Annals of Fuzzy Mathematics and Informatics Volume 10, No. 4, (October 2015), pp. 591–605 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On T_0 and T_1 fuzzy soft topological spaces

SEEMA MISHRA, REKHA SRIVASTAVA

Received 27 November 2014; Revised 19 March 2015; Accepted 2 April 2015

ABSTRACT. In this paper, we have introduced and studied T_0 and T_1 separation axioms in a fuzzy soft topological space. Several basic desirable results have been proved which establish the appropriateness of these definitions.

2010 AMS Classification: 54A40, 54D10

Keywords: Soft set, Fuzzy soft set, Fuzzy soft topology, Fuzzy soft T_0 topological space, Fuzzy soft T_1 topological space

Corresponding Author: Seema Mishra (seemamishra.rs.apm12@itbhu.ac.in)

1. INTRODUCTION

Molodtsov [11] introduced the concept of soft sets as a new approach for modelling uncertainties. Soft set theory has been applied in many directions e.g., game theory and operations research [11], soft analysis [11], group theory [1], topology theory [4, 12] etc. Later on Maji et al.[8] introduced fuzzy soft sets and using it, Tanay and Kandemir [17] introduced and studied the topological structure of fuzzy soft sets. Since then, many researchers have been working in this direction e.g., Varol and Aygün [18], Cetkin and Aygün [5], Mahanta and Das [7].

Hausdorffness in a fuzzy soft topological space has been studied in detail by Mishra and Srivastava [10]. In this paper we have introduced and studied T_0 and T_1 separation axioms in a fuzzy soft topological space. Several basic desirable results have been obtained which establish the appropriateness of these notions.

2. Preliminaries

Throughout this paper, X denotes a non empty set, called the universe, E the set of parameters for the universe X and $A \subseteq E$.

Definition 2.1 ([19]). A fuzzy set in X is a function $f: X \to [0, 1]$. Now we define some basic fuzzy set operations as follows:

Let f and g be fuzzy sets in X. Then

- (1) f = g if f(x) = g(x), for each $x \in X$.
- (2) $f \subseteq g$ if $f(x) \leq g(x)$, for each $x \in X$.
- (3) $(f \cup g)(x) = \max\{f(x), g(x)\}, \text{ for each } x \in X.$
- (4) $(f \cap g)(x) = \min\{f(x), g(x)\}, \text{ for each } x \in X.$
- (5) $f^{c}(x) = 1 f(x)$, for each $x \in X$ (here f^{c} denotes the complement of f).

The constant fuzzy set in X, taking value $\alpha \in [0, 1]$, will be denoted by α_X .

Definition 2.2 ([9]). Let Ω be an index set and $\{f_i : i \in \Omega\}$ be a family of fuzzy sets in X. Then their union $\bigcup_{i \in \Omega} f_i$ and intersection $\bigcap_{i \in \Omega} f_i$ are defined, respectively as follows:

(1) $(\bigcup_{i \in \Omega} f_i)(x) = \sup \{f_i(x) : i \in \Omega\}, \text{ for each } x \in X.$ (2) $(\bigcap_{i \in \Omega} f_i)(x) = \inf \{f_i(x) : i \in \Omega\}, \text{ for each } x \in X.$

Definition 2.3 ([13]). A fuzzy point x_{λ} ($0 < \lambda < 1$) in X is a fuzzy set in X given by

$$x_{\lambda}(x') = \begin{cases} \lambda, & \text{if } x' = x\\ 0, & \text{otherwise.} \end{cases}$$

Here x and λ are respectively called the support and value of x_{λ} .

Definition 2.4 ([8]). A pair (f, E) is called a fuzzy soft set over X if f is a mapping from E to I^X i.e., $f: E \to I^X$, where I^X is the collection of all fuzzy sets in X.

Definition 2.5 ([18]). A fuzzy soft set f_A over X is a mapping from E to I^X i.e., $f_A: E \to I^X$ such that $f_A(e) \neq 0_X$, if $e \in A \subseteq E$ and $f_A(e) = 0_X$, otherwise, where 0_X denotes the constant fuzzy set in X taking value 0.

Definition 2.6 ([18]). The universal fuzzy soft set 1_E over X is given by $1_E(e) = 1_X$, for each $e \in E$ and the null fuzzy soft set 0_E over X is given by $0_E(e) = 0_X$, for each $e \in E$, where 1_X denotes the constant fuzzy set in X taking value 1.

The constant fuzzy soft set over X, taking value α_X , $\alpha \in [0, 1]$, will be denoted by α_E .

From here onwards, we will denote by $\mathcal{F}(X, E)$, the set of all fuzzy soft sets over X.

Definition 2.7 ([18]). Let $f_A, g_B \in \mathcal{F}(X, E)$. Then

- (1) f_A is said to be a fuzzy soft subset of g_B , denoted by $f_A \sqsubseteq g_B$, if $f_A(e) \subseteq g_B(e)$, for each $e \in E$.
- (2) f_A and g_B are said to be equal, denoted by $f_A = g_B$, if $f_A \sqsubseteq g_B$ and $g_B \sqsubseteq f_A$.
- (3) The union of f_A and g_B , denoted by $f_A \sqcup g_B$, is the fuzzy soft set over X defined by $(f_A \sqcup g_B)(e) = f_A(e) \cup g_B(e)$, for each $e \in E$.
- (4) The intersection of f_A and g_B , denoted by $f_A \sqcap g_B$, is the fuzzy soft set over X defined by $(f_A \sqcap g_B)(e) = f_A(e) \cap g_B(e)$, for each $e \in E$. Two fuzzy soft sets f_A and g_B over X are said to be disjoint if $f_A \sqcap g_B = 0_E$.

- (5) Let Ω be an index set and $\{f_{A_i} : i \in \Omega\}$ be a family of fuzzy soft sets over X. Then their union $\bigsqcup_{i \in \Omega} f_{A_i}$ and intersection $\sqcap_{i \in \Omega} f_{A_i}$ are defined, respectively as follows:
 - (a) $(\bigsqcup_{i\in\Omega} f_{A_i})(e) = \bigcup_{i\in\Omega} f_{A_i}(e)$, for each $e \in E$. (b) $(\sqcap_{i\in\Omega} f_{A_i})(e) = \bigcap_{i\in\Omega} f_{A_i}(e)$, for each $e \in E$.
- (6) The complement of f_A , denoted by f_A^c , is the fuzzy soft set over X, defined by $f_A^c(e) = 1_X - f_A(e)$, for each $e \in E$.

