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Abstract. Quasi-probability is a kind of fuzzy measure, its properties
will be further discussed in this paper. New convergence concepts for
quasi-random variables are then introduced and the relationships among
the convergence concepts are investigated. All obtained results are natural
extensions of the classical convergence theory to the case where the measure
tool is fuzzy.
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1. INTRODUCTION

Convergence concepts are basic and important concepts in classical measure
theory [15, 19]. The additivity property of classical measure is in some application
contexts too restrictive and, consequently, unrealistic [1, 10, 13]. Therefore, many
mathematicians tried to explore some kinds of non-additive measures. Zadeh [20]
proposed the concept of possibility measure in 1999; Liu Baoding [11] founded an
uncertainty theory in 2007; Wang Zhenyuan [17] discussed quasi-probability measure
in 1992, and so on. Quasi-probability is a fuzzy (non-additive) measure and, it is
a generalization of probability measure and Sugeno measure. Quasi-probability was
widely applied by some scholars [3, 8, 9, 17, 21] . When the measure tool is non-
additive, the convergence concepts are very different from additive case [2, 5, 14, 16,
18]. Some mathematicians have explored them such as Gianluca [4], B. Hazarika
[6, 7], Liu Baoding [12, 13], Wang Zhenyuan [17], Zhang Zhiming [22], and so forth.
For the sake of investigating quasi-probability theory deeper, we will propose in
the present paper some new convergence concepts on quasi-probability space, and
discuss the relationships among the convergence concepts. Our work helps to build
important theoretical foundations for the development of quasi-probability theory.
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2. The Definition and Properties of Quasi-Probability Measure

In this paper, let X be a nonempty set and (X,F) be a measurable space. Here
F is a σ−algebra of X.

Definition 2.1 ([17]). Let α ∈ (0,+∞], an extended real function is called a T-
function iff θ : [0, a] → [0,+∞] is continuous, strictly increasing, and such that
θ(0) = 0, θ−1({∞}) = ∅ or {∞}, according to a being finite or not.

Definition 2.2. Let α ∈ (0,+∞], an extended real function θ : [0, a] → [0,+∞] is
called a regular function, if θ is continuous, strictly increasing, and θ(0) = 0, θ(1) = 1.

Obviously, if θ is a regular function, then θ−1 is also a regular function.

Definition 2.3 ([17]). µ is called quasi-additive iff there exists a T-function θ ,
whose domain of definition contains the range of µ , such that the set function θ ◦µ
defined on F by (θ ◦ µ)(E) = θ [µ(E)] (∀E ∈ F), is additive; µ is called a quasi-
measure iff there exists a T-function θ such that θ ◦ µ is a classical measure on F .
The T-function θ is called the proper T-function of µ.

Definition 2.4. Let µ be a quasi-measure on F , if θ is a regular T-function of µ,
and µ(X) = 1, then µ is called a quasi-probability. The triplet (X,F , µ) is called a
quasi-probability space.

Example 2.5. Let µ be a probability measure. From definition 2.3, we know that
µ is a quasi-probability with θ(x) = x as its T-function.

Example 2.6 ([17]). Suppose that X = {1, 2, · · · , n}, ρ(X) is the power set of X.
If

µ(E) = (
|E|
n

)2,

where |E| is the number of those points that belong to E, then µ is a quasi-probability
with θ(x) =

√
x, x ∈ [0, 1] as its T-function.

Theorem 2.7. If µ is a quasi-probability, then µ(∅) = 0.

Proof. µ is a quasi-probability, there exists a T-function θ such that θ ◦ µ is a
classical measure, (θ ◦ µ)(∅) = 0, i.e., θ[µ(∅)] = 0, it follows from definition 2.2
that µ(∅) = 0. □
Theorem 2.8. Let µ be a quasi-probability on F . If A,B ∈ F , and A ⊂ B, then
we have µ(A) < µ(B).

Proof. Since A ⊂ B, and there exists a T-function θ such that θ ◦ µ is a classical
measure, we have (θ ◦ µ)(A) < (θ ◦ µ)(B). θ is continuous, strictly increasing, it is
clear that µ(A) < µ(B). □
Theorem 2.9. Let µ be a quasi-probability on F , then there exists a regular T-
function θ such that θ ◦ µ is a probability on F .

