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1. Introduction

Fuzzy set was first introduced by Zadeh [12]. Since then, the theory has been
developed and it is now emerged as an independent branch of Applied Mathemat-
ics. The elementary fuzzy calculus based on the extension principle was studied by
Dubois and Prade[6]. Hybrid systems are devoted to modelling, design and valida-
tion of interactive systems of computer programs and continuous systems. That is,
control systems that are capable of controlling complex systems which have discrete
time dynamics and continuous time dynamics can be modelled by hybrid systems.
The differential systems containing fuzzy valued functions and interaction with a
discrete time controller are named as hybrid fuzzy differential systems. Seikkala[11]
and Kaleva [7] have discussed fuzzy differential equations(FDEs). The numerical
solutions of FDEs by Euler’s method was studied by Ma et al.[8]. Abbasbandy
and Allviranloo [1, 2] proposed the Taylor method and the fourth order Runge-
Kutta method for solving FDEs. Pederson and Sambandham[9, 10] used the Euler
and Runge-Kutta methods for solving hybrid fuzzy differential equations(HFDEs).
Omar and Hasan [4] used the modified fourth order Runge-Kutta method for solv-
ing FDEs by considering the dependency problem in fuzzy computation based on
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Zadeh’s extension principle. In this paper we use the same procedure to solve HFDEs
by taking the dependency problem in fuzzy computation.

2. Preliminaries

Let PK(Rn) denote the family of all non-empty compact, convex subsets of Rn.
If α, β ∈ R and A, B ∈ PK(Rn), then

α(A +B) = αA+ αB, α(βA) = (αβ)A, 1A = A

and if α, β ≥ 0, then (α+ β)A = αA+ βA. Denote by En the set of u : Rn → [0, 1]
such that u satisfies (i)-(iv) mentioned below:
(i) u is normal, that is, there exists an x0 ∈ Rn

such that u(x0) = 1,
(ii) u is fuzzy convex,
(iii) u is upper semicontinuous,
(iv) [u]0 = cl{x ∈ Rn : u(x) > 0} is compact.

For 0 < α ≤ 1, we denote [u]α = {x ∈ Rn : u(x) ≥ α}. Then from (i)-(iv), it
follows that α-level set [u]α ∈ PK(Rn) for 0 < α ≤ 1. An example of a u ∈ E1 is
given by

u(x) =






4x− 3, if x ∈ (0.75, 1],

−2x+ 3, if x ∈ (1, 1.5),

0, if x /∈ (0.75, 1.5).

The α−level sets are given by

[u]α = [0.75 + 0.25α, 1.5− 0.5α].

Let I be a real interval. A mapping y : I → E is called a fuzzy process and its
α−level set is denoted by [y(t)]α = [yα(t), yα(t)], t ∈ I, α ∈ (0, 1].

3. The Hybrid Fuzzy Differential Systems

Consider the hybrid fuzzy differential systems
{

x′(t) = f(t, x(t), λk(xk)), t ∈ [tk, tk+1],
x(tk) = xk,

(3.1)

where 0 ≤ t0 < t1 < · · · < tk < · · · , tk → ∞, f ∈ C[R+ × E × E,E], λk ∈ C[E,E].
To be specific the system look like

x′(t) =





x′

0(t) = f(t, x0(t), λ0(x0)), x0(t0) = x0, t0 ≤ t ≤ t1,
x′

1(t) = f(t, x1(t), λ1(x1)), x1(t1) = x1, t1 ≤ t ≤ t2,
. . .
x′

k(t) = f(t, xk(t), λk(xk)), xk(tk) = xk, tk ≤ t ≤ tk+1,
. . .
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Assuming that the existence and uniqueness of solution of (3.1) hold for each [tk, tk+1],
by the solution of (3.1) we mean the following function:

x(t) = x(t, t0, x0) =





x0(t), t0 ≤ t ≤ t1,
x1(t), t1 ≤ t ≤ t2,
. . .
xk(t), tk ≤ t ≤ tk+1,
. . .

We note that the solution of (3.1) is piecewise differentiable in each interval for
t ∈ [tk, tk+1] for a fixed xk ∈ E and k = 0, 1, 2, . . ..

4. Dependency Problem

The dependency problem arises in fuzzy computation while applying the straight
forward fuzzy interval arithmetic and Zadeh’s extension principle by computing the
intervals separately. This will affect errors in numerical computations and will make
the results to deviate from correct results[5].

