Annals of Fuzzy Mathematics and Informatics Volume 10, No. 3, (September 2015), pp. 413–422 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Simple and generalized T-fuzzy bi-ideals of Γ -semigroup

S. COUMARESSANE, V. CHINNADURAI, N. THILLAIGOVINDAN

Received 23 September 2014; Revised 13 January 2015; Accepted 15 February 2015

ABSTRACT. In this paper, we introduce the concept of T-fuzzy interior ideal, T-fuzzy simple, T-fuzzy bi-ideal, and generalized T-fuzzy bi-ideal of a Γ -semigroup. We characterize Γ -semigroups through T-fuzzification. We find equivalent conditions on these fuzzy subsets in simple Γ -semigroups and Γ -semigroups. Finally, we establish a necessary and sufficient condition for a T-fuzzy bi-ideal to be a generalized T-fuzzy bi-ideal in a Γ -semigroup.

2010 AMS Classification: 18B40, 03E72, 16D25.

Keywords: Γ -semigroup, T-fuzzy ideal, T-fuzzy interior-ideal, Generalized T-fuzzy bi-ideal.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. INTRODUCTION

The fundamental concepts of fuzzy set was introduced by Zadeh[12]. Sen [8] has introduced Γ -semigroup in 1981. Sen and Saha [9] have introduced Γ -semigroup different from the first definition of Γ -semigroup in the sense of Sen [8]. *T*-fuzzy concept is a generalization of fuzzy set theory. In 1960, Schweiger and Sklar [7] introduced the concept of *t*-norm for generalizing the triangular inequality of metric spaces. Using *t*-norm, Anthony and Sherwood [1] first redefined Rosenfeld's [6] notion of fuzzy groups. Since then *t*-norm has played an important role in fuzzy algebraic structure [1, 2, 3, 5, 9, 10, 11]. Coumaressane[3] introduced the concept of *T*-fuzzy subset of semiring by introducing the notions of *T*-fuzzy *k*-ideal and *T*-fuzzy *k*-closure in semirings and he generalized the fuzzy subset through triangular norms in semirings.

In this paper, we introduce the concept of T-fuzzy interior ideal, T-fuzzy simple, T-fuzzy bi-ideal, and generalized T-fuzzy bi-ideal of a Γ -semigroup. We characterize Γ -semigroups by T-fuzzification and exhibit by examples that T-fuzzy interior ideal is not fuzzy interior ideal, T-fuzzy interior ideal is not T-fuzzy ideal and generalized T-fuzzy bi-ideal is not generalized fuzzy bi-ideal of a Γ -semigroup.

We find equivalent conditions on these fuzzy subsets in simple Γ -semigroups and Γ -semigroups. Finally, we establish a necessary and sufficient condition for a *T*-fuzzy bi-ideal to be a generalized *T*-fuzzy bi-ideal in a Γ -semigroup.

2. Preliminaries

We recall some definitions and results which will be used in later section of this paper.

Definition 2.1. Let A and B be subsets of semigroup S. The product of A and B is defined as $AB = \{ab \in S \mid a \in A \text{ and } b \in B\}$. A nonempty subset A of S is called a subsemigroup of S if $AA \subseteq A$. A nonempty subset A of S is called a left (resp. right) ideal of S if $SA \subseteq A$ (resp. $AS \subseteq A$). A is called a two-sided ideal (simply, ideal) of S if it is both a left and a right ideals of S. A nonempty subset A of S is called an interior ideal of S if $AA \subseteq A$ and $SAS \subseteq A$. A subsemigroup A of S is called a quasi-ideal of S if $AS \cap SA \subseteq A$ and it is called a bi-ideal of S if $ASA \subseteq A$. A semigroup S is called regular if for each element $a \in S$ there exists $x \in S$ such that a = axa. A function μ from a nonempty set A into the unit interval [0, 1] is called a fuzzy subset of A.

Definition 2.2 ([4]). Let M and Γ be any two nonempty sets. M is called a Γ -semigroup if, for all $a, b, c \in M$ and $x, y \in \Gamma$,

(1) $M\Gamma M \subseteq M$ and $\Gamma M\Gamma \subseteq \Gamma$;

(2) (axb)yc = a(xby)c = ax(byc).

