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ABSTRACT. In this paper, we have investigated single valued neutrosophic
multisets in detail. Several operations have been defined on them and their
important algebraic properties are studied.We have further introduced the
notion of distance and similarity measures between two single valued neu-
trosophic multisets. An application of single valued neutrosophic multisets
in medical diagnosis has been discussed.
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1. INTRODUCTION

The concept of multisets stemmed from the violation of one of the basic prop-
erties of classical set theory, which states that an element can occur in a set only
once. The term "multiset” was first introduced by N. G. Bruijn [8]. Multisets, of-
ten referred to as ”bags” [27], are collections of objects that may contain a finite
number of duplicates. Multisets are mathematical structures that come handy in
areas like database enquiries related to computer science. Also, in dealing with the
problems of constructing mathematical models for real-life situations, the data at
hand are mainly imprecise and indeterministic. In 1965, Zadeh [31] came up with
his remarkable theory of fuzzy sets where he introduced the notion of partial be-
longingness of an element in a set. Later these two concepts have been combined
to generate Fuzzy Multisets [18] and were applied in many areas of computer sci-
ence. After the introduction of Intuitionistic fuzzy sets by Atanassov [4, 5] in 1986,
the theory of Intuitionistic Fuzzy Multisets [21] have been developed. On the other
hand, in 1995, Florentin Smarandache incorporated the concept of Neutrosophic
Logic [22, 23] which sprouted from a branch of philosophy, known as ”Neutrosophy”,
meaning ”the study of neutralities” and gave birth to the theory of Neutrosophic
Sets. Unlike intuitionistic fuzzy sets which associate to each member of the set
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a degree of membership p and a degree of non-membership v; p,vel0,1], neutro-
sophic sets characterize each member x of the set with a truth-membership function
Ta(z), an indeterminacy-membership function I4(x) and a falsity-membership func-
tion F4(z), each of which belongs to the non-standard unit interval 0, 1"[. Thus,
although in some cases intuitionistic sets consider a particular indeterminacy or hes-
itation margin, m# = 1 — u — v, neutrosophic sets are capable of handling uncertainty
in a better way since in case of neutrosophic sets indeterminacy is taken care of
separately. Further, in 2005, Wang et al, introduced the notion of Single-Valued
Neutrosophic Sets (SVNS) [25], which differ from neutrosophic sets only in the fact
that in the former’s case, Ta(x),Ia(x), Fa(z)€e[0,1] and can be applied to solve
many practical problems. Research involving single valued neutrosophic sets and
interval neutrosophic sets together with their applications are now on full swing.
Notions of similarity, entropy, subsethood measure etc. of neutrosophic sets have
been introduced and their applications in several areas [7, 17, 20, 28, 29] are being
executed by many authors.

Again the theory of soft sets was initiated by D. Molodstov [19] in 1999 for mod-
elling uncertainty present in real life. Roughly speaking, a soft set is a parameterized
classification of the objects of the universe. Molodstov had shown several applica-
tions of soft sets in different areas like integration, game theory, decision making
etc. Later Maji et al. [11] defined several operations on soft sets. Perhaps this is
the only theory available with a parameterization tool for modelling uncertainty. H.
Aktas and N. Cagman [1] have shown that fuzzy sets are special cases of soft sets.
Later many authors [12, 13, 16] have combined soft sets with other sets to generate
hybrid structures like fuzzy soft sets, intuitionistic fuzzy soft sets, generalized fuzzy
soft sets, vague soft sets etc. and applied them in many areas like decision making,
medical diagnosis, similarity measure etc. Few authors [2, 3, 6, 14, 15] have also
defined the notions of soft multisets, fuzzy soft multisets, neutrosophic soft sets etc.
Very recently S. Ye and J. Ye [30] combined the concepts of single valued neutro-
sophic sets along with the theory of multisets and proposed a new theory of Single
Valued Neutrosophic Multisets (SVNMS in short).

In this paper we have slightly modified the definition of SVNMS and studied its
properties. The initial contributions of this paper involve the introduction of various
new set-theoretic operators on SVNMS and their properties. Later, the notion of
single valued neutrosophic sets has been applied in solving a decision making problem
regarding medical diagnosis.

2. PRELIMINARIES

In this section we give the definition and some important results regarding single
valued neutrosophic sets [25] and multisets.

Definition 2.1 ([25]). Let X be a space of points, with a generic element in X
denoted by x. A single valued neutrosophic set A in X is characterized by a truth-
membership function T4, an indeterminacy-membership function 74 and a falsity-
membership function F4. For each point = in X, Ta(x), [a(x), Fa(z)€0,1].
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When X is continuous, a SVNS A can be written as

A= [ @@).1@). F@) frex
X
When X is discrete, a SVNS A can be written as

A= (T(x), I(x;), F(x;)) S,z e X

n
i=1

Definition 2.2 ([25]). The complement of a SVNS A is denoted by c¢(A) and is
defined by Ty (a)(z) = Fa(x), Ica)(z) =1 = Ta(x) and Fa)(z) = Ta(z),Vze X.