We now explain the concept of dependency problem:
Consider the real valued function

f(x) = 2x2 + 5x− 3.(4.1)

For a fuzzy number [X̃ ]α = [α− 1, 2−α], f(X̃) can be calculated in two ways. First
by using the straightforward fuzzy interval arithmetic:

f([X̃]α) = 2[α− 1, 2− α]2 + 5[α− 1, 2− α]− 3,

=
[
min

{
(α − 1)2, (α− 1)(2− α), (2 − α)2

}
,

max
{
(α− 1)2, (α− 1)(2− α), (2 − α)2

}]

+5[α− 1, 2− α]− 3,(4.2)

when α = 0, we get

f([X̃ ]0) = [−12, 15].(4.3)

The second is obtained by applying Zadeh’s extension principle alone, that is:

f([X̃ ]α) = 2X̃2 + 5X̃ − 3.(4.4)

For α = 0, the solution is :

f([X̃]0) = [−8, 15].(4.5)

As the solutions to the equations (4.3) and (4.5) are not the correct range of f(X̃),
the correct range is obtained by assuming the right hand side of equation (4.4) as
one expression and then applying Zadeh’s extension principle. Hence the correct
range is

f([X̃]0) =

[
− 49

8
, 15

]
.(4.6)

A new computation method was developed by Ahmad and Hassan [3] which re-
duces the computational complexity and overestimation in the results. The method
is obtained by incorporating the optimization technique into Zadeh’s extension prin-
ciple.
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Let X̃ be a triangular fuzzy number defined by the three numbers a1 < a2 < a3,
with its graph having a triangular base on the interval [a1, a3]. For 0 < α ≤ 1, let
[x̃(t)]α = [xα

1 (t), x
α
2 (t)] be the α-level interval. To make the partition for this fuzzy

interval, we divide this interval into subintervals using the discrete set of points
0 = α0 < α1 < · · · < αn = 1 in [0,1], where αi − αi−1 = k = 1

n
, for i = 1, . . . , n.

It is obvious that for every αi, i = 0, 1, . . . , n we get

[X̃]αi=[xαi

1 , x
αi+1

1 ]
⋃

[x
αi+1

1 , xαn

1 ]
⋃

[xαn

1 , xαn

2 ]
⋃

[xαn

2 , x
αi+1

2 ]
⋃

[x
αi+1

2 , xαi

2 ],(4.7)

for triangular fuzzy number xαn

1 = xαn

2 .
In general, we can decompose a fuzzy interval into n compact fuzzy sets f1, f2,

. . . , fn, as follows:
(i) Consider a regular partition of the uncertainty interval x ∈ [a, b] i.e., divide

[a, b] into n subintervals [xi, xi+1], with xi = a+ (i− 1)(b− a)/n for 1 ≤ i ≤ n+ 1.
(ii) Consider the fuzzy sets fi defined by fi(x) = f(x) if x ∈ [xi, xi+1], and

fi(x) = 0 otherwise, 1 ≤ i ≤ n. Consequently, we have

f(x) =
∨

i=1,...,n

fi(x) ∀ x ∈ R.

While computing Ỹ = f(X̃), where f is a real continuous function and X̃ is a
triangular fuzzy number, we have to do this at each possibility level as follows:

yαi

1 = min

[
min

x∈[x
αi
1

,x
αi+1

1
]
f(x), . . . , min

x∈[xαn
1

,x
αn
2

]
f(x), . . . , min

x∈[x
αi+1

2
,x

αi
2

]
f(x)

]
,(4.8)

yαi

2 = max

[
max

x∈[x
αi
1

,x
αi+1

1
]
f(x), . . . , max

x∈[xαn
1

,x
αn
2

]
f(x), . . . , max

x∈[x
αi+1

2
,x

αi
2

]
f(x)

]
,(4.9)

where yαi

1 and yαi

2 are lower and upper bounds of Ỹ , respectively at αi for i =
1, 2, . . . , n. In order to interpolate the points (yαi

1 , αi) and (yαi

2 , αi) for all i =

0, 1, . . . , n, we use linear spline interpolation. Finnaly, a fuzzy interval Ỹ is obtained.
This process is repeated for all tj ∈ [t0, T ] for j = 1, 2, . . . , N − 1.