Notation 2.3 ([4]). For subsets A and B of M, let $A\Gamma B = \{a\gamma b \mid a \in A, b \in B, \gamma \in \Gamma\}.$

Definition 2.4 ([4]). Let M be a Γ -semigroup and A a nonempty subset of M. A is called a left (resp. right) ideal of M if

 $M\Gamma A \subseteq A \text{ (resp. } A\Gamma M \subseteq A \text{).}$

A is a two-sided ideal (simply, ideal) of a Γ -semigroup M if it is both a left ideal and a right ideal of M.

Throughout this paper, M denotes Γ -semigroup and \mathbf{M} denote the characteristic function of M unless otherwise specified.

Definition 2.5 ([4]). A subsemigroup B of M is called a bi-ideal of M if $B\Gamma M\Gamma B \subseteq B$.

Definition 2.6. Let *I* be a subset of a Γ -semigroup. Define a function $\chi_I(x) : \mu \to [0,1]$ by

$$\chi_I(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise} \end{cases}$$

for all $x \in M$. Then χ_I is a fuzzy subset of μ . If I = M we denote $\chi_M = \mathbf{M}$. Clearly **M** is a fuzzy subset of M.

Definition 2.7. A subset A of a Γ -semigroup M is called an interior ideal if (1) $A\Gamma A \subseteq A$;

(2) $M\Gamma A\Gamma M \subseteq A$.

Definition 2.8 ([4]). Let μ and λ be any two fuzzy subsets of M. Then $\mu \wedge \lambda$ and $\mu * \lambda$ are fuzzy subsets of M defined by

 $(\mu \wedge \lambda)(x) = min\{\mu(x), \lambda(x)\},\$

$$(\mu * \lambda)(z) = \begin{cases} \sup_{z=x\gamma y} \{\min\{\mu(x), \lambda(y)\}\}, \text{ if } z \text{ can be expressed as } z = x\gamma y, \\ \text{where } x, y, z \in M \text{ and } \gamma \in \Gamma, \\ 0, & \text{otherwise.} \end{cases}$$

Definition 2.9. A fuzzy subset μ of M is called a fuzzy left (resp. right) ideal of M if for all $a, b \in M$ and $\gamma \in \Gamma$,

(1) $\mu(a\gamma b) \ge \min\{\mu(a), \mu(b)\};$

(2) $\mu(a\gamma b) \ge \mu(b)$ (resp. $\mu(a\gamma b) \ge \mu(a)$).

 μ is called a *fuzzy ideal* of M if it is both a fuzzy left and a fuzzy right ideals of M.

Definition 2.10. A fuzzy subset μ of M is called a fuzzy interior ideal of M if for all $a, b, x \in M$ and $\gamma_1, \gamma_2, \gamma \in \Gamma$,

(1) $\mu(a \gamma b) \ge \min\{\mu(a), \mu(b)\};$ (2) $\mu(a \gamma_1 x \gamma_2 b) \ge \mu(x).$

Definition 2.11. A fuzzy subset λ of M is called a fuzzy generalized bi-ideal of M if

 $\lambda(xyz) \ge \min\{\lambda(x), \lambda(z)\},\$ for all $x, y, z \in M.$

Definition 2.12 ([2]). A *t*-norm is a function $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ that satisfies the following conditions for all $x, y, z \in [0, 1]$,

(T1) T(x, 1) = x; (T2) $T(x', y') \le T(x, y)$ if $x' \le x$ and $y' \le y$ (monotonicity); (T3) T(x, y) = T(y, x) (commutative); (T4) T(x, T(y, z)) = T(T(x, y), z) (associativity).

In general, for any t-norm T, $T(x, y) \leq \min\{x, y\}$, T(x, 0) = 0, T(0, 0) = 0, and T(1, 1) = 1 are always true.

Definition 2.8 is now generalized using *t*-norm as follows.

Definition 2.13. Let λ and μ be any two fuzzy subsets of M and T be any t-norm. Then $\mu \cap \lambda$ and $\mu *_T \lambda$ are fuzzy subsets of M defined by $(\mu \cap \lambda)(x) = T(\mu(x), \lambda(x)).$

$$(\mu *_T \lambda)(x) = \begin{cases} \sup_{x=y\gamma z} \{T(\mu(y), \lambda(z))\}, \text{ if } x \text{ can be expressed as } x = y\gamma z, \\ \text{where } x, \ y, \ z \in M \text{ and } \gamma \in \Gamma, \\ 0, & \text{otherwise.} \end{cases}$$

