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Abstract. In this paper we introduce a new concept of soft convergence
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1. Introduction

In dealing with the real life problems involving uncertainties in different fields
of study such as economics, engineering, mathematical modeling, environmental
science, social science etc, several techniques like probability theory, fuzzy set theory,
rough set theory have been used for a quite long time. But those theories have their
own limitations. Particularly the inadequacy of parametrization tools had been a
matter of concern in fuzzy set theory and other relevant theories. In 1999, Molodtsov
[13] addressed this problem and initiated the theory of soft sets by introducing a
concept of parametrized family of sets. Molodtsov applied this theory in many fields
like smoothness of function, probability theory, measure theory and game theory,
Riemann integration, parron integration etc.

Later, P.K. Maji et al [11, 12] defined and studied several basic notions of soft set
theory. In 2011, Shabir and Naz [15] introduced soft topological spaces. Later Hazra
et al [10], Cagman et al [2] also studied soft topology in different ways. Algebraic
structure of soft setting was introduced by Aktas and Cagman [1] in studying soft
group. Recently studies on soft vector spaces and soft normed linear spaces have
been initiated by Das and Samanta [3, 4, 5, 6] and later on studied by Yazar et. al.
[18].
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Banach algebra is an important field of functional analysis, which has many ap-
plications in various branches of mathematics. Many examples of classical Banach
algebras are known, among them are B (X), the space of bounded linear operators
on X and C (X), the space of continuous functions on X. When X is a Hilbert
space, the space of bounded linear operators play a key role in quantum mechanics
and differential equations. We have introduced fuzzy Banach algebra in [16, 17].
Thus it is a natural query to extend the concept of Banach algebra in soft setting.

In this paper we introduce a definition soft Banach algebra and study some of its
properties. In section 2, preliminary results are given. In section 3, we introduce a
new concept of convergence of a sequence of soft elements. With this convergence we
have shown that the condition of finiteness of parameter set is not required in many
cases like completeness of finite dimensional soft normed linear spaces etc [3, 6]. In
this section it is also shown that the norm axiom N (5) is redundant, which was used
frequently to prove most of the theorems on soft normed linear spaces [3, 6] and we
are also able to define a soft topology generated by a soft norm in a soft normed
linear space. In section 4, we introduce the concept of soft Banach algebra and some
of its preliminary properties are studied. Section 5 concludes the paper.

2. Preliminaries

Definition 2.1 ([14]). Let U be a universe and E be a set of parameters. Let P(U)
denote the power set of U and A be a non-empty subset of E. A pair (F,A) is
called a soft set over U , where F is a mapping given by F : A → P(U). In other
words, a soft set over U is a parametrized family of subsets of the universe U . For
e ∈ A, F (e) may be considered as the set of e-approximate elements of the soft set
(F,A).

Definition 2.2 ([9]). For two soft sets (F,A) and (G,B) over a common universe
U , we say that (F,A) is a soft subset of (G,B) if

• 1. A ⊆ B and
• 2. for all e ∈ A, F (e) ⊆ G(e).

We write (F,A)⊂̃(G,B).
(F,A) is said to be a soft superset of (G,B), if (G,B) is a soft subset of (F,A).

We denote it by (F,A)⊃̃(G,B).

Definition 2.3 ([9]). Two soft sets (F,A) and (G,B) over a common universe U
are said to be equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset of
(F,A).

Definition 2.4 ([9]). The complement of a soft set (F,A) is denoted by (F,A)c =
(F c, A), where F c : A → P(U) is a mapping given by F c(α) = U − F (α), for all
α ∈ A.

Definition 2.5 ([12]). A soft set (F,E) over U is said to be an absolute soft set
denoted by Ǔ if for all e ∈ E, F (e) = U .

Definition 2.6 ([12]). A soft set (F,E) over U is said to be a null soft set denoted
by Φ if for all e ∈ E, F (e) = ϕ.
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Definition 2.7 ([12]). The union of two soft sets (F,A) and (G,B) over the common
universe U is the soft set (H,C) , where C = A

∪
B and for all e ∈ C,

H (e) =


F (e) if e ∈ A−B

G(e) if e ∈ B −A

F (e)
∪

G(e) if e∈A
∩
B.

We express it as (F,A)
∪̃
(G,B) = (H,C).