Definition 2.8 ([3]). Let $\mathcal{F}(X, E)$ and $\mathcal{F}(Y, K)$ be the collections of all the fuzzy soft sets over X and Y respectively and E, K be the parameters sets for the universe X and Y respectively. Let $\varphi: X \to Y$ and $\psi: E \to K$ be two maps. Then a fuzzy soft mapping from X to Y is a pair (φ, ψ) and is denoted by

$$(\varphi, \psi) : \mathcal{F}(X, E) \to \mathcal{F}(Y, K)$$

(1) Let $f_A \in \mathcal{F}(X, E)$. Then the image of f_A under the fuzzy soft mapping (φ, ψ) is the fuzzy soft set over Y, denoted by $(\varphi, \psi) f_A$ and is defined as

$$(\varphi,\psi)f_A(k)(y) = \begin{cases} \sup_{\varphi(x)=y} \sup_{\psi(e)=k} f_A(e)(x), & \text{if } \varphi^{-1}(y) \neq \phi \text{ and } \psi^{-1}(k) \neq \phi \\ 0, & \text{otherwise,} \end{cases}$$

for each $k \in K$, for each $y \in Y$.

(2) Let $g_B \in \mathcal{F}(Y, K)$. Then the inverse image of g_B under the fuzzy soft mapping (φ, ψ) is the fuzzy soft set over X, denoted by $(\varphi, \psi)^{-1}g_B$ and is defined as $(\varphi, \psi)^{-1}g_B(e)(x) = g_B(\psi(e))(\varphi(x))$, for each $e \in E$, for each $x \in X$.

A fuzzy soft mapping (φ, ψ) is constant if both φ and ψ are constant [18].

Definition 2.9 ([18]). Let $f_A \in \mathcal{F}(X, E)$ and $g_B \in \mathcal{F}(Y, K)$. Then the fuzzy soft product of f_A and g_B , denoted by $f_A \times g_B$, is the fuzzy soft set over $X \times Y$ and is defined by $(f_A \times g_B)(e,k) = f_A(e) \times g_B(k)$, for each $(e,k) \in E \times K$ and for $(x,y) \in X \times Y,$

$$(f_A(e) \times g_B(k))(x, y) = \min\{f_A(e)(x), g_B(k)(y)\}.$$

Definition 2.10 ([17, 18]). A fuzzy soft topological space relative to the parameters set E is a pair (X, τ) consisting of a non empty set X and a family τ of fuzzy soft sets over X satisfying the following conditions :

- (1) $0_E, 1_E \in \tau;$
- (2) If $f_A, g_B \in \tau$, then $f_A \sqcap g_B \in \tau$;
- (3) If $f_{A_i} \in \tau, \forall j \in \Omega$, where Ω is some index set, then $\bigsqcup f_{A_i} \in \tau$. $i \in \Omega$

Then τ is called a fuzzy soft topology over X and members of τ are called fuzzy soft open sets. A fuzzy soft set g_B over X is called fuzzy soft closed if $(g_B)^c \in \tau$.

In particular, $\tau^o = \{0_E, 1_E\}$ and $\tau^1 = \mathcal{F}(X, E)$ are called the indiscrete and the discrete fuzzy soft topologies over X, respectively.

Definition 2.11 ([18]). A fuzzy soft topology τ is called enriched if $\alpha_E \in \tau$, for each $\alpha \in [0, 1]$.

A fuzzy soft topology τ is called indiscrete enriched if $\tau = \{\alpha_E \mid \alpha \in [0, 1]\}$.

Definition 2.12 ([18]). Let (X, τ) be a fuzzy soft topological space. Then a subfamily \mathcal{B} of τ is called a base for τ if every member of τ can be written as a union of members of \mathcal{B} .

Definition 2.13 ([18]). Let (X, τ) be a fuzzy soft topological space. Then a subfamily S of τ is called a subbase for τ if the family of finite intersections of its members forms a base for τ .

Definition 2.14 ([18]). A fuzzy soft topology τ over X is said to be generated by a subfamily S of fuzzy soft sets over X if every member of τ is a union of finite intersections of members of S.

Definition 2.15 ([18]). Let $\{(X_i, \tau_i)\}_{i \in \Omega}$ be a family of fuzzy soft topological spaces relative to the parameters sets E_i respectively, X be a set with parameters set Eand for each $i \in \Omega$, $(\varphi, \psi)_i : X \to (X_i, \tau_i)$ be a fuzzy soft mapping. Then the fuzzy soft topology τ over X is said to be initial with respect to the family $\{(\varphi, \psi)_i\}_{i \in \Omega}$ if τ has as subbase the set

$$\mathcal{S} = \{ (\varphi, \psi)_i^{-1}(f_{A_i}) : i \in \Omega, f_{A_i} \in \tau_i \}$$

i.e., the fuzzy soft topology τ over X is generated by S.

Definition 2.16 ([18]). Let $\{(X_i, \tau_i)\}_{i \in \Omega}$ be a family of fuzzy soft topological spaces relative to the parameters sets E_i respectively. Then their product is defined as the fuzzy soft topological space (X, τ) relative to the parameters set E, where $X = \prod X_i$,

 $E = \prod_{i} E_{i}$ and τ is the fuzzy soft topology over X which is initial with respect to the family $\{(p_{X_{i}}, q_{E_{i}})\}_{i \in \Omega}$, where $p_{X_{i}} : \prod_{i} X_{i} \to X_{i}$ and $q_{E_{i}} : \prod_{i} E_{i} \to E_{i}$ are the projection maps i.e., τ is generated by

$$\{(p_{X_i}, q_{E_i})^{-1}(f_{A_i}) : i \in \Omega, f_{A_i} \in \tau_i\}.$$

Definition 2.17 ([10]). A fuzzy soft point $e_{x_{\lambda}}$ over X is a fuzzy soft set over X defined as follows:

$$e_{x_{\lambda}}(e') = \begin{cases} x_{\lambda}, & \text{if } e' = e \\ 0_X, & \text{if } e' \in E - \{e\} \end{cases}$$

where x_{λ} is the fuzzy point in X with support x and value λ , $\lambda \in (0, 1)$. A fuzzy soft point $e_{x_{\lambda}}$ is said to belong to a fuzzy soft set f_A , denoted by $e_{x_{\lambda}} \in f_A$ if $\lambda < f_A(e)(x)$ and two fuzzy soft points $e_{x_{\lambda}}$ and e'_{y_s} are said to be distinct if $x \neq y$ or $e \neq e'$.