For any fuzzy sets μ , λ and θ under any t-norm T,

 $\mu *_T \lambda *_T \theta = \mu *_T (\lambda *_T \theta)$ $= (\mu *_T \lambda) *_T \theta$

is always true. For any $x, y, z \in M$ and $\gamma \in \Gamma$ such that $x = y\gamma z$, we have

$$(\mu *_T \lambda *_T \theta)(x) = \sup_{\substack{x=y\gamma z \\ x=y\gamma z}} \{T((\mu *_T \lambda)(y), \theta(z))\}$$

=
$$\sup_{\substack{x=y\gamma z \\ x=y\gamma z}} \{T[\sup_{\substack{y=p\gamma_1q \\ y=p\gamma_1q\gamma z}} T(\mu(p), \lambda(q)), \theta(z)]\}$$

=
$$\sup_{\substack{x=p\gamma_1q\gamma z \\ x=p\gamma_1q\gamma z}} \{T[\mu(p), T(\lambda(q), \theta(z))]\}.$$

Theorem 2.14. Let I be a nonempty subset of M. I is left (resp. right) ideal of M if and only if χ_I is a T-fuzzy left (resp. right) ideal of M.

Proof. Proof is very similar to ([3], Lemma 3.2), hence it is omitted.

Lemma 2.15. For any nonempty subsets A and B of M,

(1) $\chi_A \cap \chi_B = \chi_{A \cap B};$ (2) $\chi_A * \chi_B = \chi_{A \Gamma B};$ (3) $\chi_A *_T \chi_B = \chi_{A \Gamma B}.$

Proof. Proof of (1) and (2) followed from ([4], Lemma 3.9).

(3). Let $x \in M$. Suppose $x \in A\Gamma B$. Then there exists $a \in A$, $\gamma \in \Gamma$ and $b \in B$ such that $x = a\gamma b$. Thus, for $x = a\gamma b$,

$$(\chi_A *_T \chi_B)(x) = \sup_{\substack{x = u\gamma_1 v}} \{T(\chi_A(u), \chi_B(v))\}$$

$$\geq T(\chi_A(a), \chi_B(b))$$

$$= T(1, 1)$$

$$= 1$$

For $0 \leq (\chi_A *_T \chi_B)(x) \leq 1$, we have

$$(\chi_A *_T \chi_B)(x) = 1$$

= $\chi_{A \Gamma B}(x).$

In the case when $x \notin A\Gamma B$, then x cannot be expressed as $x = a\gamma b$ for any $a \in A$, $\gamma \in \Gamma$ and $b \in B$. Now,

$$(\chi_A *_T \chi_B)(x) = 0$$

= $\chi_{A\Gamma B}(x).$

Hence $(\chi_A *_T \chi_B)(x) = \chi_{A \cap B}(x)$ for all $x \in M$. Thus $\chi_A *_T \chi_B = \chi_{A \cap B}$.

3. Simple and generalized T-fuzzy bi-ideals of Γ -semigroup

In this section we define the concepts of T-fuzzy interior-ideal, generalized T-fuzzy bi-ideal and simple Γ -semigroup in M. We establish the conditions under which these are equivalent.

Definition 3.1. A fuzzy subset μ of M is called a fuzzy interior ideal of M with respect to t-norm T (in short, T-fuzzy interior ideal) if

(1) $\mu(a \gamma b) \ge T(\mu(a), \mu(b));$

(2) $\mu(a \gamma_1 x \gamma_2 b) \ge \mu(x).$

The following lemma gives the one-to-one correspondence between interior ideal and T-fuzzy interior ideal of a Γ -semigroup.

Lemma 3.2. Let A be a nonempty subset of a Γ -semigroup M. A is an interior ideal of M if and only if χ_A is a T-fuzzy interior ideal of M.