Definition 2.8 ([8]). The intersection of two soft sets (F,A) and (G,B) over
the common universe U is the soft set (H,C), where C = A

∩
B and for all

e ∈ C, H(e) = F (e)
∩
G(e). We write (F,A)

∩̃
(G,B) = (H,C).

Definition 2.9 ([15]). Let X be an initial universal set and E be the non-empty
set of parameters. The difference (H,E) of two soft sets (F,E) and (G,E) over X,
denoted by (F,E)− (G,E), is defined by H(e) = F (e)−G(e) for all e ∈ E.

Proposition 2.10 ([15]). Let (F,E) and (G,E) be two soft sets over X. Then

• (i) ((F,E)
∪̃
(G,E))c = (F,E)c

∩̃
(G,E)c

• (ii) ((F,E)
∩̃
(G,E))c = (F,E)c

∪̃
(G,E)c .

Definition 2.11 ([7]). Let X be a non-empty set and E be a non-empty param-
eter set. Then a function ϵ : E → X is said to be a soft element of X. A soft
element ϵ of X is said to belong to a soft set A of X, which is denoted by ϵ∈̃A, if
ϵ(e) ∈ A(e), ∀e ∈ E. Thus for a soft set A of X with respect to the index set E, we
have A(e) = {ϵ(e); ϵ∈̃A}, e ∈ E.

It is to be noted that every singleton soft set (a soft set (F,E) for which F (e) is a
singleton set, ∀e ∈ E) can be identified with a soft element by simply identifying
the singleton set with the element that it contains ∀e ∈ E.

Definition 2.12 ([7]). Let R be the set of real numbers and B(R), the collection
of all non-empty bounded subsets of R and A be taken as the set of parameters.
Then a mapping F : A → B(R) is called a soft real set. It is denoted by (F,A).
If specifically (F,A) is a singleton soft set, then after identifying (F,A) with the
corresponding soft element, it will be called a soft real number. We use notations
r̃, s̃, t̃ to denote soft real numbers whereas r̄, s̄, t̄ will denote a particular type of soft
real numbers such that r̄(λ) = r, for all λ ∈ A etc. For example 0̄ is the soft real
number where 0̄(λ) = 0, for all λ ∈ A.
For two soft real numbers r̃, s̃ it is defined

• r̃≤̃s̃ if r̃ (λ) ≤ s̃ (λ) , for all λ ∈ A.
• r̃≥̃s̃ if r̃ (λ) ≥ s̃ (λ) , for all λ ∈ A.
• r̃<̃s̃ if r̃ (λ) < s̃ (λ) , for all λ ∈ A.
• r̃>̃s̃ if r̃ (λ) > s̃ (λ) , for all λ ∈ A.

Let X be an initial universal set and A be the non-empty set of parameters. Let us
consider the collection of those soft sets (F,A) over X for which F (λ) ̸= ϕ, for all
λ ∈ A, which is denoted by S(X̌). For any soft set (F,A) ∈ S(X̌), the collection
of all soft elements of (F,A) is denoted by SE (F,A) and let Y be any collection
of soft elements of (F,A), then SS (Y ) is the soft set generated by Y such that
(SS (Y )) (λ)= {x̃ (λ) ; x̃ ∈ Y }, ∀λ ∈ A.
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Definition 2.13 ([3]). (Sums and Scalar products of soft sets) Let F1, F2, ......, Fn

be n soft sets in (V,A). Then F = F1 + F2 + ... + Fn is a soft set over (V,A) and
is defined as F (λ) = {x1 + x2 + ...+ xn;xi ∈ Fi(λ), i = 1, 2, ..., n}, ∀λ ∈ A. Let
α ∈ K(R or C) be a scalar and F be a soft set over (V,A), then αF is a soft set over
(V,A) and is defined as follows: αF = G, G(λ) = {αx;x ∈ F (λ)} , λ ∈ A.

Definition 2.14 ([3]). Let V be a vector space over a field K(R or C) and let A be
a parameter set. Let G be a soft set over (V,A). Now G is said to be a soft vector
space or soft linear space of V over K if G(λ) is a vector subspace of V , ∀λ ∈ A.

Proposition 2.15 ([3]). α(F +G) = αF +αG for all soft sets F,G over (V,A) and
α ∈ K.