5. Runge-Kutta method of order five

Consider the IVP (3.1) with crisp initial condition x(t0) = x0 ∈ R and t ∈ [t0, T ].
The formula

xk,j+1 = xk,j +

n∑

j=1

wjkj ,(5.1)

is the basis of all classical Runge-Kutta methods, where wj is constant for j =
1, 2, . . . , n and

kj = h · f
(
tk,r + βk,jhk, xk,r +

j−1∑

m=1

wj,rkj,r, λk(xk)

)
.(5.2)

490



Kanagarajan et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 487–497

Therefore we get,

k1 = hk · f(tk,r, xk,r , λk(xk)),

k2 = hk · f
(
tk,r +

hk

3
, xk,r +

k1
3
, λk(xk)

)
,

k3 = hk · f
(
tk,r +

hk

3
, xk,r +

k1
6

+
k2
6
, λk(xk)

)
,

k4 = hk · f
(
tk,r +

hk

2
, xk,r +

k1
8

+
3k3
8

, λk(xk)

)

k5 = hk · f
(
tk,r + hk, xk,r +

k1
2

− 3k3
2

+ 2k4, λk(xk)

)

and

xk,r+1 = xk,r +
1

6

(
k1 + 4k4 + k5

)
,(5.3)

where t0 ≤ t1 ≤ . . . ≤ tN = T and h = T−t0
N

= tr+1 − tr, r = 0, 1, . . . , N .
For the fuzzy initial condition of equation (3.1), we modify the classical Runge-

Kutta method of order five by taking into account the dependency problem in fuzzy
computation. We consider the right-hand side of equation (5.3) as one function

U(tk, hk, xk, λk) = xk,r +
1

6

[
k1 + 4k4 + k5

]
,

= xk,r +
hk

6

{
f(tk,r, xk,r , λk(xk)) + 4f

(
tk,r +

hk

2
, xk,r +

hk

8
f(tk,r, xk,r, λk(xk))

+
3hk

8
f

(
tk,r +

hk

3
, xk,r +

hk

6
f(tk,r, xk,r , λk(xk)) +

hk

6
f

(
tk,r +

hk

3
, xk,r

+
hk

3
f(tk,r, xk,r , λk(xk)), λk(xk)

)
, λk(xk)

)
, λk(xk)

)
+ f

(
tk,r + hk, xk,r

+
hk

2
f(tk,r, xk,r , λk(xk))−

3hk

2
f

(
tk,r +

hk

3
, xk,r +

hk

6
f(tk,r, xk,r , λk(xk))

+
hk

6
f

(
tk,r +

hk

3
, xk,r +

hk

3
f(tk,r, xk,r, λk(xk)), λk(xk)

)
, λk(xk)

)

+ 2hkf

(
tk,r +

hk

2
, xk,r +

hk

8
f(tk,r, xk,r , λk(xk)) +

3hk

8
f

(
tk,r +

hk

3
, xk,r

+
hk

6
f(tk,r, xk,r , λk(xk)) +

hk

6
f

(
tk,r +

hk

3
, xk,r

+
hk

3
f(tk,r, xk,r , λk(xk)), λk(xk)

)
, λk(xk)

)
, λk(xk)

)
, λk(xk)

)}
.

(5.4)
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If X̃ ∈ E n, then (5.4) can be extended in fuzzy setting as follows:

U(tk,r, hk, X̃k,r, λk,r)(uk,r)

=






sup
xk,r∈U

−1

k
(tr,h,ur ,λk)

X̃k,r(xk,r), if uk,r ∈ range(U),

0, if uk,r /∈ range(U),

(5.5)

can extend equation (5.4) in the fuzzy setting.

Let [X̃k,r]
α = [xα

k,r, x
α
k,r] be the α-cuts of X̃ for all α ∈ (0, 1] then (5.5) can be

computed as follows

U(tk,r, hk, [X̃k,r]
α, λk,r)

=
[
min

{
U(tk,r, hk, x, λk(xk))|x ∈ [xα

k,r, x
α
k,r ], xk ∈ [xα

k,0, x
α
k,0]
}
,(5.6)

max
{
U(tk,r , hk, x, λk(xk))|x ∈ [xα

k,r, x
α
k,r], xk ∈ [xα

k,0, x
α
k,0]
} ]

.