Definition 2.3 ([25]). A SVNS A is contained in another SVNS B i.e. ACB iff
Ta(x) < Tp(x), Ia(x) < Ip(x) and Fu(x) > Fp(x), Vee X.

Definition 2.4 ([25]). Two SVNS A and B are said to be equal iff A C B and
B C A.

Definition 2.5 ([25]). The union of two SVNMS A and B is a SVNMS C, written as,
C = AU B, whose truth-membership, indeterminacy membership and falsity mem-
bership functions are related to those of A and B as T¢(x) = max (Ta(z), Ts(x)),
Io(z) = max (Ia(z), Ip(x)) and Fe(z) = min (Fa(x), Fp(x)), Ve X.

Definition 2.6 ([25]). The intersection of two SVNMS A and B is a SVNS C, writ-
ten as, C'= ANB, whose truth-membership, indeterminacy membership and falsity
membership functions are related to those of A and B as T (z) = min (Ta(x), Tp(x)),
Ic(z) = min (Ia(x), Ig(z)) and Fo(x) = mazx (Fa(x), Fp(x)), Ve X.

Definition 2.7 ([25]). The difference between two SVNMS A and B is a SVNS
C, written as, C = A~ B, whose truth-membership, indeterminacy membership
and falsity membership functions are related to those of A and B as Te(z) =
min (Ta(z), Fp(z)), Ic(x) = min (Ia(z),1 — Ig(z)) and Fe(z) = maz (Fa(z), Ts(x)),
VrzeX.

Definition 2.8 ([25]). The truth-favorite of a SVNS A, denoted by AA, whose
truth-membership, indeterminacy-membership and falsity-membership functions are
defined as Taa(z) = min (Ta(x) + Ia(z),1), Ina(z) = 0 and Faa(z) = Fa(z),
VreeX.

Definition 2.9 ([25]). The falsity-favorite of a SVNS A, is a SVNS denoted by
V A, whose truth-membership, indeterminacy-membership and falsity-membership
functions are defined as Ty a(x) = Ta(x), Iva(xz) =0 and

Fya(z) = min(Fa(z) + I4(x),1), VzeX.

Definition 2.10 ([24]). Let % = {z1, 2, ..., } be the universal set. A crisp bag or
multiset M of % is characterized by a function Cys (.), (Cas : U — N) corresponding
to each x e %, known as the count function. A multiset M is expressed as M =

{ﬂ ka k—"} such that z; appears k; times in M.

1’ x2? "
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3. SINGLE VALUED NEUTROSOPHIC MULTISETS

The notion of single valued neutrosophic multisets was first defined in [30]. Here
the three count functions are real valued but in this paper we have redefined the no-
tion of SVNMS with positive integer valued count functions for the sake of practical
use.

Definition 3.1. A Single Valued Neutrosophic Multiset (SVNMS) A, defined on

a universe X is such that corresponding to each element of the set there exists a
function, namely, the count function C'y : X — N, which denotes the number

of times that particular element occurs in the set, such that each z e X is charac-
terized by three sequences of lengths C¢(z) , namely, a truth-membership sequence
(Th(z), T3 (2), ..., T%(x)), an indeterminacy-membership sequence (I} (z), I3 (x), ..., 1§ (z))
and a falsity-membership sequence

(Fi(z),F5(2), ..., Fk(z)).

When the universe under consideration X = {z1,xq,...,z,}, is discrete, a Single
Valued Neutrosophic Multiset A over X is represented as

A=3" < (Th(@a), TR (i), o Tht (22)), (Th (), T3 (20), o Tyt (20), (FA (), F3 (), 0, Fiy? () > /a4
=1

where the element z; € X is repeated k; = Cy(x;) times in X.

Remark 3.2. The truth-membership sequence is always a decreasing sequence of
membership values whereas the indeterminacy-membership and falsity-membership
sequences are such that they can assume the membership values in any order and
0 < Th(x;) + I4(x;) + Fi(z;) <3, VreX,i=1,2,...,nand r = 1,2,...,k;. This
has been done to keep parity with the definitions of Fuzzy and Intuitionistic fuzzy
multisets.

Definition 3.3. The length of an element z; € X of a single-valued neutrosophic
multiset A, defined on the set X, is defined as I(z; : A) = Cy(z;),i =1,2,...,n.

Definition 3.4. The cardinality of a single-valued neutrosophic multiset A is defined
as Card(A) =", Zz-(jiﬂ) (Tﬁx(xz) + Iﬁx(xi)), zieX,1=1,2,...,n.

