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Abstract. In the paper, we give the concept of ¬-ideals dual to that of
¬-filters by using the operation ⊛ in SBL¬-algebras, and also show some
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filter are investigated by the notion of the set of complement elements.
It is obtained that for a ¬-proper ideal I of a SBL¬-algebra L, the set
I ∪N(I) is the least SBL¬-subalgebra of L containing I. Some properties
of ¬-ideals are also studied via the notions of radicals of ¬-ideals, and then
a concrete description of the radical of an ¬-ideal is given.
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1. INTRODUCTION

BL-algebras as the algebraic structures for Basic Logic were invented by Hájek
[4] in order to study the basic logic frame work of fuzzy set theory. MV-algebras,
Godel algebras and product algebras are three famous BL-algebras. It has been
proved that BL-algebras satisfying the double negation are MV-algebras. Esteva
et al. [3] introduced SBL¬-algebras as the algebraic sructures for the Strict Basic
(Fuzzy) Logic SBL which is a propositional logic given by standard BL-algebras.
Recently, Kondo [8] studied the property of strict residuated lattices (SRL-algebras)
with a new involutive negation ¬ and also provided a prime filter theorem of SRL¬-
algebras.

The ideal (filter) theory plays an important role in studying logical algebras.
From the logic point of view, the sets of provable formulas in corresponding systems
can be described by ideals (filters) of those algebraic semantics. In various algebraic
structures, the notion of ideals is at the center, while in BL-algebras, the focus is
shifted to filters owing to lack of ideals in BL-algebras. The study of BL-algebras
has experienced a tremendous growth over the recent years and many important
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results are obtained. It has been proved that the notion of filters coincides with
deductive systems in [13]. Haveshki et al. [6] extended the algebraic analysis of
BL-algebras and introduced positive implicative filters of BL-algebras, which were
proved to coincide with Turunen’s implicative deductive systems in [9]. Recently,
some new kinds of filters such as implication filters [1] and integral filters [2] were
studied and some of their characterizations were presented.

In order to fulfill the ideal theory in BL-algebras, Lele and Nganou [10] introduced
the notion of ideals in BL-algebras as a natural generalization of that of ideals
in MV-algebras by using the notion of pseudo-addition. They also proved that
their definition of fuzzy ideals [11] coincide with that given in [15, 12]. Compared
with the filter theory, we observe that the notion of ¬-ideals in SBL¬-algebras dual
to that of ¬-filters is vacant, and then we give the notion of ¬-ideals in SBL¬-
algebras by introduce a new operation ⊛. It is pointed out that an ¬-ideal is an
ideal in SBL¬-algebras. Some characterizations of ¬-ideals are presented and the
relationships between ¬-ideals and ¬-filters are investigated by the notion of the
set of complement elements. The notion of radicals of ¬-ideals are also introduced
to study the properties of ¬-ideals, and a concrete description of the radical of an
¬-ideal is given.

2. Preliminaries

In the section, we summarize some definitions and results about BL-algebras and
SBL¬-algebras which will be used in the sequel.

Definition 2.1 ([4]). An algebra structure (L,∧,∨,⊗,→, 0, 1) of type (2, 2, 2, 2, 0, 0)
is called a BL-algebras if it satisfies the following conditions: for any x, y, z ∈ L,

(BL-1) (L,∧,∨, 0, 1) is a bounded lattice,
(BL-2) (L,⊗, 1) is a commutative monoid,
(BL-3) x⊗ y ≤ z if and only if x ≤ y → z,
(BL-4) x⊗ (x → y) = x ∧ y,
(BL-5) (x → y) ∨ (y → x) = 1.

A BL-algebra L satisfying the double negation is called an MV-algebra,that is
x = x′′ for any x ∈ L, where x′ := x → 0. A BL-algebra satisfying x ∨ x′ = 1 is
called a Boolean algebra. A BL-algebra L is called a SBL-algebra if it satisfies the
axiom (S): (x ⊗ y)′ = x′ ∨ y′, for any x, y ∈ L. Esteva et al. extended SBL with a
unary connective ¬ and introduced the notion of SBL¬-algebras as follows.