Proposition 2.18 ([10]). Let $\{f_{A_i} : i \in \Omega\}$ be a family of fuzzy soft sets over X, then $e_{x_\lambda} \in \bigsqcup_{i \in \Omega} f_{A_i}$ iff $e_{x_\lambda} \in f_{A_i}$ for some $i \in \Omega$.

Proposition 2.19 ([10]). A fuzzy soft set f_A over X is the union of all fuzzy soft points belonging to it i.e.,

$$f_A = \bigsqcup \{ e_{x_\lambda} : e_{x_\lambda} \in f_A \}.$$
594

Proposition 2.20 ([10]). Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then a fuzzy soft set f_A is fuzzy soft open iff for each $e_{x_r} \in f_A$, there exists a basic fuzzy soft open set g_B such that $e_{x_r} \in g_B \sqsubseteq f_A$.

Definition 2.21 ([10]). Let (X, τ) be a fuzzy soft topological space relative to the parameters set E and $G \subseteq E$. Then (X, τ_G) is also a fuzzy soft topological space relative to the parameters set G where

$$\tau_G = \{ f_A \mid_G \colon f_A \in \tau \},\$$

and is called a fuzzy soft subspace of (X, τ) .

Definition 2.22 ([10]). Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then (X, τ) is said to be Hausdorff if for each pair of distinct fuzzy soft points $e_{x_{\lambda}}$, e'_{y_s} over X, there exist fuzzy soft open sets f_A and g_B such that $e_{x_{\lambda}} \in f_A$, $e'_{y_s} \in g_B$ and $f_A \sqcap g_B = 0_E$.

Definition 2.23 ([18]). Let (X_1, τ_1) and (X_2, τ_2) be two fuzzy soft topological spaces relative to the parameters sets E_1 and E_2 respectively. Then a fuzzy soft mapping

$$(\varphi,\psi):(X_1,\tau_1)\to (X_2,\tau_2)$$

is said to be fuzzy soft continuous if $(\phi, \psi)^{-1} f_B \in \tau_1$, for each $f_B \in \tau_2$.

3. Fuzzy soft T_0 topological spaces

In the case of fuzzy topology, there exist many definitions of fuzzy T_0 separation axiom(cf.[2, 6, 14]) but the following definition given in [6] turns out to be the 'categorically right' definition.

Definition 3.1 ([6]). A fuzzy topological space (X, τ) is said to be fuzzy T_0 if for every pair of distinct $x, y \in X$, there exists a fuzzy open set U in X such that $U(x) \neq U(y)$.

Motivated by this, we give the following:

Definition 3.2. Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then (X, τ) is said to be fuzzy soft T_0 if for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$.

We mention here that earlier Mahanta and Das[7] have introduced fuzzy soft T_0 topological spaces. Their definition in a fuzzy soft topological space (X, τ) is as follows:

Definition 3.3 ([7]). A fuzzy soft topological space (X, τ) is said to be fuzzy soft T_0 if for every pair of disjoint fuzzy soft sets e_{h_A} , e_{g_B} (where e_{h_A} is a fuzzy soft set over X such that $e_{h_A}(e) \neq 0_X$ and $e_{h_A}(e') = 0_X$, for $e' \neq e$, similarly e_{g_B} is defined), there exists a fuzzy soft open set p_A over X containing one but not the other.

The above two definitions of a fuzzy soft T_0 space are independent as exhibited through the following examples.

Example 3.4. Definition $3.2 \Rightarrow$ Definition 3.3

Let $X = \{a, b\}$ and E be the parameter set which consists of only one element, say $E = \{e\}$ and $\tau = \{p_A : E \to I^X \mid p_A(e)(a) = 1/2, p_A(e)(b) = 0\} \cup \{0_E, 1_E\}$. Then (X, τ) is fuzzy soft T_0 in the sense of Definition 3.2, since for $(a, e), (b, e) \in X \times E$, there exists $p_A \in \tau$ such that $p_A(e)(a) \neq p_A(e)(b)$. But it fails to be a fuzzy soft T_0 space in the sense of Definition 3.3, since for two disjoint fuzzy soft sets e_{h_A} and e_{g_B} such that

$$h_A(e)(x) = \begin{cases} 3/4, & \text{if } x = a\\ 0, & \text{if } x = b \end{cases}$$

and

$$g_B(e)(x) = \begin{cases} 0, & \text{if } x = a \\ 1, & \text{if } x = b, \end{cases}$$

there does not exist any non trivial fuzzy soft open set over X containing any of them.

Example 3.5. Definition $3.3 \Rightarrow$ Definition 3.2

Let $X = \{a, b\}$ and E be the parameters set which consists of two elements, say $E = \{e_1, e_2\}$ and $\tau = \{p_A : E \to I^X \mid p_A(e_1) = p_A(e_2) = \chi_{\{a\}}\} \cup \{0_E, 1_E\}$. Then (X, τ) is fuzzy soft T_0 in the sense of Definition 3.3. To show this, consider the disjoint fuzzy soft sets $(e_1)_{h_A}$ and $(e_1)_{g_B}$. Since $h_A(e_1) \cap g_B(e_1) = 0_X$, we may assume that $h_A(e_1) = a_\lambda$ and $g_B(e_1) = b_s$, where $\lambda, s \in (0, 1]$. Then there exists $p_A \in \tau$ such that p_A contains $(e_1)_{h_A}$ but does not contain $(e_1)_{g_B}$. Similarly, we can deal the case of disjoint fuzzy soft open sets of the form $(e_2)_{h_A}$ and $(e_2)_{g_B}$. But it fails to be a fuzzy soft T_0 space in the sense of Definition 3.2, since for $(a, e_1) \neq (a, e_2)$, there does not exist any fuzzy soft open set f_A such that $f_A(e_1)(a) \neq f_A(e_2)(a)$.

From now onwards we mean fuzzy soft T_0 topological space in the sense of Definition 3.2.

Theorem 3.6. Let (Y, σ) be the indiscrete enriched fuzzy soft topological space relative to the parameters set K such that $Y = \{y_1, y_2\}$. Then (X, τ) is fuzzy soft T_0 implies that every fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ is constant.

Proof. First suppose that (X, τ) is fuzzy soft T_0 . Then for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$. We have to show that every fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ is constant. For this, suppose on the contrary that there exists a fuzzy soft continuous mapping $(\varphi, \psi) : (Y, \sigma) \to (X, \tau)$ which is not constant. Then,

Case 1: If φ is not constant and ψ is constant.