Proof. Let A be an interior ideal of M. Suppose that $\chi_A(x \gamma_1 a \gamma_2 y) < \chi_A(a)$ for some $x, a, y \in M$ and $\gamma_1, \gamma_2 \in \Gamma$. Then $\chi_A(a) = 1$ implies that $a \in A$. Since A is an interior ideal of $M, x \gamma_1 a \gamma_2 y \in M\Gamma A\Gamma M \subseteq A$. This implies that $\chi_A(x \gamma_1 a \gamma_2 y) = 1$, a contradiction. Thus $\chi_A(x \gamma_1 a \gamma_2 y) \ge \chi_A(a) \forall x, a, y \in M$ and $\gamma_1, \gamma_2 \in \Gamma$. Again suppose that $\chi_A(a \gamma b) < T(\chi_A(a), \chi_A(b))$ for some $a, b \in M$ and $\gamma \in \Gamma$. Then $\chi_A(a) = 1$ and $\chi_A(b) = 1$. Hence $a, b \in A$. Since A is an interior ideal of M, $a \gamma b \in A$ and $\chi_A(a \gamma b) = 1$, a contradiction. Hence $\chi_A(a \gamma b) \ge T(\chi_A(a), \chi_A(b))$ for all $a, b \in M$ and $\gamma \in \Gamma$.

Conversely, assume that χ_A is a T-fuzzy interior ideal of M. Let

 $z = x \gamma_1 a \gamma_2 y \in M\Gamma A\Gamma M$ where $x, y \in M, \gamma_1, \gamma_2 \in \Gamma$ and $a \in A$. Then, $\chi_A(x\gamma_1a\gamma_2y) \ge \chi_A(a) = 1$. Thus $\chi_A(x\gamma_1a\gamma_2y) = 1$ which implies that $x\gamma_1a\gamma_2y \in A$. Thus $M\Gamma A\Gamma M \subseteq A$. Let $x, y \in A$, and $\gamma \in \Gamma$. Since χ_A is a T-fuzzy interior ideal of M, $\chi_A(x\gamma y) \ge T(\chi_A(x), \chi_A(y)) = T(1, 1) = 1$.

Hence, $x\gamma y \in A$, which implies that $A\Gamma A \subseteq A$. This shows that A is an interior ideal of M.

Remark 3.3. Every fuzzy interior ideal of a Γ -semigroup M is a T-fuzzy interior ideal of M. However the converse is not true in general, which is shown in the following example.

Then (M, \bullet) is a Γ -semigroup. Define fuzzy subset μ of M as

$$\mu(x) = \begin{cases} 0.9 & \text{if } x = 0, \\ 0.3 & \text{if } x = 1, \\ 0.25 & \text{if } x = 2, \\ 0.2 & \text{if } x = 3. \end{cases}$$

Let $T : [0,1] \times [0,1] \to [0,1]$ be a function defined by T(a,b) = a.b. Then T is a t-norm. Now $\mu(x\gamma y) \ge T(\mu(x), \mu(y))$ for all $x, y \in M$ and $\gamma \in \Gamma$ and $\mu(a\gamma_1 x \gamma_2 b) \ge \mu(x)$ for all $a, x, b \in M$ and $\gamma_1, \gamma_2 \in \Gamma$. Thus μ is a T-fuzzy interior ideal of M. However $\mu(1.2.1) \not\ge \min\{\mu(1), \mu(1)\}$. Hence μ is not a fuzzy interior ideal of M.

Now we find the equivalence of T-fuzzy interior ideal in terms of product of T-fuzzy sets.

Theorem 3.5. Let μ be a *T*-fuzzy subsemigroup of *M*. μ is a *T*-fuzzy interior ideal of *M* if and only if $\mathbf{M} *_T \mu *_T \mathbf{M} \leq \mu$.

Proof. Assume that μ is a *T*-fuzzy interior ideal of *M*. Let $x \in M$ and $a, b, p, q \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x = a \gamma_1 b$ and $b = p \gamma_2 q$. Since $\mu(a \gamma_1 p \gamma_2 q) \ge \mu(p)$, we have

$$(\mathbf{M} *_T \mu *_T \mathbf{M})(x) = \sup_{\substack{x=a\gamma_1 p \ \gamma_2 q \\ \leq \sup_{x=a\gamma_1 p \ \gamma_2 q}}} \{T(\mathbf{M}(a), T(\mu(p), \mathbf{M}(q))\}$$

$$\leq \sup_{x=a\gamma_1 p \ \gamma_2 q} \{\mu(p)\}$$

$$\leq \mu(a\gamma_1 p \ \gamma_2 q) = \mu(x).$$

If x cannot be expressed as $x = a \gamma_1 p \gamma_2 q$, then $(\mathbf{M} *_T \mu *_T \mathbf{M})(x) = 0 \le \mu(x)$. Thus $(\mathbf{M} *_T \mu *_T \mathbf{M})(x) \le \mu(x)$, for all $x \in M$.