Definition 2.2 ([3]). A SBL¬-algebra is a structure (L,∧,∨,⊗,→,¬, 0, 1) which is a
SBL-algebra expended with a unary operation ¬ satisfying the following conditions:
for any x, y ∈ L,

(SBL¬1) ¬¬x = x,
(SBL¬2) x′ ≤ ¬x,
(SBL¬3) △(x → y) = △(¬y → ¬x), where △x = (¬x)′,
(SBL¬4) △x ∨ (△x)′ = 1,
(SBL¬5) △(x ∨ y) ≤ △x ∨△y,
(SBL¬6) △x⊗△(x → y) ≤ △y.
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It has been proved by Halaš [5] that the above axiom system is not dependent.
In fact, if L is a SBL-algebra, then L is a SBL¬-algebra if and only if it satisfies
(SBL¬1) and (SBL¬3).

In the following lemma, we summarize some results related to SBL¬-algebras
which are required in the following sections.

Lemma 2.3 ([4, 3, 8]). Let L be a SBL¬-algebra. Then the following relations hold:
for any x, y, z ∈ L,

(1) x ≤ y if and only if x → y = 1, x⊗ y = 0 if and only if x ≤ y′;
(2) x → (y → z) = (x⊗ y) → z = y → (x → z), △¬x = △x′ = x′;
(3) (x → y)′′ = y′ → x′, x′ = x′ ⊗ x′, x′ ⊗ y′ = x′ ∧ y′, x⊗ y ≤ x ∧ y;
(4) x⊗ x′ = 0, x′ = x′′′, x ≤ x′′, △x ≤ x, △△x = △x, △x⊗△y = △(x⊗ y);
(5) 0′ = 1, 1′ = 0, ¬0 = 1, ¬1 = 0, 1 → x = x, x → 1 = 1, y ≤ x → y;
(6) ¬(x ∧ y) = ¬x ∨ ¬y, ¬(x ∨ y) = ¬x ∧ ¬y, x ≤ y implies y → z ≤ x → z.

Lele and Nganou defined the pseudo-addition of a BL-algebra L: x⊘ y := x′ → y
for any x, y ∈ L, and then introduced the notion of ideal in BL-algebras as a natural
generalization of that of ideals in MV-algebras.

Definition 2.4 ([10]). Let (L,∧,∨,⊗,→, 0, 1) be a BL-algebra and I a nonempty
subset of L. We say that I is an ideal of L if it satisfies:

(1) for any x, y ∈ I, x⊘ y ∈ I,
(2) for any x, y ∈ L, if x ≤ y and y ∈ I, then x ∈ I.

From the above definition, it is easy to see that for any ideal I, x ∈ I if and only
if x′′ ∈ I for any x ∈ L.

Denote x ⊖ y = x ⊗ y′ for any x, y ∈ L, then a subset I of a BL-algebra L
containing 0 is an ideal if and only if x ⊖ y ∈ I and y ∈ I imply x ∈ I for any
x, y ∈ L [10].

A nonempty subset F of a BL-algebra L is called a filter if it satisfies: for any
x, y ∈ L, (i) x ∈ F and y ∈ F imply x ⊗ y ∈ F ; (ii) x ∈ F and x ≤ y imply y ∈ F .
A filter F is said to be a normal filter if x′′ ∈ F implies x ∈ F for any x ∈ L [7]. A
filter F of SBL¬-algebra L is called a ¬-filter if it satisfies (iii) x → y ∈ F implies
¬y → ¬x ∈ F . It is easy to check that a nonempty subset F of a SBL¬-algebra L is
a ¬-filter if and only if it satisfies: (i) 1 ∈ F ; (ii) x ∈ F and x → y ∈ F imply y ∈ F
for any x, y ∈ L; (iii) x ∈ F implies △x ∈ F for any x ∈ L [14]. For a ¬-filter F of
L, we have that x ∈ F if and only if △x ∈ F for any x ∈ L.

3. Some characterizations of ¬-ideals

In the section, we introduce the notion of ¬-ideals and investigate their properties.
From now on, (L,∧,∨,⊗,→,¬, 0, 1) is a SBL¬-algebra unless otherwise mentioned,
which will often be referred by its support set L.

we define a binary operation ⊛ on L by

x⊛ y := ¬(x′ ⊗ y′),

for any x, y ∈ L. We define 1x := x ⊛ 0 and nx := (n − 1)x ⊛ x, for any n > 1. In
the following, ′ has priority over ¬ in the operation process.