Definition 2.16 ([3]). (Soft Vector Sub spaces) Let F be a soft vector space of
V over K. Let G : A → P(V ) be a soft set over (V,A). Then G is said to be a soft
vector subspace of F if
(i) for each λ ∈ A, G(λ) is a vector subspace of V over K and
(ii) F (λ) ⊇ G(λ), ∀λ ∈ A.

Theorem 2.17 ([3]). A soft subset G of a soft vector space F is a soft vector
sub-space of F if and only if for all scalars α, β ∈ K, αG+ βG ⊂ G.

Definition 2.18 ([3]). Let G be a soft vector space of V over K. Then a soft
element of V is said to be a soft vector of G. In a similar manner a soft element of
the soft set (K,A) is said to be a soft scalar, K being the scalar field.

Definition 2.19 ([3]). A soft vector x̃ in a soft vector space G is said to be the null
soft vector if x̃(λ) = θ, ∀λ ∈ A, θ being the zero element of V . It will be denoted
by Θ. A soft vector is said to be non-null if it is not a null soft vector.

Definition 2.20 ([3] ). Let x̃, ỹ be soft vectors of G and k̃ be a soft scalar. Then

the addition x̃ + ỹ of x̃, ỹ and scalar multiplication k̃.x̃ of k̃ and x̃ are defined by
(x̃ + ỹ)(λ) = x̃(λ) + ỹ(λ), k̃.x̃ (λ) = k̃(λ). x̃(λ), |k̃|(λ) = |k̃(λ)|, ∀λ ∈ A. Obviously,

x̃+ ỹ, k̃.x̃ are soft vectors of G.

Theorem 2.21 ([3]). In a soft vector space G of V over K,

• (i). 0̄.α̃ = Θ, for all α̃∈̃G;

• (ii). k̃.Θ = Θ, for all soft scalar k̃.
• (iii). (−̄1) α̃ = −α̃, for all α̃∈̃G.

Definition 2.22 ([3]). Let X̌ be the absolute soft vector space i.e., X̌(λ) = X,
∀λ ∈ A. Then a mapping ||.|| : SE(X̌) → R(A)∗ is said to be a soft norm on the
soft vector space X̌ if ||.|| satisfies the following conditions:

• (N1). ||x̃||≥̃0̄, for all x̃∈̃X̌;
• (N2). ||x̃|| = 0̄ if and only if x̃ = Θ;
• (N3). ||α̃.x̃|| = |α̃|||x̃|| for all x̃∈̃X̌ and for every soft scalar α̃;
• (N4). For all x̃, ỹ∈̃X̌, ||x̃+ ỹ||≤̃||x̃||+ ||ỹ||. The soft vector space X̌ with a
soft norm ||.|| on X̌ is said to be a soft normed linear space and is denoted
by (X̌, ||.||, A) or (X̌, ||.||).

(N1), (N2), (N3)and (N4) are said to be soft norm axioms.
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Example 2.23. [[3]] Every parametrized family of crisp norms ||.||λ : λ ∈ A on a
crisp vector space X can be considered as a soft norm on the soft vector space X̌.

Definition 2.24 ([3]). Let (X̌, ||.||, A) be a soft normed linear space and r̃>̃0̄ be a
soft real number. We define the followings;

B(x̃, r̃) =
{
ỹ∈̃X̌ : ||x̃− ỹ||<̃r̃

}
⊂ SE(X̌)

B̄(x̃, r̃) =
{
ỹ∈̃X̌ : ||x̃-ỹ||≤̃r̃

}
⊂SE(X̌)

S(x̃, r̃) =
{
ỹ∈̃X̌ : ||x̃− ỹ|| = r̃

}
⊂SE(X̌)

B(x̃, r̃), B̄(x̃, r̃) and S(x̃, r̃) are respectively called an open ball, a closed ball and a
sphere with centre at x̃ and radius r̃. SS(B(x̃, r̃)), SS(B(x̃, r̃)) and SS(S(x̃, r̃)) are
respectively called a soft open ball, a soft closed ball and a soft sphere with centre
at x̃ and radius r̃.

