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1. Introduction

The idea of cone metric space is very recent and is introduced by H. Long-Guang
et. al [11] which is a generalization of metric space. In cone metric space, authors
replace the real numbers by an ordering real Banach space. The study of common
fixed point theorems for mappings satisfying certain contractive conditions is now a
vigorous research activity. Many authors developed more results on common fixed
point theorems for different types of contraction mappings ( for references please see
[1, 3, 5, 6, 7, 9]).
In [2], the idea of fuzzy cone metric space is introduced and study some fixed point
theorems. Recently Shenghua Wang et. al [14] have been developed a distance called
c-distance on cone metric space and by using this concept some fixed point results
have been established.
There is an advantage to use c-distance to establish common fixed point theorems,
since it is not required that contraction mappings be weakly compatible.
Following the idea of c-distance introduced by Shenghua Wang et. al [14], in [4], an
idea of fuzzy c-distance in fuzzy cone metric space is introduced and by using this
concept, some fixed point theorems are proved. On the other hand Sushanta Kumar
Mahato et. al [13] introduce a new concept of generalized c-distance in cone metric
space and study some fixed point results in such spaces.
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In this paper, following the idea of generalized c-distance introduced in [13], concept
of generalized fuzzy c-distance in fuzzy cone metric space is given. It is seen that ev-
ery fuzzy c-distance is a generalized fuzzy c-distance of any order j ∈ N but converse
is not true. By using this concept, a common fixed point theorem is established for
a pair of self-mappings in fuzzy cone metric spaces.
Generally to establish common fixed point theorems in fuzzy metric spaces, the con-
traction mappings should be weakly compatible but by using this new concept
( generalized fuzzy c-distance ), it is possible to establish common fixed point theo-
rems in fuzzy cone metric spaces without using weakly compatible mappings.

The organization of the paper is as follows:
Section 2, comprises some preliminary results which are used in this paper.
An idea of generalized fuzzy c-distance in fuzzy cone metric space is introduced in
Section 3. In Section 4, a common fixed point theorem is established.

2. Preliminaries

A fuzzy real number is a mapping x : R → [0 , 1] over the set R of all reals.
A fuzzy real number x is convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r.
α-level set of a fuzzy real number x is defined by {t ∈ R : x(t) ≥ α} where α ∈ (0, 1].
If there exists a t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 < α ≤
1, α-level set of an upper semi continuous convex normal fuzzy real number η (
denoted by [η]α) is a closed interval [aα , bα], where aα = −∞ and bα = +∞
are admissible. When aα = −∞, for instance, then [aα , bα] means the interval
(−∞ , bα]. Similar is the case when bα = +∞.
A fuzzy real number x is called non-negative if x(t) = 0, ∀t < 0.
Each real number r is considered as a fuzzy real number denoted by r̄ and defined
by
r̄(t) = 1 if t = r and r̄(t) = 0 if t ̸= r.
Kaleva [10] ( Felbin [8] ) denoted the set of all convex, normal, upper semicontinuous
fuzzy real numbers by E ( R(I)) and the set of all non-negative, convex, normal,
upper semicontinuous fuzzy real numbers by G(R∗(I)).

A partial ordering ” ⪯ ” in E is defined by η ⪯ δ if and only if a1α ≤ a2α and
b1α ≤ b2α for all α ∈ (0 , 1] where [η]α = [a1α , b1α] and [δ]α = [a2α , b2α]. The
strict inequality in E is defined by η ≺ δ if and only if a1α < a2α and b1α < b2α for each
α ∈ (0 , 1].