In order to discuss ¬-ideals, we first establish some properties of the operation ⊛
as follows.
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Proposition 3.1. Let L be a SBL¬-algebra. Then the following statements are
valid: for any x, y, z ∈ L,

(1) x⊛ y = ¬x′ ∨ ¬y′, (x⊛ y)′ = x′ ⊗ y′, x⊛ y = y ⊛ x;
(2) x⊛ 1 = 1, x⊛ 0 = x⊛ x, x⊛ x′ = 1;
(3) (x⊛ y)⊛ z = x⊛ (y ⊛ z);
(4) x ∨ y ≤ x⊛ y, x ≤ y implies x⊛ z ≤ y ⊛ z;
(5) x⊛ (y ∧ z) = (x⊛ y) ∧ (x⊛ z);
(6) x⊛ (y ∨ z) = (x⊛ y) ∨ (x⊛ z);
(7) △(x⊛ y) = x′′ ∨ y′′, △(x⊖ y) = △x⊖ y;
(8) △(△x⊛△y) = △x⊛△y, △(△x⊖△y) = △x⊖△y.

Proof. We only show the cases of (3) and (5). Concerning to the case of (3): (x ⊛
y) ⊛ z = x ⊛ (y ⊛ z). Since (x ⊛ y) ⊛ z = ¬((¬x′ ∨ ¬y′)′) ∨ ¬z′ = ¬((¬x′)′ ∧
(¬y′)′) ∨ ¬z′ = ¬(△x′ ∧ △y′) ∨ ¬z′ = ¬(x′ ∧ y′) ∨ ¬z′ = ¬x′ ∨ ¬y′ ∨ ¬z′, similarly,
x⊛ (y ⊛ z) = ¬x′ ∨ ¬y′ ∨ ¬z′, thus (3) holds.

For the case of (5): x ⊛ (y ∧ z) = (x ⊛ y) ∧ (x ⊛ z), we have x ⊛ (y ∧ z) =
¬x′ ∨ (¬y′ ∧ ¬z′) = (¬x′ ∨ ¬y′) ∧ (¬x′ ∨ ¬z′) = (x ⊛ y) ∧ (x ⊛ z), and so (5) is
valid. □

We would like to point out that for any x ∈ L, x⊛0 = x is not true, since x′ ̸= ¬x
in general.

It is known that the notion dual to that of filters is that of ideals, by using the
operator ⊛ defined on SBL¬-algebras, we can introduce the notion of ¬-ideals as
follows.

Definition 3.2. Let I be a nonempty subset of L. Then I is called an ¬-ideal of L
if it satisfies the following conditions: for any x, y ∈ L,

(1) if x, y ∈ I, then x⊛ y ∈ I;
(2) y ∈ I and x ≤ y imply x ∈ I;
(3) ¬y ⊖ ¬x ∈ I implies x⊖ y ∈ I.

For better understanding of ¬-ideals, we illustrate it by the following example.

Example 3.3. Let L = {0, a, b, c, d, e, f, g, 1} be a set with a Hasse diagram and
Cayley tables as follows.

r0 rcra

rb re rfrgrd
r1
�@

�@
@
@
�

�

¬ 0 a b c d e f g 1
1 g f e d c b a 0
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⊗ 0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 a a 0 a a 0 a a
b 0 a b 0 a b 0 a b
c 0 0 0 c c c c c c
d 0 a a c d d c d d
e 0 a b c d e c d e
f 0 0 0 c c c f f f
g 0 a a c d d f g g
1 0 a b c d e f g 1

→ 0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1

then L is a SBL¬-algebra. Obviously, {0} is an ¬-ideal.

Lemma 3.4. Let I be an ¬-ideal of L. Then the following statements hold: for any
x, y ∈ L,

(1) x ∈ I if and only if △x ∈ I;
(2) x′ ∈ I if and only if ¬x ∈ I.

Proof. (1) Suppose that x ∈ I, since △x ≤ x, then △x ∈ I.
Conversely, assume that △x ∈ I, that is, ¬0⊖ ¬x ∈ I, then x = x⊖ 0 ∈ I.
(2) It is directly from △¬x = △x′ = x′ and (1). □

Theorem 3.5. Let I be a nonempty subset of L. Then I is an ¬-ideal of L if and
only if I satisfies the following conditions:

(1) 0 ∈ I;
(2) y ∈ I and x⊖ y ∈ I imply x ∈ I, for any x, y ∈ L;
(3) △x ∈ I implies x ∈ I for any x ∈ L.