Definition 2.25 ([3]). A sequence of soft elements {x̃n} in a soft normed linear space
(X̌, ||.||, A) is said to be convergent and converges to a soft element x̃ if ||x̃n−x̃|| → 0̄
as n → ∞. This means for every ϵ̃>̃0̄, chosen arbitrarily, ∃ a natural number
N = N(ϵ̃), such that 0̄≤̃||x̃n − x̃||<̃ϵ̃ , whenever n > N . i.e., n > N ⇒ x̃n ∈ B(x̃, ϵ̃).
We denote this by x̃n → x̃ as n → ∞ or by limn→∞x̃n = x̃. x̃ is said to be the limit
of the sequence x̃n asn → ∞.

Definition 2.26 ([15]). Let τ be the collection of soft sets over X, then τ is said to
be soft topology on X if

(1) ϕ, X belong to τ
(2) the union of any number of soft sets in τ belongs to τ
(3) the intersection of any two soft sets in τ belongs to τ .
The triplet (X, τ,E) is called a soft topological space over X.

Definition 2.27 ([10]). Let τ be a family of soft sets over (U,E). Define τ(e) =
{F (e) : F ∈ τ} for e ∈ E. Then τ is said to be a topology of soft subsets over
(U,E) if τ(e) is a crisp topology on U∀e ∈ E. In this case, ((U,E), τ) is said to be a
topological space of soft subsets. If τ is a topology of soft subsets over (U,E), then
the members of τ are called open soft sets and a soft set F over (U,E) is said to be
closed soft set if F c ∈ τ .

3. Soft convergence and soft topology

In this section we discuss about a new type of convergence on a soft normed linear
space and introduce soft topology generated by soft norm on a soft normed linear
space and study some of its basic properties.

Lemma 3.1. In a soft normed linear space (X̌, ||.||), for any x̃∈̃X̌ and λ∈ A,
||x̃||(λ) = 0 if and only if x̃(λ) = θ.
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Proof. Let us consider a soft scalar α̃ such that α̃(µ) = 1 if µ = λ, α̃(µ) = 0 if
µ ̸= λ. Then (α̃x̃) (µ) = θ for µ ̸= λ, (α̃x̃) (µ) = x̃(λ) for µ = λ. From N (3) we
have ||α̃x̃|| =|α̃| ||x̃||. This shows that ||x̃||(λ) = 0 iff |α̃| ||x̃|| = 0̄ iff ||α̃x̃|| = 0̄ iff
α̃x̃ = θ̄ iff x̃(λ) = θ. □

Lemma 3.2. In a soft normed linear space
(
X̌, ||.||

)
, for each ξ ∈ X and λ ∈ A,

{||x̃|| (λ) : x̃ (λ) = ξ} is a singleton set.

Proof. In a soft normed linear space, by N (4), we have, for all x̃,ỹ∈̃X̌ ||x̃||=̃||x̃ −
ỹ + ỹ||≤̃||x̃ − ỹ|| + ||ỹ|| ⇒||x̃|| − ||ỹ||≤̃||x̃ − ỹ||. Similarly ||ỹ|| − ||x̃||≤̃||x̃ − ỹ||. So
| ||x̃|| − ||ỹ|| |≤̃||x̃ − ỹ||. Now if x̃,ỹ∈̃X̌ such that x̃ (λ) = ỹ (λ) then | ||x̃|| (λ) −
||ỹ|| (λ) |≤̃||x̃− ỹ|| (λ) = 0(by Lemma 3.1) since (x̃− ỹ) (λ) = x̃ (λ)− ỹ (λ) = θ. i.e.
||x̃|| (λ) = ||ỹ|| (λ), which proves the lemma. □

Proposition 3.3. (Decomposition Theorem) In a soft normed linear space(
X̌, ||.||

)
, if we define for each λ ∈ A, ||.||λ : X → R+ be a mapping such that

for each ξ ∈ X, ||ξ||λ = ||x̃|| (λ), where x̃ ˜∈ X̌ is such that x̃ (λ) = ξ. Then for each
λ ∈ A, (X, ||.||λ) is a normed linear space.

