. Then

(1) If R1 ⊆ R2, then σR2 ⊆ σR1 .
(2) σR1∪R2 = σR1 ∩ σR2 .

Proof. (1) For any A ∈ σR2 , we have A ⊆ R2(A). By R1 ⊆ R2, we can easily prove
that R2(A) ⊆ R1(A). Then A ⊆ R1(A). Hence A ∈ σR1 .

Thus, σR2 ⊆ σR1 .
(2) Put R = R1 ∪R2.
By (1), σR ⊆ σR1 and σR ⊆ σR2 . Thus

σR1 ∩ σR2 ⊇ σR.
624
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For any A ∈ τR1 ∩ τR2 , by R1(A) ⊇ A and R2(A) ⊇ A,

(R)(A)(x) =
∧
y∈U

(A(y) ∨ (1̄− (R1 ∪R2)(x, y)))

=
∧
y∈U

(A(y) ∨ (1̄− (R1(x, y) ∨R2(x, y))))

=
∧
y∈U

(A(y) ∨ (1̄−R1(x, y)) ∧ (1̄−R2(x, y))))

=
∧
y∈U

((A(y) ∨ (1̄−R1(x, y))) ∧ (A(y) ∨ (1̄−R2(x, y))))

= (
∧
y∈U

(A(y) ∨ (1̄−R1(x, y)))) ∧ (
∧
y∈U

(A(y) ∨ (1̄−R2(x, y))))

= R1(A)(x) ∨R2(A)(x) = (R1(A) ∪R2(A))(x)

Then

R(A) = (R1 ∪R2)(A) = R1(A) ∪R2(A) ⊇ A ∪A = A.

Hence A ∈ σR. Thus, σR1 ∩ σR2 ⊆ σR. Hence σR1∪R2 = σR1 ∩ σR2 . □

4.2. The IVF topology induced by a reflexive IVF relation.

Theorem 4.5. Let R be a reflexive IVF relation on U . Then
(1) τR is an IVF topology on U .
(2) intτR(A) ⊆ R(A) and clτR(A) ⊇ R(A) (A ∈ F (i)(U)).

Proof. The proof is similar to Theorem 4.2. □

Definition 4.6. Let R be a reflexive IVF relation on U . τR is called the IVF
topology induced by R on U .

Theorem 4.7. Let R be reflexive IVF relation on U and let τR be the IVF topology
induced by R on U . Then

(1) τR ⊆ θR.
(2) If R is transitive, then

a) R is an interior operator of τR;
b) R is a closure operator of τR.

(3) If RA = ∅, then A ∈ τR
(4) (U, τR) is not connected.

Proof. (1) This is obvious.
(2) a) It suffices to show

R(A) = int(A)

for any A ∈ F (i)(U)}, where int(A) =
∪
{B ∈ τR : B ⊆ A}.

Let A ∈ F (i)(U)}. By (1), R(A) ∈ τR. Note that R(A) ⊆ A by the reflexivity of
R. Then R(A) ⊆ int(A).
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Conversely, by A ⊇
∪
{B ∈ τR : B ⊆ A}, R(A) ⊇ R(

∪
{B ∈ τR : B ⊆ A}). By

Proposition 3.5(1),

R(
∪

{B ∈ τR : B ⊆ A}) = R(
∪

{R(B) : R(B) ⊆ A and B ∈ τR})

=
∪

{R(B) : R(B) ⊆ A and B ∈ τR}

=
∪

{B ∈ τR : B ⊆ A} = int(A)

Then R(A) ⊇ int(A).
Hence

R(A) = int(A).

b) This holds by (2) and Proposition 3.5(3).

(3) If RA = ∅, then there exist [a, b] ∈ [I] such that A = ˜[a, b]. By Theorem

3.6(1), R( ˜[a, b]) = ˜[a, b]. So A = R(A) ∈ τR.
(4) Pick [a, b] ∈ [I] such that 0̄ < [a, b] < 1̄. By (3) and Theorem 3.6(1),˜[a, b] = R( ˜[a, b]) = cl( ˜[a, b]) ∈ (τR)

′.

Then ˜[a, b] is an IVF closed set in U .

By the proof of (3), ˜[a, b] is an IVF open set.
Hence (U, τR) is not connected. □

Example 4.8. Let U = {x, y, z} and let R be a transitive IVF relation on U .

R(x, y) = R(x, z) = R(y, z) = R(z, x) = 0̄, R(y, x) = 1̄, R(z, y) = [0.1, 0.2]

Then R is not reflexive.
Let A = 0̄

x + [0.3,0.5]
y + 1̄

z . Then

R(R(A)) = R(z1̄) = z[0.8,0.9] ̸= z1̄ = R(A).

Then R(A) ̸∈ τ . Thus

θR ̸= θR and R(A) ̸= int(A).

Example 4.9. Let U = {x, y, z} and let R be a reflexive IVF relation on U . R is
defined as follows:

R(x, y) = R(x, z) = R(z, x) = 0̄, R(y, x) = [0.2, 0.7], R(y, z) = 1̄, R(z, y) =
[0.3, 0.8].

Pick

A =
0̄

x
+

[0.4, 0.5]

y
+

1̄

z
and B =

1̄

x
+

[0.5, 0.6]

y
+

0̄

z
.

(1) We have

R(z, y) ∧R(y, x) = [0.2, 0.7] ̸≤ 0̄ = R(z, x).