Proof. Suppose that I is an ¬–ideal of L. Since I is a nonempty set, then there exists
x ∈ I. Considering that 0 ≤ x, we get that 0 ∈ I. For any x, y ∈ L, if y ∈ I and
x⊖ y ∈ I, then we have (x⊖ y)⊛ y = ¬((y′ → x′)⊗ y′) = ¬(y′ ∧ x′) ≥ y′′ ∨ x′′ ≥ x,
thus x ∈ I. The proof (3) is directly from Lemma 3.4.

Conversely, let x, y ∈ L be such that x ≤ y and y ∈ I. Since x ⊖ y = x ⊗ y′ ≤
x ⊗ x′ = 0 ∈ I, then x ⊖ y = 0 ∈ I, and apply the hypothesis to conclude x ∈ I.
Let x, y ∈ L be such that x, y ∈ I. We observe that ((x′ ⊗ y′)′ ⊖ x) ⊖ y = ((x′ ⊗
y′)′ ⊗x′)⊗ y′ = 0, it follows that △¬(x′ ⊗ y′) = (x′ ⊗ y′)′ ∈ I. From the hypothesis,
we have x ⊛ y = ¬(x′ ⊗ y′) ∈ I. Let x, y ∈ L be such that ¬y ⊖ ¬x ∈ I, that
is, ¬y ⊗ △x ∈ I. Considering that △(y′ ⊗ x) = △y′ ⊗ △x = △¬y ⊗ (△△x) =
△(¬y⊗△x) ≤ ¬y⊗△x ∈ I, we have △(y′⊗x) ∈ I, and thus x⊖y = y′⊗x ∈ I. □

As an application of Theorem 3.5, we have the following result.

Corollary 3.6. Let I be a nonempty subset of L. Then I is an ¬-ideal of L if and
only if for any x, y ∈ L,

(1) if x, y ∈ I, then x⊛ y ∈ I;
(2) y ∈ I and x ≤ y imply x ∈ I;
(3) △x ∈ I implies x ∈ I.

Proposition 3.7. Let I be an ¬-ideal of L. Then x⊛ y ∈ I if and only if x⊘ y ∈ I,
for any x, y ∈ L.
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Proof. Assume that x ⊛ y ∈ I. Since x ⊘ y = x′ → y ≤ x′ → y′′ = (x′ ⊗ y′)′ ≤
¬(x′ ⊗ y′) = x⊛ y, we get x⊘ y ∈ I.

Conversely, suppose that x ⊘ y ∈ I. Noticing that (x′ ⊗ y′)′ ⊖ (x ⊘ y) = (y′ →
x′′) ⊗ (x′ → y)′ = (y′ → x′′) ⊗ (y′ → x′′)′ = 0 ∈ I, we have (x′ ⊗ y′)′ ∈ I, and so
x⊛ y = ¬(x′ ⊗ y′) ∈ I by Lemma 3.4. □

Remark 3.8. From Proposition 3.7, it is easy to see that an ¬-ideal is an ideal in
a SBL¬-algebra, however the converse is not true in general.

Example 3.9. Let L = {0, a, b, 1} be such that 0 < a < b < 1. The operations ⊗,
→ and ¬ are defined as follows:

⊗ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

¬ 0 a b 1
1 b a 0

then L is a SBL¬-algebra. It is easy to check that I = {0} is an ideal of L, but I is
not an ¬-ideal of L since △a = 0 ∈ I, while a /∈ I.

In the following section, we will investigate the relationships between ¬-ideal and
¬-filters, we first introduce the set of complement elements N(X).

Definition 3.10 ([11]). Let X be a nonempty subset of L. The set of complement
elements with respect to X is denoted by N(X) and is defined by N(X) = {x ∈
L|x′ ∈ X}.

Proposition 3.11. Let F be a ¬-normal filter and I be an ¬-ideal of L. Then

(1) N(F ) is an ¬-ideal of L;
(2) N(I) is a ¬-filter of L;
(3) I = N(N(I)), F ⊆ N(N(I));
(4) N(F ) = N(N(N(F ))).