Proof. Since for λ ∈ A, {||x̃|| (λ) : x̃ (λ) = ξ} is a singleton set, the mapping ||.||λ :
X → R+ is well defined. Hence from soft norm axioms, it follows that (X, ||.||λ) is
a normed linear space λ ∈ A. □

Definition 3.4. In a soft normed linear space a sequence x̃n of soft elements is
said to be soft convergent and soft converges to a soft element x̃, if for any soft real
number ϵ̃>̃0̄ there exists a soft natural number Ñ such that ||x̃n − x̃||(λ) < ϵ̃ (λ) ∀
n ≥ Ñ (λ) , ∀ λ ∈ A and is denoted by limn→∞x̃n = x̃ or x̃n ↪→ x̃, where x̃ is called
the soft limit of the sequence x̃n.

Proposition 3.5. Soft limit of a sequence of soft elements in a soft normed linear
space is unique.

Proof. Let x̃n is sequence of soft elements in a soft normed linear space
(
X̌, ||.||

)
such

that limn→∞x̃n=̃x̃ and limn→∞x̃n = ỹ. Then for any soft real number ϵ̃>̃0̄ there

exist soft natural numbers Ñ1 and Ñ2 such that ||x̃n − x̃||(λ) < ϵ̃(λ)
2 ∀ n ≥ Ñ1 (λ) ,

∀ λ ∈ A and ||x̃n − ỹ||(λ) < ϵ̃(λ)
2 ∀ n ≥ Ñ2 (λ) , ∀ λ ∈ A. i.e.||x̃n − x̃||(λ) < ϵ̃(λ)

2 and

||x̃n − ỹ|||(λ) < ϵ̃(λ)
2 ∀ n ≥ Ñ (λ) , (Ñ= max

{
Ñ1, Ñ2

}
, where maximum of these

soft natural numbers taken as component wise) ∀ λ ∈ A. Now for ∀ n ≥ Ñ (λ) ,
||x̃− ỹ||(λ) <||x̃n − x̃||(λ)+||x̃n − ỹ||(λ)< ϵ̃ (λ)∀ λ ∈ A, which shows that x̃ = ỹ. □

Proposition 3.6. A sequence x̃n of soft elements in a soft normed linear space(
X̌, ||.||

)
is soft convergent to x̃ iff x̃n (λ) is convergent to x̃ (λ) in (X, ||.||λ) ∀λ ∈ A,

where ||.||λ defined as in Proposition 3.3.

Proof. Let x̃n be sequence soft converging to the soft element x̃ in
(
X̌, ||.||

)
. Take

ϵ > 0, then since x̃n ↪→ x̃, so there exists a soft natural number Ñ such that
||x̃n− x̃||(λ) < ϵ̄ (λ) = ϵ ∀ n ≥ Ñ (λ) , ∀ λ ∈ A. But ||x̃n− x̃||(λ) = ||x̃n(λ)− x̃(λ)||λ,
which shows that x̃n(λ) → x̃(λ) ∀λ ∈ A.
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Conversely, x̃n(λ) → x̃(λ) ∀λ ∈ A. Take ϵ̃>̃0̄, since x̃n(λ) → x̃(λ) ∀λ ∈ A, so for
each λ ∈ A ∃Nλ, ||x̃n− x̃||(λ) = ||x̃n(λ)− x̃(λ)||λ < ϵ̃ (λ) ∀n > Nλ. Now if we define

Ñ (λ) = Nλ ∀λ ∈ A then ||x̃n − x̃||(λ) < ϵ̃ (λ) ∀ n ≥ Ñ (λ) , ∀ λ ∈ A. This proves
the proposition. □
Definition 3.7. A sequence x̃n in a soft normed linear space is said to be soft
Cauchy if for any soft real number ϵ̃>̃0̄ there exists a soft natural number Ñ such
that ||x̃n − x̃m||(λ) < ϵ̃ (λ) ∀ n,m ≥ Ñ (λ) , ∀ λ ∈ A.

Proposition 3.8. A sequence x̃n in a soft normed linear space
(
X̌, ||.||

)
is soft

Cauchy iff x̃n (λ) is Cauchy in (X, ||.||λ) ∀λ ∈ A, where ||.||λ is defined as in Propo-
sition 3.3.

Proof. Proof is same as in Proposition 3.6 □
Proposition 3.9. Every soft convergent sequence of soft elements is soft Cauchy.