Example 3.5. Suppose X = {x1,x2,x3} denotes three shirts displayed for sale in a
particular shop. We now set forth to register the opinion of a domain of customers
about the quality of shirts based on whether the shirts are made up of “good fabric”,
a level of indeterminacy on the part of the customers and whether they feel that the
shirt is made up of “a not so good fabric”. Based on the opinion of the domain of
customers concerned, a single-valued neutrosophic multiset can be defined on X as
follows:

A =((0.6,0.4),(0.5,0.3),(0.2,0.3)) /z1 + (0.2,0.4,0.7) /z2
+((0.8,0.6,0.5),(0.2,0.2,0.3),(0.1,0.3,0.4)) /x5

Also, I (21 : A)=2,1(z9: A) =1, l(xz3: A) = 3 and Card(A) = 5.

Definition 3.6. An absolute single-valued neutrosophic multiset fi is a SVNMS
where T'(z) = 1, I'(z) = 1 and Fi(x) =0, Vze X, i=1,2,....1(x : A).

Definition 3.7. A null single-valued neutrosophic multiset fi) is a SVNMS where
T (z) =0, I'(x) =0 and Fi(x) =1,VzeX,i=1,2,....1(x : D).
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4. OPERATIONS OVER SINGLE VALUED NEUTROSOPHIC MULTISETS

In this section we have defined several set theoretic and algebraic operations on
SVNMS. These operations are different from the operations that have been defined
in [30]. Moreover, in our case the behaviour of indeterminacy membership is similar
to the behaviour of truth membership whereas in [30] the indeterminacy membership
is similar to the behaviour of falsity membership.

4.1. Set-theoretic operations over single valued neutrosophic multisets.

Definition 4.1. A SVNMS A is said to be contained in another SVNMS B iff
Ve,eX,1=1,2,...,n,

(i) l(x; : A) <l(x; : B)

(if) T () < Th(z:)

(i) 13(2) < I} (w1)

(iv) Fy(z;) > Fp(x;), Ve e X, i =1,2,..,nand r =1,2,..,l(z; : A).

Definition 4.2. Two SVNMS A and B are said to be equal iff they are subsets of
one another.

Remark 4.3. Let A and B be two SVNMS over the universe X. In order to carry
out any operation (set-theoretic or algebraic) between A and B it is verified at first
whether I(z; : A) = l(z; : B), Vo, e X. If l(xy, : A) # l(xy, : B) for any x,, e X
then without any loss of generality, a sufficient number of 0’s are appended with
the truth-membership and the indeterminacy membership values and a sufficient
number of 1’s are appended with the falsity-membership values respectively to the
sequences of smaller length thereby making the lengths equal and faciltating the
execution of operations.

Example 4.4. Suppose two SVNMS A and B are given by,

A =(0.5,0.4,0.4) /z1 + ((0.3,0.2),(0.5,0.4),(0.6,0.7)) /x2 + (0.8,0.3,0.2) /x3

B = {(0.8,0.6),(0.4,0.5), (0.1,0.3)) /z1 + ((0.5,0.4) , (0.7,0.7), (0.5,0.3)) /2 + (0.9,0.5,0.2) /x5
Here A C B.

Definition 4.5. The union of two SVNMS A and B over X, denoted by AUB, is
a SVNMS over X whose truth-membership, indeterminacy-membership and falsity-
membership values are given by

Thup(wi) = max (Ty(x;), T (x:))

Tyup(xi) = max (I (), I (x;))

Fh, () = min (F (2,), Fp (1))

Ve;eX,i=1,2,...,n;r=1,2,...,l where | = max {l(z; : A),l(z; : B)}.

Definition 4.6. The intersection of two SVNMS A and B over X, denoted by
AN B, is a SVNMS over X whose truth-membership, indeterminacy-membership
and falsity-membership values are given by
T (1) = min (T4 (), Th (1))
Tynp(xi) = min (I (x;), Ig(xi))
Finp(i) = maz (F) (), Fp(:))
VeeX,i=1,2,...,n;r=1,2,...,1 where | = max {l(z; : A),l(z; : B)}.
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Example 4.7. Let two SVNMS A and B, defined over the universe X = {1, x2, z3}
be given by,

A =((0.5,0.3),(0.1,0.1), (0.7,0.8)) /1 + ((0.7,0.68,0.62) , (0.3,0.45,0.5) , (0.34, 0.28,0.49)) /z2
+((0.67,0.5,0.3), (0.2,0.3,0.4), (0.4,0.5,0.7)) /3

B = (0.75,0.2,0.15) /21 + ((0.43,0.37,0.28, (0.5,0.2,0.3) , (0.7,0.8,0.9))) /x2
+((1.0,0.86,0.79) , (0.01,0.1,0.2) , (0.0,0.3,0.2)) /3

- AUB = ((0.75,0.3),(0.2,0.1), (0.15,0.8)) /z1+
((0.7,0.68,0.62) , (0.5,0.45,0.5) , (0.34, 0.28, 0.49)) /3
+((1.0,0.86,0.79) , (0.2,0.3,0.4) , (0.0,0.3,0.2)) /xs

Definition 4.8. The truth-favorite of a SVNMS A, denoted by A A, is a SVNMS and
is characterized by the truth-membership, indeterminacy-membership and falsity-
membership values which are respectively defined as

TRA(w:) = min (Ty(x) + Iy (2:),1)

Tpp(@i) =0

Fp (i) = Fj(i)

Ve;eX,i=1,2,...,n; 7 =1,2,...,1 where | = mazx {l(x; : A),l(z; : B)}.