Let $\varphi(y_1) \neq \varphi(y_2)$ and $\psi(k) = e$, for each $k \in K$. Then, for $(\varphi(y_1), e), (\varphi(y_2), e) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(e)(\varphi(y_1)) \neq f_A(e)(\varphi(y_2))$.

Now, for $k_1, k_2 \in K$, we have

$$\begin{aligned} (\varphi, \psi)^{-1} f_A(k_1)(y_1) &= f_A(\psi(k_1))(\varphi(y_1)) \\ &= f_A(e)(\varphi(y_1)) \\ &\neq f_A(e)(\varphi(y_2)) \\ &= f_A(\psi(k_2))(\varphi(y_2)) \\ &= (\varphi, \psi)^{-1} f_A(k_2)(y_2), \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y, therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

Case 2: If φ is constant and ψ is not constant. Let $\varphi(y_1) = \varphi(y_2)$ and $\psi(k_1) \neq \psi(k_2)$, for some $k_1, k_2 \in K$. Then, for $(\varphi(y_1), \psi(k_1))$, $(\varphi(y_1), \psi(k_2)) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(\psi(k_1))(\varphi(y_1)) \neq f_A(\psi(k_2))(\varphi(y_1))$. Now,

$$\begin{aligned} (\varphi,\psi)^{-1}f_A(k_1)(y_1) &= f_A(\psi(k_1))(\varphi(y_1)) \\ &\neq f_A(\psi(k_2))(\varphi(y_1)) \\ &= (\varphi,\psi)^{-1}f_A(k_2)(y_1), \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y, therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

Case 3: If φ and ψ both are not constant.

Let $\varphi(y_1) \neq \varphi(y_2)$ and $\psi(k_1) \neq \psi(k_2)$, for some $k_1, k_2 \in K$. Then, for $(\varphi(y_1), \psi(k_1))$, $(\varphi(y_2), \psi(k_2)) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(\psi(k_1))(\varphi(y_1)) \neq f_A(\psi(k_2))(\varphi(y_2))$. Now.

$$\begin{aligned} (\varphi, \psi)^{-1} f_A(k_1)(y_1) &= f_A(\psi(k_1))(\varphi(y_1)) \\ &\neq f_A(\psi(k_2))(\varphi(y_2)) \\ &= (\varphi, \psi)^{-1} f_A(k_2)(y_2), \end{aligned}$$

which implies that $(\varphi, \psi)^{-1} f_A$ is not a constant fuzzy soft set over Y, therefore (φ, ψ) is not fuzzy soft continuous, a contradiction.

 T_0 -ness in fuzzy soft topological spaces satisfies the hereditary property as shown in the following proposition.

Proposition 3.7. Fuzzy soft subspace of a fuzzy soft T_0 space is fuzzy soft T_0 .

Proof. Let (X, τ) be a fuzzy soft T_0 space relative to the parameters set E and $G \subseteq E$. Then, for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exists $f_A \in \tau$ such that $f_A(e_1)(x_1) \neq f_A(e_2)(x_2)$. In particular, for $(x_1, g), (x_2, g') \in$ $X \times G$, $(x_1, g) \neq (x_2, g')$, there exists $f_A \in \tau$ such that $f_A(g)(x_1) \neq f_A(g')(x_2)$. So, $f_A \mid_G (g)(x_1) \neq f_A \mid_G (g')(x_2)$. This implies that (X, τ_G) is fuzzy soft T_0 .

In the following theorem it is proved that T_0 -ness in fuzzy soft topological spaces satisfies the productive and projective properties.

Theorem 3.8. If $\{(X_i, \tau_i) : i \in \Omega\}$ is a family of fuzzy soft topological spaces relative to the parameters sets E_i respectively. Then the product fuzzy soft topological space 597

 $(X, \tau) = \prod_{i \in \Omega} (X_i, \tau_i)$ is fuzzy soft T_0 iff each coordinate fuzzy soft topological space (X_i, τ_i) is fuzzy soft T_0 .

Proof. First, let us assume that (X_i, τ_i) is fuzzy soft T_0 , for each $i \in \Omega$. To show that (X, τ) is fuzzy soft T_0 , choose (x, e), $(y, e') \in X \times E$, $(x, e) \neq (y, e')$, where $x = \prod_{j \in \Omega} x_j$, $y = \prod_{j \in \Omega} y_j$, $e = \prod_{j \in \Omega} e_j$ and $e' = \prod_{j \in \Omega} e'_j$. Then $x_i \neq y_i$ or $e_k \neq e'_k$ for some $i, k \in \Omega$. Let $x_i \neq y_i$. Since (X_i, τ_i) is fuzzy soft T_0 , for (x_i, e_i) , $(y_i, e'_i) \in X_i \times E_i$, there exists $f_{A_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) \neq f_{A_i}(e'_i)(y_i)$. Set $f_A = \prod_{j \in \Omega} f^1_{A_j}$ such

that $f_{A_j}^1 = 1_{E_j}$, for $j \neq i$ and $f_{A_i}^1 = f_{A_i}$. Then f_A is a fuzzy soft open set such that $f_A(e)(x) \neq f_A(e')(y)$ implying that (X, τ) is fuzzy soft T_0 . The other cases can be handled similarly.

Conversely, assume that (X, τ) is fuzzy soft T_0 . To show (X_i, τ_i) is fuzzy soft T_0 , choose $(x_i, e_i), (y_i, e'_i) \in X_i \times E_i, (x_i, e_i) \neq (y_i, e'_i)$. Then $x_i \neq y_i$ or $e_i \neq e'_i$. Let $x_i \neq y_i$. Now construct two points $x = \prod_{j \in \Omega} x'_j$ and $y = \prod_{j \in \Omega} y'_j$ in X, where $x'_j = y'_j$, for $j \neq i$ and $x'_i = x_i, y'_i = y_i$ and two points $e^1 = \prod_{j \in \Omega} e^1_j$ and $e^2 = \prod_{j \in \Omega} e^2_j$ in E, where $e^1_j = e^2_j$, for $j \neq i$ and $e^1_i = e_i, e^2_i = e'_i$. Then, since (X, τ) is fuzzy soft T_0 , for $(x, e^1), (y, e^2) \in X \times E$, there exists $f_A \in \tau$ such that $f_A(e^1)(x) \neq f_A(e^2)(y)$. Also, since each fuzzy soft open set can be written as a union of basic fuzzy soft open sets, so we can write f_A in the following form:

$$f_A = \bigcup_{k \in T} \prod_{j \in \Omega} (f_{A_j})_k$$

Now, if we assume that

$$\begin{split} &\prod_{j\in\Omega} (f_{A_j})_k(e^1)(x) = \prod_{j\in\Omega} (f_{A_j})_k(e^2)(y), \quad \text{for each } k\in T \\ \Rightarrow &\inf_j (f_{A_j})_k(e^1_j)(x'_j) = \inf_j (f_{A_j})_k(e^2_j)(y'_j), \quad \text{for each } k\in T \\ \Rightarrow &\sup_k \inf_j (f_{A_j})_k(e^1_j)(x'_j) = \sup_k \inf_j (f_{A_j})_k(e^2_j)(y'_j) \\ \Rightarrow &(\bigcup_{k\in T} \prod_{j\in\Omega} (f_{A_j})_k)(e^1)(x) = (\bigcup_{k\in T} \prod_{j\in\Omega} (f_{A_j})_k)(e^2)(y) \\ \Rightarrow &f_A(e^1)(x) = f_A(e^2)(y), \text{ a contradiction.} \end{split}$$

Therefore, there exists some $k \in T$ such that

$$\prod_{j \in \Omega} (f_{A_j})_k(e^1)(x) \neq \prod_{j \in \Omega} (f_{A_j})_k(e^2)(y)$$

$$\Rightarrow \inf_j (f_{A_j})_k(e^1_j)(x'_j) \neq \inf_j (f_{A_j})_k(e^2_j)(y'_j).$$

Since, for $j \neq i$, $x'_j = y'_j$, $e^1_j = e^2_j$, so we have

$$(f_{A_i})_k(e_i)(x_i) \neq (f_{A_i})_k(e'_i)(y_i),$$

which implies that (X_i, τ_i) is fuzzy soft T_0 . The other cases can be handled similarly.

598

4. Fuzzy soft T_1 topological spaces

In this section, we introduce and study fuzzy soft T_1 topological spaces. The following definition of fuzzy soft T_1 topological spaces is motivated by the definition 5.1 of fuzzy T_1 -topological spaces given by Srivastava et al.[16].

Definition 4.1. Let (X, τ) be a fuzzy soft topological space relative to the parameters set E. Then (X, τ) is said to be fuzzy soft T_1 if for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exist $f_A, g_B \in \tau$ such that $f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(y_2) = 1$.

Earlier Mahanta and Das[7] have introduced fuzzy soft T_1 topological spaces as follows:

Definition 4.2 ([7]). A fuzzy soft topological space (X, τ) is said to be fuzzy soft T_1 if for every pair of disjoint fuzzy soft sets e_{h_A} , e_{g_B} (where e_{h_A} is a fuzzy soft set over X such that $e_{h_A}(e) \neq 0_X$ and $e_{h_A}(e') = 0_X$, for $e' \neq e$, similarly e_{g_B} is defined), there exist fuzzy soft open sets p_A and q_A over X such that $e_{h_A} \subseteq p_A$ and $e_{g_B} \not\subseteq p_A$; $e_{h_A} \not\subseteq q_A$ and $e_{g_B} \subseteq q_A$.

We observe that the Definition 4.1 \Rightarrow Definition 4.2, the proof of which is as follows:

Let (X, τ) be a fuzzy soft T_1 space in the sense of Definition 4.1.

 $\Rightarrow e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$ (in view of Proposition 4.4).

 $\Rightarrow (e_{\{x\}})^c$ is fuzzy soft open, for each $e \in E$ and $x \in X$.

Now choose any two disjoint fuzzy soft sets e_{h_A} and e_{g_B} . Since $e_{h_A}(e) \neq 0_X$ and $e_{g_B}(e) \neq 0_X$, there exist $a, b \in X$ such that $e_{h_A}(e)(a) \neq 0$ and $e_{g_B}(e)(b) \neq 0$. Since $h_A(e) \cap g_B(e) = 0_X$, so $a \neq b$. Now consider the fuzzy soft open sets $(e_{\{b\}})^c$, $(e_{\{a\}})^c$. Then $e_{h_A} \subseteq (e_{\{b\}})^c$ and $e_{g_B} \notin (e_{\{b\}})^c$; $e_{h_A} \notin (e_{\{a\}})^c$ and $e_{g_B} \subseteq (e_{\{a\}})^c$, showing that (X, τ) is fuzzy soft T_0 in the sense of Definition 4.2.

But the converse is not true which is exhibited from the following example.

Example 4.3. Let $X = \{a, b\}$, E be the parameters set which consists of two elements, say $E = \{e_1, e_2\}$ and $\tau = \{0_E, 1_E\} \cup \{p_A : E \to I^X, q_A : E \to I^X \mid p_A(e_1) = p_A(e_2) = \chi_{\{a\}}, q_A(e_1) = q_A(e_2) = \chi_{\{b\}}\}$. Then (X, τ) is a fuzzy soft T_1 space in the sense of Definition 4.2. For this, let $(e_1)_{h_A}$ and $(e_1)_{g_B}$ be disjoint fuzzy soft sets. Since $h_A(e_1) \cap g_B(e_1) = 0_X$, we may assume that $h_A(e_1) = a_\lambda$ and $g_B(e_1) = b_s$, where $\lambda, s \in (0, 1]$. Then for $(e_1)_{h_A}$ and $(e_1)_{g_B}$, there exist $p_A, q_A \in \tau$ such that p_A contains $(e_1)_{h_A}$. Similarly, we can deal the case of disjoint fuzzy soft open sets of the form $(e_2)_{h_A}$ and $(e_2)_{g_B}$. But it fails to be a fuzzy soft T_1 space in the sense of Definition 4.1, since for $(a, e_1) \neq (a, e_2)$, there does not exist any fuzzy soft open set f_A such that $f_A(e_1)(a) = 1$ and $f_A(e_2)(a) = 0$.

From now onwards we mean fuzzy soft T_1 topological space in the sense of Definition 4.1.