Proof. Let x̃n ↪→ x̃, then the relation ||x̃n − x̃m||(λ) ≤ ||x̃n − x̃||(λ) + ||x̃m − x̃||(λ)∀
λ ∈ A gives the result. □
Definition 3.10. A sequence x̃n of soft elements in a soft normed linear space(
X̌, ||.||

)
is said to be bounded if there exists a soft real number M̃ such that

||x̃n||≤̃M̃ , ∀n ∈ N (The set of all natural numbers).

Proposition 3.11. Every soft Cauchy sequence x̃n of soft elements in a soft normed
linear space

(
X̌, ||.||

)
is bounded.

Proof. Let x̃n be a soft Cauchy sequence in
(
X̌, ||.||

)
. Then there exists a soft

real number Ñ such that ||x̃n − x̃m||(λ) < 1̄ (λ) = 1 ∀ n,m ≥ Ñ (λ) , ∀ λ ∈ A.
||x̃n||(λ) ≤ ||x̃n − x̃Ñ(λ)||(λ) + ||x̃Ñ(λ)||(λ) < 1 + ||x̃Ñ(λ)||(λ) ∀ n ≥ N (λ), ∀ λ ∈ A.

Now if we take

M̃ (λ) = max
{
||x̃1|| (λ) , ||x̃2|| (λ) , ||x̃3|| (λ) , ......||x̃Ñ(λ)−1|| (λ) , 1 + ||x̃Ñ(λ)|| (λ)

}
,

then clearly ||x̃n|| (λ) < M̃ (λ) ∀n ∈ N ∀ λ ∈ A. i.e. ||x̃n||≤̃M̃ ∀n ∈ N. □
Corollary 3.12. Every soft convergent sequence x̃n of soft elements in a soft normed
linear space

(
X̌, ||.||

)
is bounded.

Definition 3.13. A soft normed linear space
(
X̌, ||.||

)
is said to be soft complete if

every soft Cauchy sequence in
(
X̌, ||.||

)
is soft convergent in

(
X̌, ||.||

)
.

Proposition 3.14. A soft normed linear space
(
X̌, ||.||

)
is soft complete iff (X, ||.||λ)

is complete ∀λ ∈ A, where ||.||λ defined as in Proposition 3.3.

Proof. Let
(
X̌, ||.||

)
is soft complete and λ ∈ A. Consider (X, ||.||λ). Let {xn} be a

Cauchy sequence in (X, ||.||λ). Now if we construct a sequence of soft elements {x̃n}
such that

x̃n (µ) =

{
xn if µ = λ

θ if µ ̸= λ
.

Then clearly {x̃n} is soft Cauchy. So by soft completeness of
(
X̌, ||.||

)
, {x̃n} is

convergent ⇒ {xn} is convergent. i.e. (X, ||.||λ) is complete.
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Converse of the proof directly follows from Proposition 3.3, Proposition 3.6 and
Proposition 3.8. □
Corollary 3.15. The soft set R(A) over R(set of real numbers) is soft complete.

Proposition 3.16. In a soft normed linear space
(
X̌, ||.||

)
, SS(B(x̃, r̃)) (λ) =

S (x̃ (λ) , r̃ (λ)) ∀λ ∈ A, where B(x̃, r̃) =
{
ỹ∈̃X̌ : ||x̃− ỹ||<̃r̃

}
⊂ SE(X̌) and S(x̃ (λ) ,

r̃ (λ)) = {z ∈ X : ||x̃ (λ)− z||λ < r̃ (λ)}.

Proof. Let λ ∈ A and z ∈ SS(B(x̃, r̃)) (λ). Then there exists a soft element ỹ such
that ||x̃− ỹ||<̃r̃ and ỹ (λ) = z. So ||x̃− ỹ|| (λ) < r̃ (λ)⇒||x̃ (λ)− ỹ (λ) ||λ < r̃ (λ). i.e.
||x̃ (λ)− z||λ < r̃ (λ)⇒ z ∈ S (x̃ (λ) , r̃ (λ)).
Now let z ∈ S (x̃ (λ) , r̃ (λ)). Then if we take a soft element z̃ such that z̃ (µ) = z
when µ = λ, z̃ (µ) = x̃ (µ) when µ ̸= λ. Then clearly z̃∈̃B(x̃, r̃). Hence z ∈
SS(B(x̃, r̃)) (λ). □
Corollary 3.17. If S (xλ, rλ) are open balls in (X, ||.||λ) ∀λ ∈ A. Then the soft set
U such that U (λ) = S (xλ, rλ) ∀λ ∈ A is the soft open ball in

(
X̌, ||.||

)
with centre

x̃ and radius r̃, where x̃ (λ) = xλ and r̃ (λ) = rλ,∀λ ∈ A.