Definition 4.9. The falsity-favorite of a SVNMS A, denoted by VA, is a SVNMS
and is characterized by the truth-membership, indeterminacy-membership and falsity-
membership values which are respectively defined as

T 4 (i) = Th(x:)

Ig (@) =0

Fg 4(x5) = min (F)y(z;) + I (), 1)

Ve;eX,i=1,2,...,n;r=1,2,...,1 where | = max {l(z; : A),l(z; : B)}.

Example 4.10. Considering the SVNMS A of example 4.7 we have,

AA = {(0.6,0.4),(0.0,0.0), (0.7,0.8)) /1
+((1.0,1.0,1.0), (0.0,0.0,0.0), (0.34, 0.28,0.49)) /=2
+((0.87,0.8,0.7), (0.0,0.0,0.0), (0.4,0.5,0.7)) /a3

VA = ((0.5,0.3),(0.0,0.0), (0.8,0.9)) /z1
+((0.7,0.68,0.62) , (0.0,0.0,0.0) , (0.64, 0.73,0.99)) /z2
+((0.67,0.5,0.3) , (0.0, 0.0,0.0), (0.6,0.8,1.0)) /x3

Proposition 4.11. It has been observed that single-valued neutrosophic multisets
satisfy the following properties under set-theoretic operations:

1. Commutative Property
(i) AUB=BUA
(ii) AnB=BnNA
2. Associative Property
(i) Au(BuC)=(AuB)UC
(ii) AN(BNC)=(ANnB)NnC
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3. Idempotent Property
(i) AUA=A
(ii) ANA=A

i

(iii) AAA = AA

iv) VVA=VA

)
(iv)
Absorptive Property

4
(i) AU(ANB) = A
(ii) AN(AUB) = A4
5. (i) AUA=A

(i) AnA=A
(iii) AU =4
(iv) AN® =9
Proof. The proofs are straight-forward. O

4.2. Algebraic operations over SVNMS.

Definition 4.12. The addition between two SVNMS A and B over the universe X,
denoted by A @ B, is a SVNMS over X, whose truth-membership, indeterminacy-
membership and falsity-membership values are defined as

Thep(wi) = Ti(x:) + Tp(w:) — Th (i) Tp(xs)

Dygp(@i) = Ty (xi) + Ip(x) — Iy (2) Ip(x:)

Fhop(®i) = Fj(x:).Fp(x;)

Ve,e X, 1=1,2,...,n;r=1,2,...,1

Definition 4.13. The multiplication between two SVNMS A and B over the uni-
verse X, denoted by A® B, is a SVNMS over X, whose truth-membership, indeterminacy-
membership and falsity-membership values are defined as

Thgp(xi) = Tj(x:). Tp(xi)

Dyop(@i) = Ty (xi) Ip(z:)

Fhgp(@i) = Fj(x;) + Fp(z;) — Fj(;). Fgp(x;)

Ve,e X, 1=1,2,...,n;r=1,2,...,1

Example 4.14. Let the SVNMS under consideration be those stated in example
4.7 Then we have

A® B = ((0.875,0.3),(0.28,0.1), (0.105,0.0)) /1
+((0.829,0.7894,0.7264) , (0.65, 0.56, 0.65) , (0.238, 0.224, 0.441)) /2
+((1.0,0.93,0.853) , (0.208,0.37,0.52) , (0.0,0.15,0.14)) /3

A® B = ((0.375,0.0), (0.02,0.0), (0.745,0.8)) /21
+((0.301,0.252,0.174) , (0.15,0.09, 0.15) , (0.802, 0.856, 0.949)) /2
+((0.67,0.43,0.237) , (0.002, 0.03,0.08) , (0.4, 0.65,0.76)) /x5

5. PROPOSED DISTANCE MEASURE BETWEEN TWO SVNMS

In this section, the notion of distance, denoted by d(A, B), in general, between
two SVNMS A and B defined over the universe X = {1, 22, ...,z,} has been pro-
posed in the sense of Hamming, Normalized Hamming, Euclidean and Normalized

Euclidean.
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Suppose that, I; = maz, {{(z; : A),l(z; : B)} and L = max; {l;}, i=1,2,..,n

Definition 5.1. The Hamming distance between A and B is given by,

Z Z (1Th(zi) — Tp(xi)| + [La () — Ip (i)l + [Fa(zi) — Fp(zi)])
1=1r=
Definition 5.2. The Normalized Hamming distance between A and B is given by,
B)=_— Z Z (174 (@i) — T(@:)| + |4 (i) — Ip (i) + |[Fa(xi) — Fp(z:)l)
i=1r=1