According to Mizumoto and Tanaka [12], the arithmetic operations ⊕, ⊖ ,⊙ on
E × E are defined by

(x⊕ y)(t) = Sups∈Rmin {x(s) , y(t− s)}, t ∈ R
(x⊖ y)(t) = Sups∈Rmin {x(s) , y(s− t)}, t ∈ R
(x⊙ y)(t) = Sups∈R,s ̸=0min {x(s) , y( ts )}, t ∈ R

Proposition 2.1 ([12]). Let η , δ ∈ E(R(I)) and [η]α = [a1α , b1α], [δ]α = [a2α , b2α],
α ∈ (0 , 1]. Then

[η
⊕

δ]α = [a1α + a2α , b1α + b2α]
[η ⊖ δ]α = [a1α − b2α , b1α − a2α]
[η ⊙ δ]α = [a1αa

2
α , b1αb

2
α]

466



T. BAG /Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 465–476

Definition 2.2 ([10]). A sequence {ηn} in E is said to be convergent and converges
to η denoted by lim

n→∞
ηn = η if lim

n→∞
anα = aα and lim

n→∞
bnα = bα where [ηn]α =

[anα, b
n
α] and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.3 ([10]). If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).

Note 2.4 ([10]). For any scalar t, the fuzzy real number tη is defined as tη(s) = 0
if t=0 otherwise tη(s) = η( st ).

Definition of fuzzy norm on a linear space as introduced by C. Felbin is given
below:

Definition 2.5 ([8]). Let X be a vector space over R.
Let || || : X → R∗(I) and let the mappings
L,U : [0 , 1] × [0 , 1] → [0 , 1] be symmetric, nondecreasing in both arguments
and satisfy

L(0 , 0) = 0 and U(1 , 1) = 1.

Write
[||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X, x ̸= 0,
there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ;
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s+ t ≤ ||x+ y||11,

||x+ y||(s+ t) ≥ L(||x||(s) , ||y||(t)),
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s+ t ≥ ||x+ y||11,

||x+ y||(s+ t) ≤ U(||x||(s) , ||y||(t))

Remark 2.6 ([8]). Felbin proved that,
if L =

∧
(Min) and U =

∨
(Max) then the triangle inequality (iii) in the Definition

1.1 is equivalent to

||x+ y|| ⪯ ||x||
⊕

||y||.
Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1].

Definition 2.7 ([2]). Let (E, || ||) be a fuzzy real Banach space where || || : E →
R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 2.8 ([2]). A member η ∈ A ⊂ R∗(I) is said to be an interior point if
∃r > 0 such that
S(η, r) = {δ ∈ R∗(I) : η ⊖ δ ≺ r̄} ⊂ A.
Set of all interior points of A is called interior of A.

Definition 2.9 ([2]). A subset of F of E∗(I) is said to be fuzzy closed if for any
sequence {ηn} such that lim

n→∞
ηn = η implies η ∈ F.
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Definition 2.10 ([2]). A subset P of E∗(I) is called a fuzzy cone if
(i) P is fuzzy closed, nonempty and P ̸= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P .

Note 2.11. If η ∈ P then ⊖η ∈ P ⇒ η = 0̄.
For, suppose [η]α = [η1α , η2α], α ∈ (0, 1].
Since η ∈ P ⊂ E∗(I), we have η1α, η2α ≥ 0 ∀α ∈ (0, 1].
Now [⊖η]α = [−η2α , −η1α], α ∈ (0, 1].
If η ̸= 0̄, then η1α, η2α > 0 ∀α ∈ (0, 1].
i.e. −η2α ≤ −η1α < 0 ∀α ∈ (0, 1].
This implies that ⊖η does not belong to P. Hence η = 0̄.

Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤ with respect to P by
η ≤ δ iff δ⊖ η ∈ P and η < δ indicates that η ≤ δ but η ̸= δ while η << δ will stand
for δ ⊖ η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,
with 0̄ ≤ ||x|| ≤ ||y|| implies ||x|| ⪯ K||y||. The least positive number satisfying
above is called the normal constant of P.
The fuzzy cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is if {xn} is a sequence in E such that ||x1|| ≤
||x2|| ≤ ........ ≤ ||xn|| ≤ .... ≤ ||y|| for some y ∈ E, then there is x ∈ E such that
||xn − x|| → 0̄ as n → ∞.
Equivalently, the fuzzy cone P is regular if every decreasing sequence which is
bounded below is convergent.

In the following we always assume that E is a fuzzy real Banach space, P is a
fuzzy cone in E with IntP ̸= ϕ and ≤ is a partial ordering with respect to P.