Proposition 4.4. The following statements are equivalent in a fuzzy soft topological space (X, τ) relative to the parameters set E:

- (1) (X, τ) is fuzzy soft T_1 .
- (2) $e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$, where $e_{\{x\}}$ denotes the fuzzy soft set over X such that

$$e_{\{x\}}(e')(x') = \begin{cases} 1, & \text{if } e' = e, \ x' = x \\ 0, & \text{otherwise.} \end{cases}$$

Proof. (1) \Rightarrow (2) To show that $e_{\{x\}}$ is fuzzy soft closed, equivalently, $e_{\{x\}}^c$ is fuzzy soft open, choose any fuzzy soft point $e'_{y_{\lambda}} \in e^c_{\{x\}}$. Then,

Case 1: If y = x and $e' \neq e$. Then, for $(x, e), (x, e') \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1$, $f_A(e')(x) = 0, g_B(e)(x) = 0, g_B(e')(x) = 1$. Now $e'_{x_\lambda} \in g_B \sqsubseteq e^c_{\{x\}}$. Case 2: If $y \neq x$ and e' = e. Then, for $(x, e), (y, e) \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1, f_A(e)(y) = 0, g_B(e)(x) = 0, g_B(e)(y) = 1$. Now $e_{y_\lambda} \in g_B \sqsubseteq e^c_{\{x\}}$.

Case 3: If
$$y \neq x$$
 and $e' \neq e$.

Then, for $(x, e), (y, e') \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e)(x) = 1, f_A(e')(y) = 0, g_B(e)(x) = 0, g_B(e')(y) = 1$. Now $e'_{y_\lambda} \in g_B \sqsubseteq e^c_{\{x\}}$. Therefore $e^c_{\{x\}}$ is fuzzy soft open

Therefore,
$$e_{\{x\}}$$
 is fuzzy soft open.

 $\begin{array}{l} (2) \Rightarrow (1) \text{ Suppose that } e_{\{x\}} \text{ is fuzzy soft closed for each } e \in X, \text{ for each } x \in X. \text{ To show that } (X,\tau) \text{ is fuzzy soft } T_1, \text{ choose } (x',e'), (x^{''},e^{''}) \in X \times E, (x',e') \neq (x^{''},e^{''}). \\ \text{ Now consider the fuzzy soft open sets } (e'_{\{x'\}})^c \text{ and } (e''_{\{x''\}})^c. \text{ Then, } (e'_{\{x'\}})^c(e')(x') = \\ 0, (e'_{\{x'\}})^c(e^{''})(x^{''}) = 1, (e''_{\{x''\}})^c(e')(x') = 1 \text{ and } (e''_{\{x''\}})^c(e^{''})(x^{''}) = 0. \end{array}$

In the following proposition, we show that T_1 -ness in fuzzy soft topological spaces satisfies the hereditary property.

Proposition 4.5. Fuzzy soft subspace of a fuzzy soft T_1 space is fuzzy soft T_1 .

Proof. Let (X, τ) be a fuzzy soft T_1 space relative to the parameters set E and $G \subseteq E$. Then, for each pair $(x_1, e_1), (x_2, e_2) \in X \times E, (x_1, e_1) \neq (x_2, e_2)$, there exist $f_A, g_B \in \tau$ such that

 $f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(x_2) = 1$

In particular, for $(x_1, g), (x_2, g') \in X \times G, (x_1, g) \neq (x_2, g')$, there exist $f_A, g_B \in \tau$ such that

$$f_A(g)(x_1) = 1, f_A(g')(x_2) = 0, g_B(g)(x_1) = 0, g_B(g')(x_2) = 1$$

$$\Rightarrow f_A \mid_G (g)(x_1) = 1, f_A \mid_G (g')(x_2) = 0, g_B \mid_G (g)(x_1) = 0, g_B \mid_G (g')(x_2) = 1$$

This implies that (X, τ_G) is fuzzy soft T_1 .

In the following theorem we prove that T_1 -ness in fuzzy soft topological spaces, satisfies the productive and projective properties. The proof is based on the proof of the corresponding result given in [15].

Theorem 4.6. If $\{(X_i, \tau_i); i \in \Omega\}$ is a family of fuzzy soft topological spaces relative to the parameters sets E_i respectively. Then the product fuzzy soft topological space $(X, \tau) = \prod_{i \in \Omega} (X_i, \tau_i)$ is fuzzy soft T_1 iff each coordinate fuzzy soft topological space (X_i, τ_i) is fuzzy soft T_1 . Proof. Let (X_i, τ_i) be fuzzy soft T_1 , for each $i \in \Omega$. Let (x, e), $(y, e') \in X \times E$, $(x, e) \neq (y, e')$, where $x = \prod_{j \in \Omega} x_j$, $y = \prod_{j \in \Omega} y_j$, $e = \prod_{j \in \Omega} e_j$ and $e' = \prod_{j \in \Omega} e'_j$. Then there exist some $i, k \in \Omega$ such that $x_i \neq y_i$ or $e_k \neq e'_k$. Let $x_i \neq y_i$. Now since (X_i, τ_i) is fuzzy soft T_1 , for (x_i, e_i) , (y_i, e'_i) , there exist $f_{A_i}, g_{B_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) = 1$, $f_{A_i}(e'_i)(y_i) = 0$, $g_{B_i}(e_i)(x_i) = 0$, $g_{B_i}(e'_i)(y_i) = 1$. Now consider the fuzzy soft open sets $f_A = (p_{X_i}, q_{E_i})^{-1}f_{A_i}$ and $g_B = (p_{X_i}, q_{E_i})^{-1}g_{B_i}$. Then, $f_A(e)(x) = ((p_{X_i}, q_{E_i})^{-1}f_{A_i})(e)(x) = f_{A_i}(q_{E_i}(e))(p_{X_i}(x)) = f_{A_i}(e_i)(x_i) = 1$ and $f_A(e')(y) = f_{A_i}(e'_i)(y_i) = 0$. Similarly, we get $g_B(e')(y) = 1, g_B(e)(x) = 0$. Hence (X, τ) is fuzzy soft T_1 . The other cases can be handled similarly.