Definition 5.3. The Euclidean distance between A and B is given by,

R JZZOTA(@ =~ Th (@) [* + [1(0) = Iy @] + [Fi(e0) - Fp(a)[?)

i=1r=1

Definition 5.4. The Normalized Euclidean distance between A and B is given by,

N(A,B>¢3HL22(|T (2) = Tp(@)| + |15 (i) =I5 + |Fa(=) - PR (a)[*)

i=1r=1

Remark 5.5. It has been observed that the proposed distance measures as stated
above satisfies the following properties:

(i) dny (A, B) € [0,3nL]

(ii) ZN (AvB) € [07 ”

(iii) ey (A4, B) ¢ [0, \/3nL}

(iv) qn (A, B) € [0,1]

Proof. The proofs are straight-forward. g

Proposition 5.6. It has been observed that in general, whatever might be the notion
in which the distance between any two SVNMS be defined, the distance measure
d (A, B) between any two SVNMS A and B satisfies the following properties:

(i) d(A, B) > 0 and the equality holds iff A= B.

(ii) d(A,B) =d (B, A)

(iii)d (4, B) < d(A,C) +d(B,C) , where C is a SVNMS over X.

Proof. The proofs of (i) and (ii) are straightforward. We give the outline of the
proofs of (iii) only.

Consider three arbitrary SVNMS A, B and C. Then for r = 1,2, ...,1; we have

| T (wi) — Th(ws)| = |Th (i) — TE (@) + TE () — T ()]
<|Th (i) — TE ()| + | Th (i) — TE ()|

Similarly it can be shown that,

|17 (ws) — I (3)| < T (s) — TG ()| + |15 (i) — 15 (w5)]
|Fn (i) — F5(w)| < |Fo(xs) — F&(ws)| + |F5 (i) — Fo(as)|
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Hence it follows that,

YRS el 1 (1T (i) = Th (o) + |4 (i) = T (i) + [F4(xi) — Fg(xi)])
<smoyh (|T7" @) = TE ()| + [T () — 15 ( rl)|+|F£(z, — Fi(z)])
+ 0 Y (1T () ,Tg(m + |15 (i) — Ie(xi)} + | Fi(2s) — Fh(xi)])

Again, we see

|T% () — T ()| = |Th () — T (i) + To (i) — Th(a)|?
< T (i) — T (@) | + | T () — Ta ()|

Similarly we have
|IA($1 -1y a:l} <|I (zs) — IG( x1)| +|IT (z:) — I :c,)|

| (Z'z Fr (4 | < | (1'1 (331)| + | (331 - Fg $1)|
and hence,
Sy S (ITh @) - Tp @l + [3(@) = T + | Fh (i) — F |2

<Y 12? 1 (lTT (x5) — TE () } +|I (x5) — I () | +|FT () —
+200 12’7‘ 1(|T (zs) = T¢ $z)| + |15 (i) — I, l’z| + |F5 ;) — F,

w)l’)
wl’)

Thus the proofs follow automatically from the above results. g

Remark 5.7. From the aforementioned observations it can be concluded that the
proposed notion of distance measures actually define metrics over the set of all single-
valued neutrosophic multisets and hence if A7,denotes the collection of all SVNMS
over a universe X then (.A47,,d) defines a metric space over X.

Example 5.8. Let us consider the SVNMS A and B as stated in example 4.7. Then
we have

dn (A, B) =17.83,In (A, B) =0.29, en (A, B) = 1.772 and qn (A, B) = 0.3418.

6. SIMILARITY MEASURE BETWEEN TWO SVNMS

In this section the notion of similarity measure between two SVNMS has been
stated. The various types of similarity measures between two SVNMS are proposed
as follows:

Definition 6.1. The Distance Based Similarity Measure is defined as,
1
AB)=—+——
Sd( ) ) 1+ d(A, B)

where the distance measure can be taken in any of the methods as mentioned in
Section 5.
Definition 6.2. The Similarity Measure based on membership degrees is defined
as,

Z? 1ET 1 {min (T4 (z4), TB(%)H‘WW(IA(%) Ig(wi)) + min (Fj (), Fp(wi))}
i=1 'r'=1 {maz (T} (x:), Tf (z3)) + maz (15 (z:), I (2:)) + maz (Fj(x:), F5(x:)) }
507
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Remark 6.3. In some cases, especially while dealing with real life problems, the
elements of the universe under consideration are associated with weights in order to
specify the varying degrees of importance of the elements at hand. In this case we
have considered this possibility and accordingly the similarity measure between two
SVNMS have been defined where the universe over which the sets are defined have
weights associated to its constituent elements.