Definition 2.12 ([2]). Let X be a nonempty set. Suppose the mapping
d : X ×X → E∗(I) satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;
(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;
(Fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Definition 2.13 ([2]). Let (X, d) be a fuzzy cone metric space. Let{xn} be a
sequence in X and x ∈ X. If for every c ∈ E with 0̄ << ||c|| there is a positive integer
N such that for all n > N, d(xn, x) << ||c||, then {xn} is said to be convergent and
converges to x and x is called the limit of {xn}. We denote it by lim

n→∞
xn = x.

Definition 2.14 ([2]). Let (X, d) be a fuzzy cone metric space and {xn} be a
sequence in X. If for any c ∈ E with 0̄ << ||c||, there exists a natural number N
such that ∀m,n > N, d(xn, xm) << ||c||, then {xn} is called a Cauchy sequence in
X.

Definition 2.15 ([2]). Let (X, d) be a fuzzy cone metric space. If every Cauchy
sequence is convergent in X, then X is called a complete fuzzy cone metric space.

Definition 2.16 ([1]). Let f and g be self mappings defined on a set X. If w =
f(x) = g(x) for some x ∈ X, then x is called a coincidence point of f and g and w
is called a point of coincidence of f and g.
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Definition 2.17. Let X be any nonempty set and f, g : X → X be mappings. Pair
(f, g) is called weakly compatible if for x ∈ X, fx = gx implies fgx = gfx.

Proposition 2.18 ([1]). Let f and g be weakly compatible self-mappings of a set X.
If f and g have a unique point of coincidence w = f(x) = g(x), then w is the unique
common fixed point of f and g.

Definition 2.19 ([4]). Let (X , d) be a fuzzy cone metric space. Then the mapping
Q : X × X → E∗(I) is called a c-fuzzy distance on X if the following conditions
hold:
(Q1) 0̄ ≤ Q(x, y) ∀x, y ∈ X;
(Q2) Q(x, z) ≤ Q(x, y)⊕Q(y, z) ∀x, y, z ∈ X;
(Q3) ∀x ∈ X, if Q(x, yn) ≤ η for some η = η(x) ∈ P, n ≥ 1,
then Q(x, y) ≤ η whenever {yn} is a sequence in X converging to a point y ∈ X;
(Q4) ∀c ∈ E with 0̄ ≪ ||c||, ∃e ∈ E with 0̄ ≪ ||e|| such that Q(z, x) ≪ ||e||
and Q(z, y) ≪ ||e|| imply d(x, y) ≪ ||c||.

3. Generalized fuzzy c-distance on fuzzy cone metric space

Definition 3.1. Let (X, d,≤) be a fuzzy cone metric space and j ∈ N ( set of
natural numbers ). Then the mapping
Q : X ×X → E∗(I) is called a generalized fuzzy c-distance of order j on X if the
following conditions hold:
(GQ1) 0̄ ≤ Q(x, y) ∀x, y ∈ X;

(GQ2) Q(x, z) ≤
j∑

i=0

Q(xi, xi+1) ∀x, z ∈ X and for all distinct points xi ∈ X, i ∈

{1, 2, 3, ...} each of them different from x(= x0) and z(= xj+1);
(GQ3) ∀x ∈ X, if Q(x, yn) ≤ η for some η = η(x) ∈ P, n ≥ 1,
then Q(x, y) ≤ η whenever {yn} is a sequence in X converging to a point y ∈ X;
(GQ4) ∀c ∈ E with 0̄ ≪ ||c||, ∃e ∈ E with 0̄ ≪ ||e|| such that Q(z, x) ≪ ||e|| and
Q(z, y) ≪ ||e|| imply d(x, y) ≪ ||c||.

Remark 3.2. Every fuzzy c-distance is a generalized fuzzy c-distance of order 1. In
fact, every fuzzy c-distance may also be considered as a generalized fuzzy c-distance
of any order j ∈ N.
But the converse does not hold and is justified by the following example.

Example 3.3. Let E = R ( set of real numbers ).
Define || || : E → R∗(I) by

||x||(t) =


t
|x| if 0 ≤ t ≤ |x|, x ̸= θ

1 if t = |x| = 0
0 otherwise.