Then R is not transitive.
(2) Since

R(A) =
0̄

x
+

[0.3, 0.5]

y
+

[0.4, 0.7]

z
and R(R(A)) =

0̄

x
+

[0.3, 0.5]

y
+

[0.3, 0.7]

z
626
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we have R(R(A)) ̸= R(A), Then R(A) ̸∈ τR. Thus,

τR ̸= {R(A) : A ∈ F (i)(U)} and intτR(A) ̸= R(A).

Obviously, Bc = A. By Proposition 3.7(3),

(R(B))c = R(Bc) = R(A) ̸∈ τR.

Then R(B) ̸∈ τ cR. Thus clτR(B) ̸= R(B).

Theorem 4.10. Let R1 and R2 be two IVF relations on U . Let σR1 and σR2 be the
IVF topologies induced by R1 and R2 on U , respectively. Denote R = R1 ∪R2.

(1) If R1 and R2 are reflexive, then
(a) If R1 ⊆ R2, then θR2 ⊆ θR1 .
(b) R1 ∪R2 is reflexive.
(c) θR1∪R2 = θR1 ∩ θR2 .

(3) If R1 and R2 are reflexive and transitive, then
(a) If R1 ⊆ R2, then τR2 ⊆ τR1 .
(b) τR2 = τR1 ⇐⇒ R1 = R2.
(c) R1 ∪R2 is reflexive and transitive.
(d) τR1∪R2 = τR1 ∩ τR2 .

Proof. The proof is similar to Theorem 4.4. □

5. Conclusions

Topology and rough set theory are widely used in the research fields of machine
learning and cybernetics. In this paper, we have explored the topological structures
of IVF rough sets. We hope that the analysis offered in this paper will facilitate
further research in uncertain reasoning under fuzziness. In future work we will
study uncertain measures of IVF rough sets with application to data analysis.

Acknowledgements. This work is supported by Guangxi University Science and
Technology Research Project (KY2015YB075, KY2015YB266, KY2015YB081) and
Quantitative Economics Key Laboratory Program of Guangxi University of Finance
and Economics (2014SYS11).

References

[1] C. Cornelis, M. De Cock and E. E. Kerre, Intuitionistic fuzzy rough sets: at the crossroads of

imperfect knowledge, Expert Systems 20 (2003) 260-270.
[2] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of

General Systems 17 (1990) 191–208.
[3] B. Gorzalczany, Interval-valued fuzzy controller based on verbal modal of object, Fuzzy Sets

and Systems 28 (1988) 45–53.
[4] Z. Gong, B. Sun and D. Chen, Rough set theory for interval-valued fuzzy information systems,

Inform. Sci. 178 (2008) 1968–1985.
[5] L. I. Kuncheva, Fuzzy rough sets: application to feature selection, Fuzzy Sets and Systems 51

(1992) 147–153.
[6] T. K. Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, Indian Journal of

Pure and Applied Mathematics 30 (1)(1999) 23–38.

[7] S. Nanda, Fuzzy rough sets, Fuzzy Sets and Systems 45 (1992) 157-1-60.
[8] Z. Pawlak, Rough sets, International Journal of Computer and Information Science 11 (1982)

341–356.

627



Gangqiang Zhang /Ann. Fuzzy Math. Inform. 10 (2015), No. 4, 619–628

[9] Z. Pawlak, Rough sets: theoretical aspects of reasoning about data, Kluwer Academic Pub-
lishers, Boston 1991.

[10] Z. Pawlak and A. Skowron, Rudiments of rough sets, Information Sciences 177(2007) 3-27.

[11] Z. Pawlak and A. Skowron, Rough sets: some extensions, Inform. Sci. 177 (2007) 28–40.
[12] Z. Pawlak and A. Skowron, Rough sets and boolean reasoning, Inform. Sci. 177 (2007) 41–73.
[13] A. M. Radzikowska and E. E. Kerre, A comparative study of fuzzy rough sets, Fuzzy Sets and

Systems 126 (2002) 137–155.

[14] B. Sun, Z. Gong and D. Chen, Fuzzy rough set theory for the interval-valued fuzzy information
systems, Inform. Sci. 178 (2008) 2794–2815.

[15] B. Turksen, Interval-valued fuzzy sets based on normal forms, Fuzzy Sets and Systems 20
(1986) 191–210.

[16] W. Wu, J. Mi and W. Zhang, Generalized fuzzy rough sets, Inform. Sci. 151 (2003) 263–282.
[17] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
[18] D. Zheng, R. Cui and Z. Li, On IVF approximating spaces, Journal of Applied Mathematics

Volume 2013, Article ID 494857 1–9.

[19] L. Zhou, W. Wu and W. Zhang, On intuitionistic fuzzy rough sets and their topological
structures, International Journal of General Systems 38 (2009) 589–616.

[20] H. Zhang, W. Zhang and W. Wu, On characterization of generalized interval-valued fuzzy

rough sets on two universes of discourse, International Journal of Approximate Reasoning 51
(2009) 56–70.

Gangqiang Zhang (zhanggangqiang100@126.com)
School of Information Science and Engineering, Guangxi University for Nationali-
ties, Nanning, Guangxi 530006, P. R. China

Guangji Yu (guangjiyu100@126.com)
School of Information and Statistics, Guangxi University of Finance and Economics,
Nanning, Guangxi 530003, P. R. China

628