Definition 6.4. The weighted similarity measure in the sense of Majumdar and
Samanta [17] is defined as,

Sw (A, B)
Sy wi [V AT (00) T (w0)+ 15 (4). T (20)+ F5 (:). Fis (w0)} { 1 }
S wi[(Th (@)1 ()2 4+ F (26)2) (T (20) 2415 (@) + Fg (2:)%)] 7 L 2

1 Wi

where 0 < w; <1, ¢ = 1,2,...,n and w; are the weights associated with the z;’s
respectively where x; € X.

Definition 6.5. The proposed weighted similarity measure in the sense of Dengfeng
and Chuntian [9] is defined as follows:

Let A be a SVNMS over a universe X. We define a function ¢4 : X — [0,1] as

S vt {Th () + Ih(2) + (1 - Fi(2))}
31

Pa(r) =
where [ = [(z : A) is the length of an element z ¢ X.

Define the weighted similarity measure between two SVNMS A and B over the
same universe X as,

S, (A,B)=1— (/Z 1wzlw3 i) — a(wi)|?

1 1"-Uz

where 0 < w; < 1,4 = 1,2,...,n and w; are the weights associated with the z;’s
respectively where z; € X.

Here p is a positive integer called the “similarity degree”.

Example 6.6. We consider the SVNMS A and B as stated in example 4.7. Then
taking into consideration the result { (4, B) = 0.29 from example 5.8 we have,
Sq(A,B) =0.775 and S,, (A, B) = 0.485.

Proposition 6.7. 1. The distance based similarity measure satisfies the following
properties:
(i) 0 <S4 (A4, B) <1 and equality occurs iff A= B
(ii) Sa (A, B) = 54(B,A)
(iii) For AC B CC, S4(A,C)<S4(A,B)ASq(B,C)
2. The similarity measure based on membership degrees satisfies the following prop-
erties:
(i) 0 < S (4, B) 1 and equality occurs iff A= B
(i) Sy (A, B) = S (B, A)
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(iii) For AC B C C, S4(A,C) <S4(A,B)ANSq(B,C)

3. The weighted similarity measures satisfy the following properties:

(i) <
Sw (A,B) Sw (B, A)
) 0< S, (A, B) <1 and equality occurs iff A= B
S, (A B) S, (B, A)
iii ) For AC BC C, S, (A C)<S, (A B)AS, (B,C)
iv) Corresponding to any two SVNMS, for an ascending sequence of integral values
of p a decreasing sequence of similarity measures is obtained.

Proof. We only prove 3(b)(iii) and 3(b)(iv) since the remaining proofs are straight-
forward.

Let A C B C C then it is easy to prove that
{Yc (i) —bal(zi)} > {¢p(z:) —dalzi)}

since TE(x) > Th(xs), IG(x:) > Ip(x;) and Fi(x;) < Fg(xi), Voie X,
i1=1,2,...,nand r=1,2,...,mazx {l (z; : B),l(z; : C)}.

Thus,

SEOTE (@0) + 15 (20) + (1= Fg (@) } > S3C7 P {Th (@) + Ty (@) + (1 - Fp(e) }
and hence,

{o(@i) —ba(®)} —{¢Yp(®:i) —Yal(z:)} = {Yc(z:) —¥Yp(z:)} > 0.

So,

Hc (@) —ba(z)}P > H{op(z:) — Ya(z:)}?]

= 2iey wi l{ve (@) —alz) HP > 300 wi [{¥p(2:) — Yalz) P

= Sw (A,C) < Su (A, B)

Similarly, it can be shown that S, (4,C) < S, (B, C).

Next, suppose that for a particular peN, a; = |¢Yp(x;) —vYa(z;)| and ¢ = w;,
i=1,2,..n

Thus,
1
w; waL'z a(zi)l? "gi(a)P\
E = | ) ( )l = (Ziln () :f(p)75ay
z 1 Wi Zi:l q;
Hence, f(p) is a power mean function [10] thereby being strictly monotonically
increasing in nature i.e. for p1,p2eN with p1 < p2, f(p1) < f(p2)-
L (Blpley S (Shaleryn
Z?:l i Z?:l qi
1 1
> it gi (@)™ ) P1 (E:'L:1 qi (a;)P? ) P2
=>1- (== S (&=t i) "
( 2 g S di
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This proves the fact that as p increases, the value of the similarity measure S, (A, B)
decreases and hence it may be concluded that for a sequence of ascending integral
values for p we obtain a decreasing sequence of similarity measures between two
SVNMS A and B, which completes the proof. O

Remark 6.8. From the aforementioned properties it is clear that the weighted
similarity measure S,, (A4, B) in the sense of [17] is not an actual similarity measure in
the actual sense of the term since it does not satisfy all the properties of the axiomatic
definition of a similarity measure [26]. We thus term this particular measure of
similarity a “weighted quasi-similarity measure”.