Proof. µ is a quasi-probability, it follows from definition 2.4 that there exists a
regular T-function θ, such that θ ◦ µ is a classical measure. ∀A ∈ F , (θ ◦ µ)(A) =
θ(µ(A)) ≥ 0, and (θ ◦ µ)(X) = θ(µ(X)) = θ(1) = 1. It implies that θ ◦ µ is a
probability measure. □
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Theorem 2.10. If µ be a quasi-probability, then µ is continuous.

Proof. According to definition 2.4 and theorem 2.9, the continuity of µ is obvious.
□

Definition 2.11. Let (X,F , µ) be a quasi- probability space and ξ = ξ(ω), ω ∈ F ,
be a real set function on F . For any given real number x, if {ω| ξ(ω) ≤ x} ∈ F ,
then ξ is called a quasi-random variable, denoted by q-random variable.

Definition 2.12. The distribution function of q-random variable ξ is defined by

Fµ(x) = µ{ω ∈ F| ξ(ω) ≤ x}.

Let ξ and η be two q-random variables. ∀x, y ∈ R, if

µ(ξ ≤ x, η ≤ y) = θ−1[(θ ◦ µ)(ξ ≤ x) · (θ ◦ µ)(η ≤ y)],

then ξ and η are independent q-random variables [8].
The q-random variables ξ1, ξ2, ..., ξn ... are said to be identically distribution iff

µ{ξi ∈ B} = µ{ξj ∈ B}, i, j = 1, 2, ...,

for any Borel set B of R.

3. Convergence Theorems of q-Random Variables Sequence

In the section, two new convergence concepts are proposed, and then the rela-
tionships between the two convergence concepts are investigated.

Definition 3.1. Suppose that ξ1, ξ2, ..., ξn, ... is a sequence of q-random variables.
If there exists a q-random variable ξ, such that

µ{ lim
n→∞

ξn = ξ} = 1,

then we say that {ξn} converges with quasi-probability 1 to ξ. Denoted by

lim
n→∞

ξn = ξ (µ− a.s.).

Definition 3.2. Suppose that ξ1, ξ2, ..., ξn, ... is a sequence of q-random variables.
If there exists a q-random variable ξ, such that ∀ε > 0,

lim
n→∞

µ{| ξn − ξ |≥ ε} = 0,

namely,
lim

n→∞
µ{| ξn − ξ |< ε} = 1,

then we say that {ξn} converges in quasi-probability to ξ. Denoted by

lim
n→∞

ξn = ξ (µ).

Lemma 3.3. Suppose that ξ1, ξ2, ..., ξn, ... is a sequence of q-random variables, ξ
is a q-random variable. Then the following propositions are equivalent.

(1) lim
n→∞

ξn = ξ (µ−a.s.);

(2) µ{
∞∩

m=1

∞∪
n=1

∩
k≥n

[|ξk−ξ| < 1

m
]} = 1, and µ{

∞∪
m=1

∞∩
n=1

∪
k≥n

[|ξk−ξ| ≥ 1

m
]} = 0;
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(3) ∀ε > 0, µ{
∞∪

n=1

∩
k≥n

[|ξk−ξ| < ε]} = 1, and µ{
∞∩

n=1

∪
k≥n

[|ξk−ξ| ≥ ε} = 0.

(4) ∀ε > 0, lim
n→∞

µ{
∩
k≥n

[|ξk−ξ| < ε]} = 1, and lim
n→∞

µ{
∪
k≥n

[|ξk−ξ| ≥ ε]} = 0.

Proof. The equivalences among propositions (1) to (3) have been proved in [21].
Now we prove that (3) is equivalent to (4). Therefore, we only need to pay attention
to the following facts: ∀n,∩
k≥n

[|ξk − ξ| < ε] ⊂
∩

k≥n+1

[|ξk − ξ| < ε], or
∪
k≥n

[|ξk − ξ| ≥ ε] ⊃
∪

k≥n+1

[|ξk − ξ| ≥ ε],

it follows from the continuity of quasi-probability measure that

lim
n→∞

µ{
∩
k≥n

[|ξk − ξ| < ε]} = µ{
∞∪

n=1

∩
k≥n

[|ξk − ξ| < ε]},

or

lim
n→∞

µ{
∪
k≥n

[|ξk − ξ| ≥ ε]} = µ{
∞∩

n=1

∪
k≥n

[|ξk − ξ| ≥ ε]}.