Conversely, assume that $\mathbf{M} *_T \mu *_T \mathbf{M} \leq \mu$ for any *T*-fuzzy subsemigroup μ of *M*.

$$\mu(a \gamma_1 x \gamma_2 b) \ge (\mathbf{M} *_T \mu *_T \mathbf{M})(a \gamma_1 x \gamma_2 b)$$

=
$$\sup_{\substack{a \gamma_1 x \gamma_2 b = p \gamma_3 q \gamma_4 r}} \{T(\mathbf{M}(p), T(\mu(q), \mathbf{M}(r)))\}$$

$$\ge T(\mathbf{M}(a), T(\mu(x), \mathbf{M}(b)))$$

= $\mu(x).$

Thus μ is a *T*-fuzzy interior ideal of *M*.

Remark 3.6. Every T-fuzzy ideal of M is a T-fuzzy interior ideal of M. But the converse is not true in general, which is shown in the following example.

Example 3.7. Consider the Γ -semigroup (M, \bullet) , fuzzy subset μ and t-norm T as in Example 3.4. $\mu(x\gamma y) \ge T(\mu(x), \mu(y))$ for all $x, y \in M$ and $\gamma \in \Gamma$ and $\mu(a\gamma_1 x \gamma_2 b) \ge \mu(x)$ for all $a, x, b \in M$ and $\gamma_1, \gamma_2 \in \Gamma$. $\mu(x\gamma y) \ge T(\mu(x), \mu(y))$ and $\mu(a \gamma_1 x \gamma_2 b) \ge \mu(x)$ for all $x, y, a, b \in M, \gamma_1, \gamma_2 \in \Gamma$. Thus μ is a T-fuzzy interior ideal of M. Since $\mu(1.2.1) \not\ge \mu(1), \mu$ is not a T-fuzzy ideal of M.

Definition 3.8. A Γ -semigroup M is called left (right) simple if it contains no proper left (right) ideal. A Γ -semigroup M is called two-sided (simply, simple) simple if it contains no proper two sided ideal.

Definition 3.9. A Γ -semigroup M is called T-fuzzy left (right) simple if every T-fuzzy left (right) ideal of M is a constant function.

A Γ -semigroup M is called T-fuzzy two-sided simple (simply, T-fuzzy simple) if every T-fuzzy two-sided ideal of M is a constant function.

Note 3.10. If M is simple, then every left, right and two-sided ideals of M are M itself. This implies, if M is simple, then any interior ideal of M is M itself.

For, $a \in M$ clearly $M\Gamma a, a\Gamma M$ and $M\Gamma M$ are respectively left, right and twosided ideals of M. Since M is simple, $M\Gamma a = M$, $a\Gamma M = M$ and $M\Gamma M = M$. Thus M is an interior ideal of M.

The following theorem gives relation of simple Γ -semigroup and T-fuzzy set in M.

Theorem 3.11. For a Γ -semigroup M, the following conditions are equivalent:

- (1) M is left (right) simple,
- (2) M is T-fuzzy left (right) simple.

Proof. (1) \Rightarrow (2). Let M be left simple. Let μ be any T-fuzzy left ideal of M and $a, b \in M$. Since $M\Gamma a$ and $M\Gamma b$ are left ideals of Γ -semigroup M and M is left simple, we have $M\Gamma a = M$ and $M\Gamma b = M$. Therefore there exist $x, y \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \gamma_1 a = b$ and $y \gamma_2 b = a$. Now μ being a T-fuzzy ideal,

 $\mu(a) = \mu(y \gamma_2 b) \ge \mu(b) = \mu(x \gamma_1 a) \ge \mu(a)$

and so $\mu(a) = \mu(b)$. Since a and b are arbitrary elements of M, μ is a constant function and so M is T-fuzzy left simple. Thus $(1) \Rightarrow (2)$.

 $(2) \Rightarrow (1)$. Assume that (2) holds. Let A be any left ideal of M. Then by Theorem 2.14, χ_A is a T-fuzzy left ideal of M. By assumption, χ_A is a constant function. Since χ_A takes only the values 1 or 0, $\chi_A(x) = 1$ otherwise χ_A is an empty fuzzy subset of M, and so $x \in A$. This implies that $M \subseteq A$. Therefore M = A, which implies that M is left simple and we have $(2) \Rightarrow (1)$.

The following theorem gives equivalent condition on a simple Γ -semigroup M in terms of its T-fuzzy simple ideals and T-fuzzy interior ideals.