Proof. (1) Since 0′ = 1 ∈ F , it is clear that 0 ∈ N(F ). Let x ⊖ y ∈ N(F ) and
y ∈ N(F ), then (x ⊖ y)′ = y′ → x′ ∈ F and y′ ∈ F . Noticing that F is a ¬-filter,
we have x′ ∈ F , and so x ∈ N(F ). If △x ∈ N(F ), that is, (△x)′ = (¬x)′′ ∈ F , then
¬x ∈ F , and thus x′ = △¬x ∈ F . It follows that x ∈ N(F ), and so N(F ) is an
¬-ideal of L.

(2) Assume that I is an ¬-ideal of L, since 1′ = 0 ∈ I, then 1 ∈ N(I). Let
x, y ∈ L be such that x ∈ N(I) and x → y ∈ N(I). Then x′ ∈ I and (x → y)′ ∈ I.
As y′ ⊖ x′ ≤ (x → y)′ ∈ I, we get y′ ∈ I, and so y ∈ N(I). Let x ∈ N(I), that is,
x′ ∈ I. According to Lemma 3.4, we obtain ¬x ∈ I. From Remark 3.8, it follows
that (△x)′ = (¬x)′′ ∈ I, and so △x ∈ N(I). Thus N(I) is a ¬-filter of L.

(3) I = N(N(I)) follows from the fact that x′′ ∈ I if and only if x ∈ I for any
x ∈ L. F ⊆ N(N(I)) follows from the fact that x ≤ x′′ for any x ∈ L.

(4) It follows from I = N(N(I)) by setting I = N(F ). □

Theorem 3.12. Let I be a nonempty subset of L. If I is a ¬-proper ideal, then
I ∪N(I) is the least SBL¬-subalgebra of L containing I.
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Proof. We will show that I ∪ N(I) is closed under the operations on L. For any
x, y ∈ L,

(1) x ∈ I ∪N(I) implies x′ ∈ I ∪N(I) and ¬x ∈ I ∪N(I).
Indeed, let x ∈ I ∪ N(I). Then x ∈ I or x′ ∈ I. If x ∈ I, noticing that I is a

¬-proper ideal, we have x′′ ∈ I, and so x′ ∈ N(I). If x′ ∈ I, it is clear that ¬x ∈ I
by Lemma 3.4, and thus (1) is valid.

(2) x, y ∈ I ∪N(I) implies x ∧ y ∈ I ∪N(I).
If x ∈ I or y ∈ I, for instance, x ∈ I, since x ∧ y ≤ x ∈ I, we get x ∧ y ∈ I. If

x ∈ N(I) and y ∈ N(I), then x′, y′ ∈ I. It follows that (x ∧ y)′ = x′ ∨ y′ ∈ I, and
so x ∧ y ∈ N(I).

(3) x, y ∈ I ∪N(I) implies x ∨ y ∈ I ∪N(I).
It is similar to (2).
(4) x, y ∈ I ∪N(I) implies x⊗ y ∈ I ∪N(I).
If x ∈ I or y ∈ I, for instance, x ∈ I, since x⊗ y ≤ x ∈ I, we have x⊗ y ∈ I. If

x ∈ N(I) and y ∈ N(I), since N(I) is a ¬-filter of L, we have x⊗ y ∈ N(I), and so
x⊗ y ∈ I ∩N(I).

(5) x, y ∈ I ∪N(I) implies x → y ∈ I ∪N(I).
Indeed, if y ∈ N(I), since y ≤ x → y and N(I) is a ¬-filter, then x → y ∈ N(I).

If y ∈ I, we consider two cases.
(i) x ∈ I. We have x′′ ∈ I, and so x′ ∈ N(I). Since x → y ≥ x → 0 = x′ ∈ N(I)

and N(I) is a ¬-filter, we get x → y ∈ N(I).
(ii) x ∈ N(I). Then x′ ∈ I. Since (x → y)′′ ⊖ x′ ⊖ y = (y → x)′ ⊗ x′′ ⊗ y′ = 0,

then (x → y)′′ ∈ I, and so x → y ∈ I.
Finally, let J be a SBL¬-subalgebra containing I and x ∈ I ∪N(I). If x ∈ I, it

is clear that x ∈ J . If x ∈ N(I), then x′ ∈ I, and so ¬x ∈ I ⊆ J . Obverse that J be
a SBL¬-subalgebra, we have x = ¬¬x ∈ J . Thus ∈ I ∪N(I) ⊆ J , and so I ∪N(I)
is the least SBL¬-subalgebra of L containing I. □

Let I be an ¬-ideal of L. I is called prime if x ∧ y ∈ I implies x ∈ I or y ∈ I, for
any x, y ∈ L. It has been proved that an ¬-ideal I is prime if and only if (x → y)′ ∈ I
or (y → x)′ ∈ I, for any x, y ∈ L. The notions of ¬-maximal ideals can be similarly
defined.