Conversely, let us assume that (X, τ) is fuzzy soft T_1 . To show that (X_i, τ_i) is fuzzy soft T_1 , choose $(x_i, e_i), (y_i, e'_i) \in X_i \times E_i$ such that $(x_i, e_i) \neq (y_i, e'_i)$. Then $x_i \neq y_i$ or $e_i \neq e'_i$. Let $x_i \neq y_i$. Now consider two points $x = \prod_{j \in \Omega} x'_j$ and $y = \prod_{j \in \Omega} y'_j$ in X, where $x'_j = y'_j$, for $j \neq i$ and $x'_i = x_i, y'_i = y_i$ and two points $e^1 = \prod_{j \in \Omega} e^1_j$ and $e^2 = \prod_{j \in \Omega} e^2_j$ in E, where $e^1_j = e^2_j$, for $j \neq i$ and $e^1_i = e_i, e^2_i = e'_i$. Since the product (X, τ) is fuzzy soft T_1 , for $(x, e^1), (y, e^2) \in X \times E$, there exist $f_A, g_B \in \tau$ such that $f_A(e^1)(x) = 1, f_A(e^2)(y) = 0, g_B(e^1)(x) = 0, g_B(e^2)(y) = 1$. Now since f_A and g_B are fuzzy soft open, so for $e^1_{x_r} \in f_A$ and $e^2_{y_s} \in g_B$, we can find basic fuzzy soft open sets $\prod_{j \in \Omega} f^r_{A_j}$ and $\prod_{j \in \Omega} g^s_{B_j}$ such that

$$e_{x_r}^1 \in \prod_{j \in \Omega} f_{A_j}^r \sqsubseteq f_A,$$
$$e_{y_s}^2 \in \prod_{j \in \Omega} g_{B_j}^s \sqsubseteq g_B.$$

Since $f_A(e^1)(x) = 1$, so for each $r \in (0,1)$, $e^1_{x_r} \in f_A$ and

$$(4.1) r < (\prod_{j \in \Omega} f_{A_j}^r)(e^1)(x) \leqslant f_A(e^1)(x), \quad \text{for each } r \in (0,1)$$

$$\Rightarrow r < \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) \leqslant 1, \quad \text{for each } r \in (0,1)$$

$$\Rightarrow 1 \leqslant \sup_{0 < r < 1} \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) \leqslant 1$$

$$\Rightarrow \sup_{0 < r < 1} \inf_{j \in \Omega} f_{A_j}^r(e_j^1)(x'_j) = 1$$

$$(4.2) \Rightarrow (\bigcup_{0 < r < 1} \prod_j f_{A_j}^r)(e^1)(x) = 1$$

Next, since

$$\Rightarrow \quad (\bigcup_{r} \prod_{j \in \Omega} f_{A_{j}}^{r})(e^{1})(x) \leqslant (\prod_{j \in \Omega} \bigcup_{r} f_{A_{j}}^{r})(e^{1})(x)$$

$$\Rightarrow \quad (\prod_{j \in \Omega} \bigcup_{r} f_{A_{j}}^{r})(e^{1})(x) = 1, \quad (\text{using } (4.2))$$

$$\Rightarrow \quad \inf_{j} \sup_{r} f_{A_{j}}^{r}(e_{j}^{1})(x_{j}') = 1$$

$$\Rightarrow \quad \sup_{r} f_{A_{j}}^{r}(e_{j}^{1})(x_{j}') = 1, \quad \text{for each } j \in \Omega$$

$$\Rightarrow \quad (\bigcup_{j} f_{A_{j}}^{r})(e_{j})(x_{j}) = 1.$$

Further, since

$$f_A(e^2)(y) = 0$$

$$\Rightarrow \qquad (\prod_{j \in \Omega} f_{A_j}^r)(e^2)(y) = 0, \quad \text{for each } r \in (0,1)$$

$$\Rightarrow \qquad \inf_{j \in \Omega} f_{A_j}^r(e_j^2)(y_j') = 0, \quad \text{for each } r \in (0,1)$$

Next, since $x'_j = y'_j$ and $e^1_j = e^2_j$ for $j \neq i$, so

$$\begin{array}{lll} f^r_{A_j}(e^2_j)(y'_j) &=& f^r_{A_j}(e^1_j)(x'_j), \quad j \neq i, \quad \text{for each } r \in (0,1) \\ &>& 0 \quad (\text{ using } (4.1)) \end{array}$$

Therefore, $f_{A_i}^r(e_i')(y_i) = 0$, for each $r \in (0, 1)$. Put $f_{A_i} = \bigcup_{0 < r < 1} f_{A_i}^r$. Then $f_{A_i} \in \tau_i$ such that $f_{A_i}(e_i)(x_i) = 1$ and $f_{A_i}(e_i')(y_i) = 0$. Similarly, we can obtain another fuzzy soft open set g_B such that $g_{B_i}(e_i)(x_i) = 0$ and $g_{B_i}(e_i')(y_i) = 1$. The other cases can be handled similarly.

Theorem 4.7. Let (X, τ) be a fuzzy soft topological space. Then (X, τ) is fuzzy soft Hausdorff $\Rightarrow (X, \tau)$ is fuzzy soft $T_1 \Rightarrow (X, \tau)$ is fuzzy soft T_0 .

Proof. First, assume that (X, τ) is fuzzy soft Hausdorff. Then to show that (X, τ) is fuzzy soft T_1 , choose $(x, e), (y, e') \in X \times E, (x, e) \neq (y, e')$. Consider $e_{x_{\lambda}}$ and e'_{y_s} which are distinct fuzzy soft points over X. Next, since (X, τ) is fuzzy soft Hausdorff, there exist f_A^{λ} and $g_B^s \in \tau$ such that

$$(4.3) \qquad e_{x_{\lambda}} \in f_{A}^{\lambda}, e_{y_{s}}^{\prime} \in g_{B}^{s} \text{ and } f_{A}^{\lambda} \sqcap g_{B}^{s} = 0_{E}$$

$$\Rightarrow \lambda < f_{A}^{\lambda}(e)(x) \text{ and } s < g_{B}^{s}(e^{\prime})(y)$$

$$\Rightarrow 1 \leq \sup_{0 < \lambda < 1} f_{A}^{\lambda}(e)(x) \text{ and } 1 \leq \sup_{0 < s < 1} g_{B}^{s}(e^{\prime})(y)$$

$$(4.4) \qquad \Rightarrow \sup_{0 < \lambda < 1} f_{A}^{\lambda}(e)(x) = 1 \text{ and } \sup_{0 < s < 1} g_{B}^{s}(e^{\prime})(y) = 1.$$

Now, set $f_A = \bigcup_{0 < \lambda < 1} f_A^{\lambda}$. Then,

$$f_A(e)(x) = \sup_{\substack{0 < \lambda < 1 \\ 0 < 0}} f_A^{\lambda}(e)(x)$$

= 1, (using (4.4))
602

Next, since

 $\begin{aligned} f_A^{\lambda} \sqcap g_B^s &= 0_E, & \text{for each } \lambda \in (0,1), \text{ for each } s \in (0,1) \\ & \Rightarrow \min\{f_A^{\lambda}(e_1)(y), g_B^s(e_1)(y)\} = 0, & \text{for each } \lambda \in (0,1), s \in (0,1) \text{ and } e_1 \in E \\ (4.5) & \Rightarrow f_A^{\lambda}(e')(y) = 0, & \text{for each } \lambda \in (0,1) \text{ (using (4.3))} \end{aligned}$

Therefore,

(

$$f_A(e')(y) = \sup_{0 < \lambda < 1} f_A^{\lambda}(e')(y)$$

= 0, (using (4.5))

Similarly, we can construct a fuzzy soft open set g_B such that $g_B(e)(x) = 0$, $g_B(e')(y) = 1$.