Theorem 3.12. For a Γ -semigroup M, the following conditions are equivalent:

- (1) M is simple;
- (2) M is T-fuzzy simple;
- (3) Every T-fuzzy interior ideal of M is a constant.

Proof. (1) and (2) are equivalent by Theorem 3.11.

Assume that (2) holds. Let μ be any *T*-fuzzy interior ideal of *M* and $a, b \in M$. Clearly, $M\Gamma b\Gamma M$ is an interior ideal of *M*. Since *M* is simple by Note 3.10 $M\Gamma b\Gamma M = M$. Thus there exist $x, y \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $x \gamma_1 b \gamma_2 y = a$. Since μ is a *T*-fuzzy interior ideal of *M*, we have $\mu(a) = \mu(x \gamma_1 b \gamma_2 y) \ge \mu(b)$. In a similar way, one can show that $\mu(b) \ge \mu(a)$. Therefore $\mu(a) = \mu(b)$. Thus μ is constant and (2) \Rightarrow (3) holds.

(3) \Rightarrow (1). Every *T*-fuzzy ideal of *M* is a *T*-fuzzy interior ideal of *M*. By Note 3.10 and Theorem 3.11, *M* is simple.

Definition 3.13. A fuzzy subset μ of M is called a T-fuzzy bi-ideal of M if for all $x, y \in M$ and $\gamma \in \Gamma$,

- (1) $\mu(x\gamma y) \ge T(\mu(x), \ \mu(y));$
- (2) $\mu *_T \mathbf{M} *_T \mu \leq \mu$.

Definition 3.14. A fuzzy subset μ of M is called a generalized T-fuzzy bi-ideal of M if $\mu *_T \mathbf{M} *_T \mu \leq \mu$.

It is clear that every T-fuzzy bi-ideal of M is a generalized T-fuzzy bi-ideal of M. We strongly believe that the converse of this statement need not hold in general. That is, a generalized T-fuzzy bi-ideal of M need not be a T-fuzzy bi-ideal of M.

Lemma 3.15. Every generalized fuzzy bi-ideal is a generalized T-fuzzy bi-ideal of M.

Proof. Let μ be a generalized fuzzy bi-ideal of M. Then $\mu * \mathbf{M} * \mu \leq \mu$ where $(\mu * \mathbf{M})(x) = \sup_{\substack{x=a \ \gamma \ b}} \{\min\{\mu(a), \mathbf{M}(b)\}\}$. Ascertain that μ satisfies $\mu *_T \mathbf{M} *_T \mu \leq \mu$ under t-norm T. Now

$$\begin{split} \mu(x) &\geq (\mu * \mathbf{M} * \mu)(x) \\ &= \sup_{x=a \gamma b} \{\min\{(\mu * \mathbf{M})(a), \mu(b)\}\} \\ &\geq \sup_{x=a \gamma b} \{T((\mu * \mathbf{M})(a), \mu(b))\} \end{split}$$

$$= \sup_{x=a \gamma b} \{ T(\sup_{a=p \gamma_1 q} \{ \min(\mu(p), \mathbf{M}(q)), \mu(b) \}) \}$$

=
$$\sup_{x=p \gamma_1 q \gamma b} \{ T(\min\{\mu(p), \mathbf{M}(q)\}, \mu(b)) \}$$

>
$$\sup_{x=p \gamma_1 q \gamma b} \{ T(T(\mu(p), \mathbf{M}(q)), \mu(b)) \}$$

=
$$(\mu *_T \mathbf{M} *_T \mu)(x),$$

and hence $\mu \ge (\mu *_T \mathbf{M} *_T \mu)$.

The converse of Lemma 3.15 is not true in general, which is shown in the following example.

Example 3.16. Let $M = \{0, a, b, c, d\}$ and $\Gamma = \{0, a, b\}$ define '•' in M as follows:

٠	0	a	b	c	d
0	0	0	0	0	0
$\overset{\circ}{b}$	0	a	a	a	a
b	$\begin{array}{c} \check{0} \\ 0 \\ 0 \end{array}$	a	b	b	b
\tilde{c}	0	a	c	c	c
d	0	a	d	d	d

One can easily check that (M, \bullet) is a Γ -semigroup. Let μ be a fuzzy subset of M defined by

$$\mu(x) = \begin{cases} 0.7 & \text{if } x = 0, \\ 0.5 & \text{if } x = a, c, \\ 0.6 & \text{if } x = b, \\ 0.45 & \text{if } x = d, \end{cases}$$

and let $T: [0, 1] \times [0, 1] \to [0, 1]$ be a function defined by $T(a, b) = ab, a, b \in [0, 1]$, a product norm. Then μ is a T-fuzzy bi-ideal of M and hence μ is a generalized Tfuzzy bi-ideal of M. However, since $(\mu * \mathbf{M} * \mu)(babab) > \mu(a)$, we have $(\mu * \mathbf{M} * \mu) > \mu$. Thus μ is not a generalized fuzzy bi-ideal of M.