Then [||x||]α = [α|x|, |x|] ∀α ∈ (0, 1] .
It is easy to verify that (i) ||x|| = 0̄ iff x = θ (ii) ||rx|| = |r|||x|| and
(iii) ||x+ y|| ⪯ ||x|| ⊕ ||y|| ∀x, y ∈ E.
Then (E, || ||) is a fuzzy normed linear space ( Felbin’s sense for L= min and U =
max ).
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Let {xn} be a Cauchy sequence in (E, || ||). So lim
m,n→∞

||xn − xm|| = 0̄.

⇒ lim
m,n→∞

||xn − xm||1α = lim
m,n→∞

α|xn − xm| = 0 ∀α ∈ (0, 1]

⇒ lim
m,n→∞

|xn − xm| = 0

⇒ {xn} is a Cauchy sequence in (E, | |).
Since (E, | |) is complete, ∃x ∈ E such that lim

n→∞
|xn − x| = 0

Thus lim
n→∞

||xn − x|| = 0̄.

So (E, || ||) is a real complete fuzzy normed linear space.
Define P = {η ∈ E∗(I) : η ⪰ 0̄}.
(i) P is fuzzy closed.
For, consider a sequence {δn} in P such that lim

n→∞
δn = δ.

i.e. lim
n→∞

δin,α = δiα for i = 1, 2 and α ∈ (0, 1].

Now, δn ⪰ 0̄ ∀n
⇒ δin,α ≥ 0 for i = 1, 2 and α ∈ (0, 1].

⇒ lim
n→∞

δin,α ≥ 0 for i = 1, 2 and α ∈ (0, 1].

⇒ δ ⪰ 0̄.
So δ ∈ P and hence P is fuzzy closed.
(ii) It is obvious that for a, b ∈ R; a, b ≥ 0 and η, δ ∈ P implies aη ⊕ bδ ∈ P.
Thus P is a fuzzy cone in E.
Now choose the ordering of E w.r.t. P as ⪯ and suppose X = {x1, x2, x3, x4} ⊂ R
and define
d : X × X → E∗(I) by d(x, y) = ||x − y|| ∀x, y ∈ X. Then (X, d) is a fuzzy cone
metric space.
Let Q : X ×X → E∗(I) by Q(x1, x2) = Q(x2, x1) = 5̄.
Q(x1, x3) = Q(x3, x1) = Q(x2, x3) = Q(x3, x2) = 2̄.
Q(x1, x4) = Q(x4, x1) = Q(x2, x4) = Q(x4, x2) = Q(x3, x4) = Q(x4, x3) = 1̄.
Q(x, x) = 0̄ ∀x ∈ X.
Then Q satisfies the condition (GQ2) for j = 2.
The conditions (GQ1) and (GQ3) are obvious.

For (GQ4), take any c ∈ E with ||c|| ⪰ 0̄ and put ||e|| = 1̄
2 .

Now Q(z, x) ≪ ||e|| and Q(x, y) ≪ ||e||
⇒ 1̄

2 ⊖Q(z, x) ∈ intP and 1̄
2 ⊖Q(x, y) ∈ intP

⇒ 1
2 −Q1

α(z, x) > 0 and 1
2 −Q2

α(z, x) > 0 ∀α ∈ (0, 1]

⇒ Q1
α(z, x) = Q2

α(z, x) = 0 ∀α ∈ (0, 1] ⇒ z = x.
Similarly x = y. Hence x = y = z.
So d(x, y) = 0̄ ≪ ||c||. Thus (GQ4) holds.
Thus Q is a generalized fuzzy c-distance of order 2 on X.
Now Q1

α(x1, x2) = 5 > Q1
α(x1, x3) +Q1

α(x3, x2) = 2 + 2 = 4.
Q2

α(x1, x2) = 5 > Q2
α(x1, x3) +Q2

α(x3, x2) = 2 + 2 = 4.
So Q(x1, x2) ⪯ Q(x1, x3)⊕Q(x3, x2) = 4 does not hold.
Hence Q is not a fuzzy c-distance on X.
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4. Common fixed point theorem

In this Section a common fixed point theorem is established by using generalized
fuzzy c-distance and the Theorem is justified by an example.