So propositions (3) is equivalent to propositions (4). □

Lemma 3.4 ([21]). Suppose that X is a nonempty set, ρ(X) is the power set of X.
Let Ak ∈ ρ(X), ck = µ{Ak}, k = 1, 2, ...,

(1)If
∞∑
k=1

θ(ck) < ∞, then µ{
∞∩

n=1

∪
k≥n

Ak} = 0.

(2) If
∑∞

k=1 θ(ck) = ∞, and Ak, k = 1, 2, ..., are independent, then

µ{
∞∩

n=1

∪
k≥n

Ak} = 1.

Where θ is the proper T-function of µ.

Theorem 3.5. Suppose that ξ1, ξ2, ..., ξn, ... are independent q-random variables
defined on the quasi-probability space (X,F , µ). Then {ξn} converges with quasi-
probability 1 to 0 if and only if ∀c ∈ (0,∞), there exists a T-function θ, such that

∞∑
k=1

(θ ◦ µ)(|ξk| ≥ c) < ∞.

Proof. By virtue of lemma 3.3,

lim
n→∞

ξn = 0 (µ− a.s.)

if and only if ∀c > 0,

µ{
∞∩

n=1

∪
k≥n

[|ξk| ≥ c]} = 0.

According to lemma 3.4, we know that theorem 3.5 holds. □
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Theorem 3.6. Suppose that {ξn} is a sequence of q-random variables, ξ is a q-
random variable. If {ξn} converges with quasi-probability 1 to ξ, then {ξn} converges
in quasi-probability to ξ.

Proof. ∀n,
{|ξn − ξ| ≥ ε} ⊂

∪
k≥n

{|ξk − ξ| ≥ ε},

therefore

0 ≤ µ{|ξn − ξ| ≥ ε} ≤ µ{
∪
k≥n

[|ξk − ξ| ≥ ε]}.

{ξn} converges with quasi-probability 1 to ξ, it follows from lemma 3.3 that

lim
n→∞

µ{
∪
k≥n

[|ξk − ξ| ≥ ε]} = 0.

Hence we have

lim
n→∞

µ{| ξn − ξ |≥ ε} = 0, namely lim
n→∞

ξn = ξ (µ),

it means that {ξn} converges in quasi-probability to ξ. □

Example 3.7. Suppose that ξ1, ξ2, ..., ξn, ... are independent q-random variables
defined on the quasi-probability space (X,F , µ), θ is the proper T-function of µ. If

µ{ξn =
1

n
} = 1− 1

n
, µ{ξn = n+ 1} =

1

n
, n = 1, 2, · · · ,

then {ξn} converges in quasi-probability to 0. However, {ξn} does not converge with
quasi-probability 1 to 0.

In fact, ∀ε > 0,

lim
n→∞

µ{|ξn| ≥ ε} = lim
n→∞

µ{ξn = n+ 1} = lim
n→∞

1

n
= 0,

which implies that {ξn} converges in quasi-probability to 0. But if we denote that

An = {ξn = n+ 1}, cn = µ{An} =
1

n
,

then
∞∑

n=1

θ(cn) = ∞.

By virtue of lemma 3.3 and lemma 3.4, we know that {ξn} does not converge with
quasi-probability 1 to 0.

Theorem 3.6 shows that convergence with quasi-probability 1 implies convergence
in quasi-probability. Example 3.7 shows that convergence in quasi-probability does
not imply convergence with quasi-probability 1. But for independent q-random
series, convergence with quasi-probability 1 is equivalent to convergence in quasi-
probability.

Theorem 3.8. If {ξn} is a sequence of independent q-random variables, then
∑∞

n=1 ξn
converges with quasi-probability 1 if and only if

∑∞
n=1 ξn converges in quasi-probability.
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Proof. It is sufficient to prove that
∑∞

n=1 ξn converges in quasi-probability implies
convergence with quasi-probability 1. Denoted by Sn =

∑n
k=1 ξk. Since

∑∞
n=1 ξn

converges in quasi-probability, ∀ε > 0, there exists a positive integer nε such that

∀k ≥ 1, n ≥ nε, µ{|Sn+k − Sn| > ε} < ε.