Lemma 3.17. A non-empty subset I of M is a generalized bi-ideal of M if and only if χ_I is a generalized T-fuzzy bi-ideal of M.

Proof. Assume that I is a generalized bi-ideal of M. Consider $\chi_I * \mathbf{M} * \chi_I = \chi_{I\Gamma M\Gamma I} \leq \chi_I$ by Lemma 2.15(2). Hence by Lemma 3.15, χ_I is a generalized T-fuzzy bi-ideal of M.

Conversely, let us assume that χ_I is a generalized *T*-fuzzy bi-ideal of *M* for any subset *I* of *M*. Now let $x \in M$ such that $x \in I\Gamma M\Gamma I$. Then since χ_I is a generalized *T*-fuzzy bi-ideal, we have

$$\chi_I(x) \ge (\chi_I *_T \mathbf{M} *_T \chi_I)(x)$$

= $\chi_{(I \cap M \cap I)}(x)$ (by Lemma 3.15(3))
= 1 and so $x \in I$.

Thus $I\Gamma M\Gamma I \subseteq I$ implying that I is a generalized bi-ideal of M.

Corollary 3.18. Let I be any nonempty subset of M. I is a generalized bi-ideal of M if and only if χ_I is a generalized fuzzy bi-ideal of M.

Proof. If T = min, then the result follows immediately. \Box

The next theorem gives a necessary and sufficient condition for a fuzzy subset of Γ -semigroup M to be generalized T-fuzzy bi-ideal of M.

Theorem 3.19. Let μ be a fuzzy subset of M. μ is a generalized T-fuzzy bi-ideal of M if and only if $\mu(x \gamma_1 y \gamma_2 z) \ge T(\mu(x), \mu(z))$.

Proof. Let μ be a generalized *T*-fuzzy bi-ideal of *M*. Then $\mu *_T \mathbf{M} *_T \mu \leq \mu$. Let $a, x, y, z \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $a = x \gamma_1 y \gamma_2 z$. Then

$$\mu(x \gamma_1 y \gamma_2 z) = \mu(a) \ge (\mu *_T \mathbf{M} *_T \mu)(a) = \sup_{a=p \gamma q} \{T((\mu *_T \mathbf{M})(p), \mu(q))\} \ge T((\mu *_T \mathbf{M})(x\gamma_1 y), \mu(z)) \ge T(T(\mu(x), \mathbf{M}(y)), \mu(z)) = T(\mu(x), \mu(z)).$$

Conversely assume that $\mu(x \gamma_1 y \gamma_2 z) \ge T(\mu(x), \mu(z))$ is true for any fuzzy subset μ , t-norm $T, x, y, z \in M$ and $\gamma_1, \gamma_2 \in \Gamma$.

In the case when $(\mu *_T \mathbf{M} *_T \mu)(a) = 0 \le \mu(a)$. Otherwise $a = x \gamma y$ and $x = p \gamma_1 q$. Since $\mu(p \gamma_1 q \gamma y) \ge T(\mu(p), \mu(q))$ we have

$$(\mu *_T \mathbf{M} *_T \mu)(a) = \sup_{\substack{a=x \gamma y \\ y=x \gamma y}} \{T((\mu *_T \mathbf{M})(x), \mu(y))\}$$
$$= \sup_{\substack{a=p \gamma_1 q \gamma y \\ a=p \gamma_1 q \gamma y}} \{T(T(\mu(p), \mathbf{M}(q)), \mu(y))\}$$
$$= \sup_{\substack{a=p \gamma_1 q \gamma y \\ a=p \gamma_1 q \gamma y}} \{T(\mu(p), \mu(y))\}$$
$$= \sup_{\substack{a=p \gamma_1 q \gamma y \\ a=p \gamma_1 q \gamma y}} \{\mu(p \gamma_1 q \gamma y)\}$$
$$= \mu(a)$$

and hence we have $(\mu *_T \mathbf{M} *_T \mu)(a) \leq \mu(a)$ for all $a \in M$. Thus $\mu *_T \mathbf{M} *_T \mu \leq \mu$. \Box

Lemma 3.20. Let λ and μ be any fuzzy subset and generalized T-fuzzy bi-ideal of M respectively. Then the product $\lambda *_T \mu$ and $\mu *_T \lambda$ are generalized T-fuzzy bi-ideals of M.