By applying equation (5.6) in equation (5.3) we get

[X̃k,r+1]
α = [xα

k,r+1, x
α
k,r+1],(5.7)

where

xα
k,r+1 = min

{
U(tk, hk, x, λk(xk))|x ∈ [xα

k,r, x
α
k,r], xk ∈ [xα

k,0, x
α
k,0]
}
,

xα
k,r+1 = max

{
U(tk, hk, x, λk(xk))|x ∈ [xα

k,r, x
α
k,r], xk ∈ [xα

k,0, x
α
k,0]
}
.

Therefore

xα
k,r+1=min

{
xk,r +

hk

6

(
k1 + 4k4 + k5

)∣∣∣∣x ∈ [xα
k,r , x

α
k,r], xk∈ [xα

k,0, x
α
k,0]

}
,(5.8)

xα
k,r+1=max

{
xk,r +

hk

6

(
k1 + 4k4 + k5

)∣∣∣∣ x∈ [xα
k,r, x

α
k,r], xk ∈ [xα

k,0, x
α
k,0]

}
.(5.9)

By using the computational method proposed in [3], we compute the minimum
and maximum in equations (5.8), (5.9) as follows:

xαi

k,r+1 = min

[
min

x∈[x
αi
k,r

,x
αi+1

k,r
]
U(tk, hk, x, λk), . . . ,

min
x∈[x

αi+1

k,r
,x

αi+1

k,r
]
U(tk, hk, x, λk), . . . , min

x∈[x
αi+1

k,r
,x

αi
k,r

]
U(tk, hk, x, λk)

]
,(5.10)

xαi

k,r+1 = max

[
max

x∈[x
αi
k,r

,x
αi+1

k,r
]
U(tk, hk, x, λk), . . . ,

max
x∈[x

αi+1

k,r
,x

αi+1

k,r
]
U(tk, hk, x, λk), . . . , max

x∈[x
αi+1

k,r
,x

αi
k,r

]
U(tk, hk, x, λk)

]
.(5.11)
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6. Numerical Examples

We present some numerical examples to illustrate the above technique.

Example 6.1. Consider the following HFDEs





x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, · · · ,
[
X̃
]α
0
= [0.75 + 0.25α, 1.125− 0.125α], 0 ≤ α ≤ 1,

(6.1)

where

m(t) =

{
2(t(mod 1)), if t(mod 1) ≤ 0.5,

2(1− t(mod 1)), if t(mod 1) ≥ 0.5,

λk(µ) =

{
0̂, if k = 0,

µ, if k ∈ {1, 2, . . .}.
The exact solution for t ∈ [0, 2] is given by

x(t) =






[(0.75 + 0.25α)et, (1.125− 0.125α)et], t ∈ [0, 1],

x(1;α)[3et−1 − 2t], t ∈ [1, 1.5],

x(1;α)[2t− 2 + et−1.5(3
√
e− 4)], t ∈ [1.5, 2].

Table 1.

Numerical values for the exact and the approximate solutions at t=2.
α RK4 RK5 Exact

x1(ti; r) x2(ti; r) x1(ti; r) x2(ti; r) X1(ti; r) X2(ti; r)
0.0 7.2577 10.8866 7.2577 10.8866 7.2577 10.8866
0.1 7.4996 10.7656 7.4997 10.7656 7.4997 10.7656
0.2 7.7416 10.6447 7.7416 10.6447 7.7416 10.6447
0.3 7.9835 10.5237 7.9835 10.5237 7.9835 10.5237
0.4 8.2254 10.4027 8.2254 10.4027 8.2254 10.4027
0.5 8.4673 10.2818 8.4674 10.2818 8.4673 10.2818
0.6 8.7093 10.1608 8.7093 10.1608 8.7093 10.1608
0.7 8.9512 10.0398 8.9512 10.0399 8.9512 10.0399
0.8 9.1931 9.9189 9.1931 9.9189 9.1931 9.9189
0.9 9.4350 9.7979 9.4350 9.7979 9.4350 9.7979
1.0 9.6770 9.6770 9.6770 9.6770 9.6770 9.6770

493



Kanagarajan et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 487–497

Table 2.