On the other hand,
∑∞

n=1 ξn converges with quasi-probability 1 if and only if there
exists a non-negative decreasing sequence εm, limm→∞ εm = 0, such that

lim
m→∞

lim
n→∞

lim
k→∞

µ{ max
1≤v≤k

|Sn+v − Sn| ≥ 2εm} = 0.

It is easy to verify that

k∪
v=1

{ max
1≤j≤v−1

|Sn+j − Sn| ≤ 2ε, |Sn+v − Sn| > 2ε, |Sn+k − Sn+v| ≤ ε}

⊂ {|Sn+k − Sn| > ε},
furthermore,

{ max
1≤j≤v−1

|Sn+j − Sn| ≤ 2ε}, {|Sn+v − Sn| > 2ε}, and {|Sn+k − Sn+v| ≤ ε}

are disjoint. Since µ is a quasi-probability, there exists a T-function θ such that θ◦µ
is a probability. It follows from the independence between

{ max
1≤j≤v−1

|Sn+j − Sn| ≤ 2ε, |Sn+v − Sn| > 2ε}

and
{|Sn+k − Sn+v| ≤ ε}

that

(θ ◦µ){ max
1≤v≤k

|Sn+v −Sn| > 2ε} min
1≤v≤k

(θ ◦µ){|Sn+k −Sn+v| ≤ ε}

≤
k∑

v=1

(θ◦µ){ max
1≤j≤v−1

|Sn+j−Sn| ≤ 2ε, |Sn+v−Sn| > 2ε}(θ◦µ){|Sn+k−Sn+v| ≤ ε}

= (θ ◦ µ){
k∪

v=1

{ max
1≤j≤v−1

|Sn+j − Sn| ≤ 2ε, |Sn+v − Sn| > 2ε, |Sn+k − Sn+v| ≤ ε}}

≤ (θ◦µ){|Sn+k−Sn| > ε}.
Because ∀k ≥ 1, n ≥ nε, (θ ◦ µ){|Sn+k − Sn| > ε} < θ(ε),

(θ ◦ µ){ max
1≤v≤k

|Sn+v − Sn| > 2ε} <
θ(ε)

1− θ(ε)
, ∀k ≥ 1, n ≥ nε.

And

(θ ◦ µ){
∪
k

{|Sn+k − Sn| > 2ε}} = (θ ◦ µ){
∪
k

{ max
1≤v≤k

|Sn+v − Sn| > 2ε}}

= lim
k→∞

(θ ◦ µ){ max
1≤v≤k

|Sn+v − Sn| > 2ε} <
θ(ε)

1− θ(ε)
.

It implies that

µ{
∪
k

{|Sn+k − Sn| > 2ε}} < θ−1(
θ(ε)

1− θ(ε)
).
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Thus for any positive integer m,

lim
n→∞

supµ{
∪
k

{|Sn+k − Sn| > 2εm}} < θ−1(
θ(εm)

1− θ(εm)
).

Since θ and θ−1 are continuous, we have

lim
m→∞

θ−1(
θ(εm)

1− θ(εm)
) = 0

which proves

lim
m→∞

lim
n→∞

lim
k→∞

µ{ max
1≤v≤k

|Sn+v − Sn| ≥ 2εm} = 0.

This means
∑∞

n=1 ξn converges with quasi-probability 1.
Now the theorem is proved. □

Example 3.9. Suppose that ξ1, ξ2, ..., ξn, ... are independent q-random variables
defined on the quasi-probability space (X,F , µ), and

µ{ξn = −1} = µ{ξn = 1} =
1

2
, n = 1, 2, · · · ,

then series ∑
n

ξn
nα

, α ∈ (
1

2
, 1]

not only converges in quasi-probability but also converges with quasi-probability 1.

4. Conclusions

This paper proposed two new convergence concepts for quasi-random variables.
Firstly, the properties of quasi-probability measure were further discussed. Then
the concepts of convergence with quasi-probability 1 and convergence in quasi-
probability were introduced. Finally, the relationships between the two convergence
concepts were discussed. The investigations helped to build important theoretical
foundations for the systematic and comprehensive development of quasi-probability
theory.
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