Proposition 3.13. Let I be a ¬-proper ideal of L. Then I is a ¬-prime ideal of L
if and only if x⊖ y ∈ I or y ⊖ x ∈ I, for any x, y ∈ L.

Proof. Suppose that I is a ¬-prime ideal of L, then (x → y)′ ∈ I or (y → x)′ ∈ I,
for any x, y ∈ L. If (x → y)′ ∈ I, since (x⊖ y)⊖ (x → y)′ = 0 ∈ I, then x⊖ y ∈ I.
If (y → x)′ ∈ I, y ⊖ x ∈ I can be proved similarly.

Conversely, assume that x⊖ y ∈ I or y ⊖ x ∈ I, for any x, y ∈ L. Let x ∧ y ∈ I.
If x ⊖ y ∈ I, as (y ⊖ (y ⊖ x)) ⊖ (x ∧ y) = 0, noticing that I is an ¬-ideal of L, we
have y ∈ I. If y ⊖ x ∈ I, x ∈ I can be proved in a similar way. □

Dual to ¬-filters, we can obtain some similar results concerning to ¬-ideals.

Proposition 3.14. Let I be an ¬-ideal and a ∈ L\I. We have

(1) there exists a ¬-prime ideal P such that I ⊆ P , but a /∈ P ;
(2) every ¬-prime ideal of L is contained in a unique ¬-maximal ideal of L.
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Definition 3.15. Let I be an ¬-ideal of L. The intersection of all ¬-maximal ideals
of L that containing I is called the radical of I, and it is denoted by Rad(I).

It is easy to see that the radical Rad(I) of an ¬-ideal I is an ¬-ideal and I ⊆
Rad(I).

Proposition 3.16. Let I be a ¬-proper ideal of L. Then L\Rad(I) is a ¬-proper
filter of L.

Proof. Since 0 ∈ Rad(I), then 1 ∈ L\Rad(I). Let x ∈ L\Rad(I) and x → y ∈
L\Rad(I). Then x′ ∈ Rad(I) and (x → y)′ ∈ Rad(I). Since (y′ ⊖ x′)⊖ (x → y)′ =
0 ∈ Rad(I), noticing that Rad(I) is an ¬-ideal, we have y′ ⊖ x′ ∈ Rad(I). Thus
y′ ∈ Rad(I), and so y ∈ L\Rad(I). Assume that x ∈ L\Rad(I), then x′ ∈ Rad(I),
and thus ¬x ∈ Rad(I). Since (△x)′ ⊖ ¬x = 0, we get (△x)′ ∈ Rad(I), therefore
△x ∈ L\Rad(I), and thus L\Rad(I) is a ¬-proper filter of L. □
Proposition 3.17. Let M be a ¬-proper ideal of L. If M is a ¬-maximal ideal,
then L\M is a ¬-proper filter of L.

Proof. The proof is similar to that of Proposition 3.16. □
Theorem 3.18. Let I be an ¬-ideal of L. Then Rad(I) = {x ∈ L|xn⊖¬x ∈ I; ∀n ≥
1}.

Proof. Let x ∈ Rad(I). Suppose that there exists k ≥ 1 such that xk ⊖ ¬x /∈ I.
From Proposition 3.14, it follows that there exists a ¬-prime ideal P of L such that
I ⊆ P and xk ⊖ ¬x /∈ P . Since P is a ¬-prime ideal, then ¬x⊖ xk ∈ P . According
to Proposition 3.14, there exists a ¬-maximal ideal M of L such that P ⊆ M , and
so ¬x⊖ xk ∈ M . Assume that x ∈ M , then xk ∈ M . Since M is a ¬-maximal ideal
and ¬x ⊖ xk ∈ M , then ¬x ∈ M , and so x′ ∈ M . Hence x ⊛ x′ = 1 ∈ M , which
is a contradiction, therefore x /∈ M . Since I ⊆ P ⊆ M , then x /∈ I ⊆ Rad(I), a
contradiction. Hence xn ⊖ ¬x ∈ I for any n ≥ 1.