7. AN APPLICATION OF SINGLE VALUED NEUTROSOPHIC MULTISETS IN MEDICAL
DIAGNOSIS

Since real-life situations involve uncertainties, while constructing a mathematical
model of practical importance we need to incorporate variables that can deal with
uncertainties. In this section we state an example with a view to show how the
theory of single-valued neutrosophic multisets can be used in diagnosing a medical
condition.

A fever is one of the most common medical signs and it is characterized by an
elevation of body temperature above the normal range of 97.7°F — 98.5"F. It can
be caused by many medical conditions ranging from benign to potentially serious.
Besides an elevated body temperature there are additional symptoms such as shiv-
ering, sweating, loss of appetite etc. which are associated with fever. Moreover,
there are specific patterns of temperature changes during a fever according to which
a fever may be classified as Continuous fever, Pel-Ebstein fever, Remittent fever
and Intermittent fever, which in turn may be classified into Quotidian fever, Tertian
fever and Quartan fever. These fever patterns along with the associated symptoms
aid in the diagnosis of a particular disease.

Consider the case of a person primarily diagnosed with fever associated with
shivering, headache, muscle and joint ache, cough, running nose accompanied with
sneezing, loss of appetite, chest pain and fatigue. The associated symptoms that
are prominent in the person hint at the fact that the person might be suffering from
Tuberculosis, Influenza or Common Cold.

Tuberculosis is an infectious disease, typically of the lungs and is characterized
by remittent fever accompanied by bad cough , at times accompanied by blood,
pain in the chest, fatigue, loss of appetite, chills and night sweating. Influenza
or Flu is characterized by remittent fever, extreme chills, shivering, cough, nasal
congestion and runny nose accompanied by sneezing, body ache, particularly in the
joints, fatigue and headache. On the other hand, Common Cold is characterized by
remittent fever accompanied by runny nose, shivering, cough, body ache, headache
and sneezing.

For the sake of diagnosis, the patient is kept under supervision for a day and his
fever pattern along with the other symptoms are monitored thrice, at intervals of
8 hrs, starting from 6:00 hrs in the morning, then at 14:00 hrs and finally at 22:00 hrs.
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The medical findings of the patient are represented in a tabular form as follows:

Symptoms
Timings T Sh Sw H MJ C LA CP F RNS
6:00hrs  97.5°F - - - m m m - m m
14:00hrs 100°F m - m m m m - m m
22:00hrs 101.2°F h - m m m m - m m

Table 7.1. Table representing the medical findings of the patient.

Here T, Sh, Sw, H, MJ, C, LA, CP, F and RNS denote body temprature, shiv-
ering, sweating, headache, muscle and joint pain, cough, loss of appetite, chest pain,
fatigue and running nose with sneezing respectively and these symptoms altogether
constitute the univrsal set. On the other hand, the symbols 'm’ and 'h’ are abbrevi-
ations for “moderate” and “high” respectively which denote the qualitative intensity
of the elements of the universal set.

The above findings of the patient can be summarized and represented with the help
of a SVNMS, denoted by Py (symbolic representation for the patient’s findings) over
the above mentioned universe as follows:

A =((0,05,0.7),(0.2,0.1,0), (0.9,0.1,0)) /T + ((0,0.5,0.9), (0.1,0.1,0) , (1,0.3,0)) /Sh
+((0,0,0),(0.1,0,0), (0.9,0.9,1)) /Sw + {(0,0.5,0.4) , (0.1,0.2,0.2) , (0.8,0.3,0.3)) /H
+((0.5,0.5,0.5), (0,0.1,0), (0.2,0.3,0.4)) /MJ + ((0.55,0.5,0.4) , (0.2,0,0) , (0.5,0.4,0.5)) /C
+((0.5,0.5,0.45) , (0.2,0.2,0.1) , (0.4,0.3,0.4)) /LA + ((0,0,0) , (0.1,0.1,0) , (0.8,0.9,0.9)) /CP+
((0.58,0.5,0.5), (0.3,0.2,0.1) , (0.3,0.3,0.4)) /F + ((0.5,0.4,0.4) , (0.1,0.1,0), (0.2,0.3,0.4)) /RN S

Suppose the standard symptomatic characteristics of the diseases are represented
by the following SVNMS as,

TB = ((0,0.5,0.6) , (0,0.1,0) , (0.9,0.4,0.2)) /T + ((0.6,0.6,0.5) , (0.1,0.1,0), (0.2,0.1,0.1)) /Sh
+((0.5,0.5,0.7),(0.1,0.2,0.1), (0.4,0.3,0.1)) /Sw + ((0,0,0), (0,0.1,0) , (0.8,0.8,0.9)) /H
+((0,0,0),(0.1,0.1,0.1), (0.9,1,0.9)) /MJ + ((1,0.9,0.9), (0.1,0,0.1) , (0,0,0.1)) /C+
((0.6,0.6,0.5) , (0.3,0.2,0.2) , (0.4,0.5,0.4)) /LA+((0.7,0.6,0.6) , (0.2,0.1,0.1) , (0.2,0.3,0.1)) /C P+
((0.5,0.4,0.3), (0.4,0.4,0.3) , (0.4,0.5,0.3)) /F + ((0.4,0.3,0.3) , (0.3,0.3,0.2) , (0.5,0.4,0.5)) /RN S