Theorem 4.1. Let (X, d) be a fuzzy cone metric space, P be a normal cone with
normal constant K and Q be a generalized fuzzy c-distance of order j on X. Suppose
the mappings f, g : X → X satisfy

Q(fx, fy) ≤ a1Q(gx, gy)⊕ a2Q(gx, fx)⊕ a3Q(gy, fy) (4.1.1)

where x, y ∈ X and a1, a2, a3 ∈ [0, 1) satisfying a1+ a2+ a3 < 1 and further suppose
that for some α0 ∈ (0, 1],∧

x∈X

{Q1
α0
(gx, y) +Q1

α0
(fx, y) +Q1

α0
(gx, fx)} > 0 (4.1.2)

∀y ∈ X where y is not a point of coincidence of f and g. If f(X) ⊂ g(X) and g(X)
is a complete subspace of X, then f and g have a unique point of coincidence in X.
Moreover if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. Let x0 ∈ X be arbitrary. Since f(X) ⊂ g(X), ∃x1 ∈ X such that fx0 = gx1.
Proceeding in this way, a sequence {xn} can be chosen such that fxn = gxn+1, n =
0, 1, 2, .....
Now by using ( 4.1.1), we have,
Q(gxn, gxn+1) = Q(fxn−1, fxn) ≤ a1Q(gxn−1, gxn)⊕a2Q(gxn−1, fxn−1)⊕a3Q(gxn, fxn)
≤ a1Q(gxn−1, gxn)⊕ a2Q(gxn−1, gxn)⊕ a3Q(gxn, gxn+1)
So

Q(gxn, gxn+1) ≤ rQ(gxn−1, gxn) (4.1.3)

where r = a1+a2

1−a3
< 1.

By repeated application of (4.1.3) we obtain,

Q(gxn, gxn+1) ≤ rnQ(gx0, gx1). (4.1.4)

We may assume that gxn ̸= gxm for all distinct m,n ∈ {0, 1, 2, ....}.
For, if gxn = gxm for some m,n ∈ {0, 1, 2, ......}, m ̸= n then assuming m > n and
we may write

gxn = gxn+k where k = m− n ≥ 1. (4.1.5)

Put y = gxn. Then
Q(y, gxn+1) = Q(gxn, gxn+1) = Q(gxn+k, gxn+1) = Q(fxn+k−1, fxn)
≤ a1Q(gxn+k−1, gxn)⊕ a2Q(gxn+k−1, fxn+k−1)⊕ a3Q(gxn, fxn)
= a1Q(gxn+k−1, gxn+k)⊕ a2Q(gxn+k−1, gxn+k)⊕ a3Q(y, gxn+1)
So

Q(y, gxn+1) ≤ r Q(gxn+k−1, gxn+k). (4.1.6)

By repeating the relation (4.1.3), we obtain from (4.1.6)
Q(y, gxn+1) ≤ rkQ(y, gxn+1).
Since 0 ≤ r < 1, it follows that Q(y, gxn+1) = 0̄
and thus

Q(gxn, gxn+1) = 0̄. (4.1.7)
471



T. BAG /Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 465–476

Now using (4.1.1), (4.1.3) and (4.1.7) we obtain,
Q(y, y) = Q(gxn, gxn) = Q(gxn+k, gxn+k) = Q(fxn+k−1, fxn+k−1)
≤ a1Q(gxn+k−1, gxn+k−1)⊕ a2Q(gxn+k−1, fxn+k−1)⊕ a3Q(gxn+k−1, fxn+k−1)
= a1Q(gxn+k−1, gxn+k−1)⊕ (a2 + a3)Q(gxn+k−1, gxn+k)
≤ a1Q(gxn+k−1, gxn+k−1)⊕ (a2 + a3)r

k−1Q(gxn, gxn+1)
⇒ Q(y, y) ≤ a1Q(gxn+k−1, gxn+k−1) by (4.1.7).
Similarly Q(gxn+k−1, gxn+k−1) ≤ a1Q(gxn+k−2, gxn+k−2).
Proceeding in this way, we obtain after k-th step,