Proof. Let λ and μ be any fuzzy subset and generalized T-fuzzy bi-ideal of M respectively. Now,

$$(\lambda *_T \mu) *_T \mathbf{M} *_T (\lambda *_T \mu) = \lambda *_T (\mu *_T \mathbf{M} *_T \lambda) *_T \mu$$

$$\leq \lambda *_T \mu *_T \mathbf{M} *_T \mathbf{M} *_T \mu$$

$$\leq \lambda *_T \mu *_T \mathbf{M} *_T \mu$$

$$\leq \lambda *_T \mu,$$

since μ is a generalized *T*-fuzzy bi-ideal and so we have $\lambda *_T \mu$ is a *T*-fuzzy bi-ideal of *M*. In a similar way, we can establish that $\mu *_T \lambda$ is a generalized *T*-fuzzy bi-ideal of *M*.

The following theorem exhibits a necessary and sufficient condition for a T-fuzzy bi-ideal to be a generalized T-fuzzy bi-ideal in M.

Theorem 3.21. For a regular Γ -semigroup M, μ is a generalized T-fuzzy bi-ideal of M if and only if μ is a T-fuzzy bi-ideal of M.

Proof. Let μ be a generalized T-fuzzy bi-ideal of M and $a, b, m \in M$ and $\gamma_1, \gamma_2 \in \Gamma$ such that $b = b \gamma_1 m \gamma_2 b$. Then,

$$\mu(a\gamma b) = \mu(a \gamma b \gamma_1 m \gamma_2 b)$$

$$\geq T(\mu(a), \mu(b)).$$

This means that μ is a *T*-fuzzy bi-ideal of *M*. Since every *T*-fuzzy bi-ideal of *M* is a generalized *T*-fuzzy bi-ideal of *M*, converse part is clear.

References

- J. M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl. 69 (1979) 124–130.
- [2] I. Chon, On Fuzzy Bi-ideals in Semigroups, Korean J. Math. 19 (3) (2011) 321-330.
- [3] S. Coumaressane, Generalization of Fuzzy k-ideals of Semirings through Triangular Norms, Proceedings of Dynamic Systems and Applications, Dynamic Publishers, Inc., U.S.A. 6(2012) 124–131.
- [4] P. Dheena and S. Coumaressane, Characterization of regular Γ-semigroups through fuzzy ideals, Iran. J. Fuzzy Syst. 4 (2) (2007) 57–68.
- [5] A. Garmendia, M. Molero and A. Salvador, T-fuzzy prime ideals, Fuzzy sets and systems 80 (1996) 245–254.
- [6] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512-517.
- [7] B. Schweizer and A. Sklar, Statistical Metric spaces, Pacific J. Math. 10 (1) (1960) 313–334.
- [8] M. K. Sen, On Γ–Semigroups, Proceedings of International Conference on Algebra and its Applications, Decker publications, New York 301 (1981).
- [9] M. K. Sen and N. K. Saha, On $\Gamma-{\rm semigroups}$ I, Bull. Calcutta Math. Soc. 78 (3)(1986) 180–186.
- [10] J. Shen, On fuzzy regular subsemigroups of a semigroup, Inform. Sci. 51 (1990) 111-120.
- [11] H. Sherwood, Product fuzzy subgroups, Fuzzy sets and systems 11 (1983) 79–89.
- [12] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>S. COUMARESSANE</u> (coumaressane_s@yohoo.com)

Department of Mathematics, Perunthalaivar Kamarajar Government Arts College, Puducherry, postal code 605 107, India

V. CHINNADURAI (kv.chinnadurai@yahoo.com)

Department of mathematics, Annamalai University, Annamalainagar, postal code 608 002, India

N. THILLAIGOVINDAN (thillaigovindan.natesan@gmail.com)

Veltech Arts college, Avadi, Chennai, postal code 600 062, India