Conversely, assume that xn ⊖ ¬x ∈ I for any n ≥ 1, but x /∈ Rad(I). Then
there exists a ¬-maximal ideal M of L such that x /∈ M , it follows that x ∈ L\M .
According to Proposition 3.17, L\M is a ¬-proper filter of L, thus we have x′ ∈ M ,
and so ¬x ∈ M . Considering that x ⊖ ¬x ∈ I ⊂ M , we obtain x ∈ M , which is a
contradiction. Therefore x ∈ Rad(I), and thus Rad(I) = {x ∈ L|xn ⊖ ¬x ∈ I; ∀n ≥
1}. □
Proposition 3.19. Let I be a ¬-proper ideal of L. Then the following statements
are valid:

(1) for any x, y ∈ L, if x, y ∈ Rad(I), then x⊖ y ∈ Rad(I);
(2) for any x, y ∈ L, if x ∈ Rad(I) and y ∈ L\Rad(I), then x ⊖ y ∈ Rad(I),

y ⊖ x ∈ L\Rad(I).

Proof. (1) Let x, y ∈ Rad(I). Suppose that x⊖y /∈ Rad(I), that is, x⊖y ∈ L\Rad(I).
Since L\Rad(I) is a ¬-proper filter of L and x ⊖ y ≤ x, then x ∈ L\Rad(I), a
contradiction. Thus x⊖ y ∈ Rad(I).

(2) Let x ∈ Rad(I) and y ∈ L\Rad(I). Then we have y′ ∈ Rad(I). Considering
that Rad(I) is an ¬-ideal of L and x ⊖ y ≤ y′, we get x ⊖ y ∈ Rad(I). Suppose
that y ⊖ x /∈ L\Rad(I), then y ⊖ x = y → x′′ ∈ L\Rad(I). Noticing that L\Rad(I)
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is a ¬-proper filter of L, we have x′′ ∈ L\Rad(I), and so x′ ∈ Rad(I). Therefore
x⊛ x′ = 1 ∈ Rad(I), which is a contradiction, and thus y ⊖ x ∈ L\Rad(I). □

Proposition 3.20. Let I be an ¬-ideal of L. The relation ∼I on L is defined by:
for any x, y ∈ L,

x ∼I y if and only if x⊖ y ∈ I and y ⊖ x ∈ I.

Then ∼I is a congruence on L.

Proof. The proof is similar to that of Theorem 4.2 in [10]. □

Let I be a ¬-ideal of L and x ∈ L. Define the set [x] = {y ∈ L|x ∼I y}, which is
called a congruence class of x by ∼I . The set L/I = {[x]|x ∈ L} is called a quotient
set by ∼I . For any x, y ∈ L, we define the operations ∧, ∨, ⊗, → and ¬ on L/I as
follows:

[x] ∧ [y] = [x ∧ y], [x] ∨ [y] = [x ∨ y], [x]⊗ [y] = [x⊗ y],
[x] → [y] = [x → y], ¬[x] = [¬x].

Proposition 3.21. Let I be an ¬-ideal of L. Then (L/I,∧,∨,⊗,→,¬, [0], [1]) is an
MV-algebra, and it is also a Boolean algebra.

Proof. Obviously, L/I is a BL-algebra. According to Remark 3.8, we get that the
¬-ideal I is an ideal of L, thus x ∈ I if and only if x′′ ∈ I for any x ∈ L. So
[x] = [x]′′, and thus L/I is an MV-algebra. By Lemma 3.4, we have [△x] = [x] and
[¬x] = [x]′ for any x ∈ L, then [x]∨ [x]′ = [△x]∨ [(△x)′] = [△x∨ (△x)′] = [1], thus
L/I is a Boolean algebra. □

4. Conclusions

We have introduced the concept of ¬-ideals in SBL¬-algebras and given some
characterizations of ¬-ideals. The relationships between ¬-ideals and ¬-filter are
investigated, in general, N(I) is a ¬-filter, but N(F ) is an ¬-ideal with an conditions
that x′′ ∈ F implying that x ∈ F . It is obtained that for a ¬-proper ideal I, the set
I ∪N(I) is a SBL¬-subalgebra of L. We have discussed some properties of ¬-ideals
via the notions of radicals of ¬-ideals, and given a concrete description of the radical
of an ¬-ideal.
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