Q(gxn+1, gxn+1) ≤ a1Q(gxn, gxn). (4.1.8)

Thus

Q(y, y) ≤ a1Q(gxn+k−1, gxn+k−1) ≤ ..... ≤ ak1Q(gxn, gxn) = ak1Q(y, y) (4.1.9)

Since k < 1, we have Q(y, y) = 0̄.
Thus we get Q(gxn+1, y) = 0̄ ( from (4.1.7)) and Q(y, y) = 0̄.
Now by (Q4), we have d(gxn+1, y) = 0̄. Hence gxn+1 = y.
Thus fxn = y = gxn.
It follows that y is a point of coincidence of f and g, which contradicts the hypothesis.
So we may assume that gxn ̸= gxm for all distinct m,n ∈ {0, 1, 2, ....}.
Let m,n ∈ N with m > n. Taking m = n+ p, p = 1, 2, 3, ..... and using (4.1.1) and
(4.1.4) we have,
Q(gxn, gxm) = Q(fxn−1, fxm−1)
≤ a1Q(gxn−1, gxm−1)⊕ a2Q(gxn−1, fxn−1)⊕ a3Q(gxm−1, fxm−1)
= a1Q(gxn−1, gxm−1)⊕ a2Q(gxn−1, gxn)⊕ a3Q(gxm−1, gxm)
≤ a1Q(gxn−1, gxm−1)⊕ a2r

n−1(gx0, gx1)⊕ a3r
m−1Q(gx0, gx1)

≤ a1Q(gxn−1, gxm−1)⊕ (a2 + a3)r
n−1Q(gx0, gx1) ( since rm−1 ≤ rn−1).

Continuing in this way, we obtain after nth step,

Q(gxn, gxm) ≤ an1Q(gx0, gxp)⊕ (a2 + a3)[r
n−1 + a1r

n−2 + ....+ an−1
1 ]Q(gx0, gx1)

= an1Q(gx0, gxp)⊕ βnQ(gx0, gx1). (4.1.10)

where βn = (a2 + a3)[r
n−1 + a1r

n−2 + ....+ an−1
1 ].

We now show that

Q(gx0, gxp) ≤
1

1− aj1
(

1

1− r
+ βj)M (4.1.11)

where M = Q(gx0, gx1)⊕Q(gx0, gx2)⊕ ...⊕Q(gx0, gxj) ∈ P.
If p ≤ j then
Q(gx0, gx1) ≤ (1 + βj)Q(gx0, gxp) ( since βj ≥ 0 ∀j)
≤ [(1 + r + r2 + ......) + βj ]Q(gx0, gxp)
= ( 1

1−r + βj)Q(gx0, gxp)

≤ (1 + aj1 + (aj1)
2
+ ......)( 1

1−r + βj)Q(gx0, gxp)

≤ 1

1−aj
1

( 1
1−r + βj)M.

If p > j then ∃s ∈ N such that p = sj + t where 0 ≤ t < j, t ∈ N.
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If t = 0 then by using (4.1.4) and (4.1.10), we have

Q(gx0, gxp) ≤ Q(gx0, gx1)⊕Q(gx1, gx2)⊕ ....⊕Q(gxj−1, gxj)⊕Q(gxj , gxp)

≤ Q(gx0, gx1)⊕ rQ(gx0, gx1)⊕ ....⊕ rj−1Q(gx0, gx1)

⊕ aj1Q(gx0, gxp−j)⊕ βjQ(gx0, gx1)

= (

j−1∑
γ=0

rγ + βj)Q(gx0, gx1)⊕ aj1Q(gx0, gxp−j) (4.1.12)

By repeated application of (4.1.12), we obtain after (s-1)th step,

Q(gx0, gxp) ≤ [1+aj1+(aj1)
2
+....+(aj1)

s−2
](

j−1∑
γ=0

rγ+βj)Q(gx0, gx1)⊕(aj1)
s−1Q(gx0, gxj)

≤ [1+aj1+(aj1)
2
+....+(aj1)

s−2
](

j−1∑
γ=0

rγ+βj)Q(gx0, gx1)⊕(aj1)
s−1(

j−1∑
γ=0

rγ+βj)Q(gx0, gxj)

≤ [1 + aj1 + (aj1)
2
+ ....+ (aj1)

s−1
](

j−1∑
γ=0

rγ + βj)M

≤ 1

1−aj
1

( 1
1−r + βj)M.