Inf = ((0.8,0.7,0.7),(0,0.1,0.1), (0.1,0.1,0.2)) /T + {(0.9,0.8,0.8) , (0,0,0.1) , (0.1,0.2,0.1)) /Sh
+((0,0,0),(0,0,0),(0.9,0.9,0.1)) /Sw + ((0.6,0.6,0.5) , (0.2,0.1,0.1), (0.3,0.3,0.2)) /H
+((0.9,0.8,0.8), (0.1,0.1,0) , (0.1,0,0)) /M.J + ((0.6,0.6,0.5) , (0.1,0.2,0.1) , (0.3,0.4,0.2)) /C
+((0.6,0.5,0.5),(0.2,0.2,0.1), (0.4,0.3,0.3)) /LA + ((0,0,0), (0.1,0.2,0.1) , (0.8,0.9,0.8)) /CP+
((0.5,0.4,0.3), (0.4,0.4,0.3) , (0.4,0.5,0.3)) /F + ((0.4,0.3,0.3) , (0.3,0.3,0.2) , (0.5,0.4,0.5)) /RN S

CC = ((0.1,0.5,0.7), (0.1,0.1,0.2) , (0.9,0.4,0.3)) /T + ((0.9,0.8,0.8), (0.1,0,0.1) , (0,0.2,0.1)) /Sh
+((0,0,0),(0.2,0.1,0.1), (0.9, 0.4,0.3)) /Sw + ((0.6,0.6,0.5) , (0.2,0.1,0.1), (0.3,0.2,0.2)) /H
+((0.7,0.6,0.6) ,(0.3,0.1,0.1), (0.2,0.3,0.3)) /M .J + ((0.6,0.6,0.5) , (0.1,0.2,0.1) , (0.3,0.4,0.2)) /C
+((0.6,0.5,0.5),(0.2,0.2,0.1) , (0.4,0.3,0.3)) /LA+{(0.5,0.5,0.4) , (0.1,0.1,0) , (0.4,0.3,0.3)) /CP+
((0.5,0.4,0.3), (0.4,0.4,0.3) , (0.4,0.5,0.3)) /F + ((0.7,0.7,0.6) , (0.2,0.2,0.1) , (0.3,0.3,0.4)) /RN S
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. The disease of the patient is diagnosed using the weighted similarity measure (Def-
inition 6.5.). Suppose, for the sake of diagnosis, the highest priority is assigned to
headache and muscle and joint ache and consequently symptoms such as, shivering,
sweating, coughing, running nose and shivering, chest pain, fatigue, loss of appetite
and body temperature have been prioritized. Let the respective weights assigned to
T, Sh, Sw, H, MJ, C, LA, CP, LA, CP, F, RNS be 0.2, 0.7, 0.7, 0.9, 0.9, 0.6, 0.3,
0.4, 0.3 and 0.6.

The decision making process involves calculating the weighted similarity mea-
sures between the SVNMS Py and the respective SVNMS representing the diseases.
The set bearing the highest measure of similarity with respect to Py is the disease
that has affected the person. In order to confirm the obtained result, the process is
repeated for more than one integral values of p i.e. the similarity degree.

The calculations have been represented in a tabular form as follows:

Disease Sets

Similarity Degree (p) Patient Data TB Inf CC
p=1 Py 0.69 0.89 0.87
p=2 Py 0.68 0.86 0.85
p=3 P; 0.66 0.85 0.83

Table 7.2. Table showing the similarity measures between the disease
sets and P;.

Thus, from the above findings it is clear that the patient has been suffering from
Influenza.

8. CONCLUSION

In this paper a new hybridized concept, namely Single Valued Neutrosophic Mul-
tiset has been studied. Various set theoretic and algebraic operators have been de-
fined and their properties have been discussed. The notions of distance and similarity
measures have also been incorporated. Finally an example citing the applicability
of single valued neutrosophic multisets in problems pertaining to medical diagnosis
has been stated. Being characterized by an indeterminacy membership value, single
valued neutrosophic sets provide a far more generalized tool in handling uncertainty
as compared to fuzzy sets or intuitionistic fuzzy sets. Since single valued neutro-
sophic multisets have resulted by merging together the concepts of multisets and
single valued neutrosophic sets, the former are a further generalization of the latter
in the sense that in this case multiple occurrances of an element with varying degrees
of membership values are taken into consideration and thus have more degrees of
freedom compared to the latter. Moreover, the notions of distance and similarity
measures are stated with a view to aid in the widespread applicability of SVNMS
in fields like medical diagnosis, data retrieval on the web or in multicriteria decision
making problems.
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