Next, assume that (X, τ) is fuzzy soft T_1 . So, for $(x_1, e_1), (x_2, e_2) \in X \times E$, $(x_1, e_1) \neq (x_2, e_2)$, there exist $f_A, g_B \in \tau$ such that $f_A(e_1)(x_1) = 1, f_A(e_2)(x_2) = 0, g_B(e_1)(x_1) = 0, g_B(e_2)(y_2) = 1$. Then, clearly (X, τ) is fuzzy soft T_0 . \Box

The converse of the above theorem 4.7 does not hold good as can be seen in the following counter examples.

Example 4.8. Let X be an infinite set and E be a parameters set. Suppose

$$\tau = \{f_A : E \to I^X\} \cup \{0_E\}.$$

where f_A is defined as follows:

$$f_A(e)(x) = \begin{cases} 1, & \text{except for finitely many pairs } (e, x) \\ 0, & \text{otherwise.} \end{cases}$$

Then τ is a fuzzy soft topology over X as shown below:

1)
$$0_E$$
, $1_E \in \tau$.
2) If $f_A, g_B \in \tau$, then
 $(f_A \sqcap g_B)(e)(x) = \min\{f_A(e)(x), g_B(e)(x)\}$
 $= \begin{cases} 1, & \text{except for finitely many pairs } (e, x) \\ 0, & \text{otherwise.} \end{cases}$

Hence
$$f_A \sqcap g_B \in \tau$$
.
(3) If $(f_A)_i \in \tau$, then
 $(\bigsqcup_{i \in \Omega} (f_A)_i)(e)(x) = \sup_{i \in \Omega} (f_A)_i(e)(x)$
 $= \begin{cases} 1, & \text{except for finitely many pairs } (e, x) \\ 0, & \text{otherwise.} \end{cases}$

Hence $\bigsqcup_{i\in\Omega} f_{A_i} \in \tau$.

Now this fuzzy soft topological space is fuzzy soft T_1 as $e_{\{x\}}$ is fuzzy soft closed, for each $e \in E$ and $x \in X$. But (X, τ) is not fuzzy soft T_2 , since there does not exist any pair of non trivial disjoint fuzzy soft open sets.

Example 4.9. Let $X = \{a, b\}$ and E be a parameter set which consists of only one element say, $E = \{e\}$ and $\tau = \{f_A : E \to I^X \mid f_A(e) = \chi_{\{a\}}\} \cup \{0_E, 1_E\}$. Then (X, τ) is fuzzy soft topological space which is fuzzy soft T_0 , since for $(a, e), (b, e) \in$ $X \times E$, there exists $f_A \in \tau$ such that $f_A(e)(a) \neq f_A(e)(b)$ but it is not fuzzy soft T_1 since there does not exist any fuzzy soft open set g_B such that $g_B(e)(b) = 1$ and $g_B(e)(a) = 0$.

5. Acknowledgements

The authors are very grateful to the editors and one of the referees for their valuable comments which led to the improvement of the paper. The first author also gratefully acknowledges the financial support in the form of scholarship, given by I.I.T.(B.H.U.) and C.S.I.R.

References

- [1] H. Aktaş and N. Çağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726–2735.
- [2] D. M. Ali, P. Wuyts and A. K. Srivastava, On the R₀-property in fuzzy topology, Fuzzy Sets and Systems 38 (1990) 97–113.
- [3] A. Aygünoğlu and H. Aygün, Introduction to fuzzy soft groups, Comput. Math. Appl. 58 (2009) 1279–1286.
- [4] Abdülkadir Aygünoğlu and Halis Aygün, Some notes on soft topological spaces, Neural Computing and Applications 21 (1) (2012) 113–119.
- [5] V. Cetkin and H. Aygün, A note on fuzzy soft topological spaces, Proceedings of the 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) 56–60.
- [6] R. Lowen and A. K. Srivastava, FTS₀: the epireflective hull of the Sierpinski object in FTS, Fuzzy Sets and Systems 29 (1989) 171–176.
- J. Mahanta and P. K. Das, Results on fuzzy soft topological spaces, arXiv:1203.0634v1 [math.GM] (2012).
- [8] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J.Fuzzy Math. 9 (3) (2001) 589-602.
- [9] Pu Pao-Ming and Liu Ying-Ming, Fuzzy Topology I.Neighbourhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [10] Seema Mishra and Rekha Srivastava, Hausdorff fuzzy soft topological spaces, Ann. Fuzzy Math. Inform. 9 (2) (2015) 247–260.
- [11] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. 37 (1999) 19–31.
- [12] Muhammad Shabir and Munazza Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786–1799.
- [13] Rekha Srivastava, S. N. Lal and Arun K. Srivastava, Fuzzy Hausdorff Topological spaces, J. Math. Anal. Appl. 81 (1981) 497–506.
- [14] Rekha Srivastava, S. N. Lal and A. K. Srivastava, On fuzzy T_0 and R_0 topological spaces, J. Math. Anal. Appl. 136 (1) (1988) 66–73.
- [15] Rekha Srivastava, Topics in fuzzy topology, Ph.D. Thesis, Banaras Hindu University, India 1984.
- [16] Rekha Srivastava, S. N. Lal and Arun K. Srivastava, On Fuzzy T_1 -Topological spaces, J. Math. Anal. Appl. 136 (1) (1988) 124–130.
- [17] B. Tanay and M. B. Kandemir, Topological structure of fuzzy soft sets, Comput. Math. Appl. 61 (2011) 2952–2957.
- [18] B. P. Varol and H. Aygün, Fuzzy soft topology, Hacettepe Journal of Mathematics and Statistics 41 (3) (2012) 407–419.
- [19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>SEEMA MISHRA</u> (seemamishra.rs.apm12@itbhu.ac.in)

Department of Mathematical Sciences, Indian Institute of Technology (B.H.U.), Varanasi

221005, India

<u>REKHA SRIVASTAVA</u> (rsrivastava.apm@iitbhu.ac.in) Department of Mathematical Sciences, Indian Institute of Technology(B.H.U.), Varanasi 221005, India