If t ̸= 0 then,

Q(gx0, gxp) ≤ Q(gx0, gx1)⊕Q(gx1, gx2)⊕ .....⊕Q(gxj−1, gxj)⊕Q(gxj , gxp)

≤ (

j−1∑
γ=0

rγ + βj)Q(gx0, gx1)⊕ aj1Q(gx0, gxp−j). (4.1.13)

By repeated application of (4.1.13), we obtain after sth step

Q(gx0, gxp) ≤ [1+aj1+(aj1)
2
+....+(aj1)

s−1
](

j−1∑
γ=0

rγ+βj)Q(gx0, gx1)⊕(aj1)
s
Q(gx0, gxt)

≤ [1+aj1+(aj1)
2
+....+(aj1)

s−1
](

j−1∑
γ=0

rγ+βj)Q(gx0, gx1)⊕(aj1)
s
(

j−1∑
γ=0

rγ+βj)Q(gx0, gxt)

≤ [1 + aj1 + (aj1)
2
+ ....+ (aj1)

s
](

j−1∑
γ=0

rγ + βj)M.

i.e. Q(gx0, gxp) ≤ 1

1−aj
1

( 1
1−r + βj)M.

Thus for the case p > j we have,

Q(gx0, gxp) ≤
1

1− aj1
(

1

1− r
+ βj)M (4.1.14)

Now from (4.1.10), it follows that ∀m,n ∈ N with m > n,

Q(gxn, gxm) ≤ an
1

1−aj
1

( 1
1−r + βj)M ⊕ βnQ(gx0, gx1), i.e.,

Q(gxn, gxm) ≤ bnM (4.1.15)

where bn =
an
1

1−aj
1

( 1
1−r + βj) and bn → 0 as n → ∞.

Now M = Q(gx0, gx1)⊕ .....⊕Q(gx0, gxj) ∈ P.
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Thus ∃z ∈ E such that M = ||z|| ∈ P ⊂ E∗(I).
So from (4.1.15), we get

Q(gxn, gxm) ≤ bn||z||. (4.1.16)

Since P is a normal cone with normal constant K we have Q(gxn, gxm) ⪯ Kbn||z||
⇒ Qi

α(gxn, gxm) ≤ Kbn||z||iα for i = 1, 2 and α ∈ (0, 1] and for m > n, m, n ∈ N
⇒ lim

m,n→∞
Qi

α(gxn, gxm) = 0 for i = 1, 2 and α ∈ (0, 1]

⇒ lim
m,n→∞

Q(gxn, gxm) = 0̄.

It follows that {gxn} is a Cauchy sequence in g(X). Since g(X) is complete, ∃u ∈
g(X) such that gxn → u as n → ∞.
By (4.1.16) and (Q3), we have

Q(gxn, u) ≤ bn||z||. (4.1.17)

From (4.1.17), since P is normal we get

Q(gxn, u) ⪯ Kbn||z||
⇒Qi

α(gxn, u) ≤ Kbn||z||iα for i = 1, 2 and α ∈ (0, 1] (4.1.18)

Suppose u is not a point of coincidence of f and g. Then by hypothesis and (4.1.18)
we have for some α0 ∈ (0, 1],
0 < inf{Q1