The errors of the methods at t=2.
α RK4 RK5

x1(ti; r) x2(ti; r) x1(ti; r) x2(ti; r)
0.0 7.59e-06 1.13e-05 -3.18e-6 -4.78e-6
0.1 7.84e-06 1.12e-05 -3.29e-6 -4.73e-6
0.2 8.09e-06 1.11e-05 -3.40e-6 -4.67e-6
0.3 8.35e-06 1.10e-05 -3.50e-6 -4.62e-6
0.4 8.60e-06 1.08e-05 -3.61e-6 -4.57e-6
0.5 8.85e-06 1.07e-05 -3.72e-6 -4.51e-6
0.6 9.11e-06 1.06e-05 -3.82e-6 -4.46e-6
0.7 9.36e-06 1.05e-05 -3.93e-6 -4.41e-6
0.8 9.61e-06 1.03e-05 -4.04e-6 -4.35e-6
0.9 9.87e-06 1.02e-05 -4.14e-6 -4.30e-6
1.0 1.01e-05 1.01e-05 -4.25e-6 -4.25e-6

0

0.5

1

1.5

2

0
2

4
6

8
10

12

0

0.2

0.4

0.6

0.8

1

t

x(t)

A
lp

ha

Figure 1. The approximation of fuzzy solution by RK5.

Example 6.2. Consider the following hybrid FIVP




x′(t) = x(t) +m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k, k = 0, 1, 2, · · · ,
[
X̃
]α
0
= [0.75 + 0.25α, 1.5− 0.5α], 0 ≤ α ≤ 1,

(6.2)

where m(t) = |sin(πt)| , k = 0, 1, 2, . . .

λk(µ) =

{
0̂, if k = 0,

µ, if k ∈ {1, 2, . . .}.
We know (6.2) has a unique solution and the exact solution [0,2] is given by

x(t; r) =






[(0.75 + 0.25α)et, (1.5− 0.5α)et], t ∈ [0, 1],

x(1;α)

[
π

π2 + 1
+ e
(
1 +

π

π2 + 1

)]
, t ∈ [1, 2].
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Figure 2. Comparison between the exact, RK4 and RK5.
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Figure 3. The approximate solution by RK5.

Table 3.

Numerical values for the exact and the approximate solutions at t=2.
α RK4 RK5 Exact

x1(ti; r) x2(ti; r) x1(ti; r) x2(ti; r) X1(ti; r) X2(ti; r)
0.0 7.7327 15.4655 7.7327 15.4655 7.7327 15.4655
0.1 7.9905 14.9500 7.9905 14.9500 7.9905 14.9500
0.2 8.2483 14.4345 8.2483 14.4345 8.2483 14.4345
0.3 8.5060 13.9189 8.5060 13.9190 8.5060 13.9189
0.4 8.7638 13.4034 8.7638 13.4035 8.7638 13.4034
0.5 9.0215 12.8879 9.0216 12.8879 9.0215 12.8879
0.6 9.2793 12.3724 9.2793 12.3724 9.2793 12.3724
0.7 9.5370 11.8569 9.5371 11.8569 9.5371 11.8569
0.8 9.7948 11.3414 9.7948 11.3414 9.7948 11.3414
0.9 10.0526 10.8258 10.0526 10.8259 10.0526 10.8258
1.0 10.3103 10.3103 10.3103 10.3103 10.3103 10.3103
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Figure 4. Comparison between the exact, RK4 and RK5.

Table 4.

The errors of the method at t=2.
α RK4 RK5

x1(ti; r) x2(ti; r) x1(ti; r) x2(ti; r)
0.0 2.95e-06 5.90e-06 -1.63e-05 -3.26e-05
0.1 3.05e-06 5.71e-06 -1.68e-05 -3.15e-05
0.2 3.15e-06 5.51e-06 -1.74e-05 -3.05e-05
0.3 3.25e-06 5.31e-06 -1.79e-05 -2.94e-05
0.4 3.34e-06 5.12e-06 -1.85e-05 -2.83e-05
0.5 3.44e-06 4.92e-06 -1.90e-05 -2.72e-05
0.6 3.54e-06 4.72e-06 -1.96e-05 -2.61e-05
0.7 3.64e-06 4.53e-06 -2.01e-05 -2.50e-05
0.8 3.74e-06 4.33e-06 -2.06e-05 -2.39e-05
0.9 3.84e-06 4.13e-06 -2.12e-05 -2.28e-05
1.0 3.93e-06 3.93e-06 -2.17e-05 -2.17e-05

7. Conclusion

In this paper, we have developed the numerical method for solving HFDEs by
taking into account the dependency problem in fuzzy computation. The convergence
order of Runge-Kutta method is O(h4) and for Runge-Kutta method is O(h5). The
comparison of solutions of example (6.1) and (6.2) are analyzed and we see that
Runge-Kutta fifth order gives better solution than Runge-Kutta fourth method.
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