α0
(gx, u) +Q1

α0
(fx, u) +Q1

α0
(gx, fx) : x ∈ X}

≤ inf{Q1
α0
(gxn, u) +Q1

α0
(fxn, u) +Q1

α0
(gxn, fxn) : n ∈ N}

= inf{Q1
α0
(gxn, u) +Q1

α0
(gxn+1, u) +Q1

α0
(gxn, gxn+1) : n ∈ N}

≤ inf{kbn||z||1α0
+ kbn+1||z||1α0

+ rnKQ(gx0, gx1) : n ∈ N}
= 0 (bn → 0, rn → 0 as n → ∞), which is a contradiction.
Thus u is a point of coincidence of f and g. So ∃z ∈ X such that fz = gz = u.
For uniqueness, suppose ∃w( ̸= u) ∈ X such that fx = gx = w for some x ∈ X.
Then Q(u, u) = Q(fz, fz) ≤ a1Q(gz, gz)⊕ a2Q(gz, fz)⊕ a3Q(gz, fz) = (a1 + a2 +
a3)Q(u, u).
Since a1 + a2 + a3 < 1, it follows that Q(u, u) = 0̄.
By similar argument as above we have Q(w,w) = 0̄.
Now Q(u,w) = Q(fz, fx) ≤ a1Q(gz, gx)⊕ a2Q(gz, fz)⊕ a3Q(gx, fx)
≤ a1Q(u,w)⊕ a2Q(u, u)⊕ a3Q(w,w) = a1Q(u,w)
It follows that Q(u,w) = 0̄ ( since a1 < 1 ).
Now we have Q(u,w) = 0̄ and Q(u, u) = 0̄.
Thus for any e ∈ E with 0̄ ≪ ||e|| we get Q(u,w) ≪ ||e|| and Q(u, u) ≪ ||e|| and
hence by (Q4) we get d(w, u) ≪ ||e||. Since e ∈ E is arbitrary we have d(w, u) = 0.
Hence w = u. Thus f and g have a unique point of coincidence in X.
If f and g are weakly compatible, then by Proposition 2.18, f and g have a unique
common fixed point. □

The above Theorem 4.1 is justified by the following example.

Example 4.2. Consider the Example 3.3. Take X = {x1, x2, x3, x4}.
We define f, g : X → X by fx = x3 ∀x ∈ X,
g(x) = x3 for x ∈ {x1, x3, x4} and g(x) = x4 for x = x2.
We see that x3 is the unique point of coincidence of f and g.
Now we show that ∀y ∈ X, y ̸= x3,
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Inf {Q1
α0
(gx, y) +Q1

α0
(fx, y) +Q1

α0
(gx, fx) : x ∈ X} > 0.

For, take x = x1 then for y ̸= x3 we have,
Inf {Q1

α0
(gx1, y) +Q1

α0
(fx1, y) +Q1

α0
(gx1, fx1)}

= Inf {Q1
α0
(x3, y) +Q1

α0
(x3, y) +Q1

α0
(x3, x3)} = 1 + 1 + 0 = 2 > 0.

Similarly for x = x2, x4 and for y ̸= x3 we have
Inf {Q1

α0
(gx, y) +Q1

α0
(fx, y) +Q1

α0
(gx, fx)} > 0.

Hence ∀y ∈ X, y ̸= x3, Inf {Q1
α0
(gx, y) +Q1

α0
(fx, y) +Q1

α0
(gx, fx) : x ∈ X} > 0.

Since ∀x, y ∈ X, Q(fx, fy) = Q(x3, x3) = 0̄, we have,
Q(fx, fy) ≤ a1Q(gx, gy)⊕ a2Q(gx, fx)⊕ a3Q(gy, fy) where a1, a2, a3 ∈ [0, 1)
with a1 + a2 + a3 < 1 holds ∀x, y ∈ X.
Thus all the conditions of the Theorem 4.1 are hold. So x3 is the unique common
fixed point of f and g in X.

5. Conclusion

Following the concept of fuzzy c-distance in cone metric space introduced by the
present author, in this paper, an idea of generalized fuzzy c-distance in fuzzy cone
metric space is introduced. It is seen that every fuzzy c-distance is a generalized
fuzzy c-distance but converse is not true.
There is an advantage to use generalized fuzzy c-distance to establish common fixed
point theorems in fuzzy cone metric spaces, since it is not required that contraction
mappings be weakly compatible.
Since fixed point theorems are used to the existence theorems for solutions of the
integral equations, I think that the results of this paper will be used to the existence
theorems for solutions of the fuzzy integral equations.
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