Proof. Consider the soft element x̃ and soft real number r̃ such that x̃ (λ) = xλ and
r̃ (λ) = rλ,∀λ ∈ A. Now if we consider the open ball B(x̃, r̃). Then clearly, by the
previous proposition, SS(B(x̃, r̃)) = U . □

Proposition 3.18. Let in a soft normed linear space
(
X̌, ||.||

)
, τ be the set of all

soft sets in X such that Ũ∈τ iff Ũ can be expressed as a union of finite intersections
of soft open balls of

(
X̌, ||.||

)
. Then τ forms a soft topology [15] on X.

Proof. The proof is straightforward. □
All the members of τ are said to be the soft open in

(
X̌, ||.||

)
. A soft set F̃ is said

to be the soft closed in
(
X̌, ||.||

)
if F̃ c ∈ τ . The topology defined as in Proposition

3.18 is called the topology generated by the soft norm ||.|| on X̌.

Proposition 3.19. For any α ∈ A the collection τα =
{
Ũ (α) : Ũ∈τ

}
is a topology

in X. i.e. τ is a topology of soft sets on X.

Proof. Proof directly follows from the Definition of soft topology τ and Proposition
3.16. □
Corollary 3.20. Let U be soft set in a soft normed linear space

(
X̌, ||.||

)
. If U is

soft open in
(
X̌, ||.||

)
then U (λ) is open in (X, ||.||λ) ∀λ ∈ A. Further, if X ̸= {θ},

then the converse is also true.

Proof. Let U be soft open in (X, ||.||). Then U = ∪i∈∆∩n
j=1Gi,j , where n is a

positive integer and Gi,j is a soft open ball, i ∈ ∆. Now U (λ) = ∪i∈∆∩n
j=1Gi,j (λ)

and Gi,j (λ) is a open ball in (X, ||.||λ), so U (λ) is an open ball in (X, ||.||λ) ∀λ ∈ A.
For the converse part consider the following Cases:

• Case-1: Let U ∈ S (X). i.e. U (λ) ̸= ϕ ∀λ ∈ A. Now since for each λ ∈ A,
U (λ) is open in (X, ||.||λ). So U (λ) can be expressed as a union of open
balls in (X, ||.||λ), ∀λ ∈ A. Choose for each λ ∈ A one such open ball in
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(
X̌, ||.||

)
and thereby construct a soft set. Then this soft sets are soft open

balls in
(
X̌, ||.||

)
and their union is the soft set U . Hence U is soft open in(

X̌, ||.||
)
.

• Case-2: If U /∈ S (X). Let A1 = {λ ∈ A;U (λ) = ϕ}. Since X ̸= {θ} ,
∃x (̸= θ) ∈ X. Take two disjoint balls B (x, r) and B (θ, r) in X. Now
construct the soft sets U1 and U2 as in Case-1 by taking U1 (λ) = B (x, r) if
λ ∈ A1, U1(λ) = U(λ) otherwise and U2 (λ) = B (θ, r) if λ ∈ A1, U2(λ) =
U(λ) otherwise. Then U1 and U2 are soft open by Case-1. Hence U = U1∩U2

is soft open in
(
X̌, ||.||

)
.

□
Definition 3.21. In a soft normed linear space

(
X̌, ||.||

)
, a soft element x̃ is said to

be an interior point of a soft set U if there exists a open ball B(x̃, r̃) containing x̃
such that SS(B(x̃, r̃))⊆̃U .

Proposition 3.22. In a soft normed linear space
(
X̌, ||.||

)
a soft set U ∈ S (X) is

soft open in
(
X̌, ||.||

)
iff any soft element x̃∈̃U is an interior point of U .

Proof. Let U(∈ S (X)) be soft open in
(
X̌, ||.||

)
and x̃∈̃U . Then U (λ) is open in

(X, ||.||λ) ∀λ ∈ A(by first part of Corollary 3.20). Now (X, ||.||λ) is a normed linear
space so U (λ) can be expressed as a union of open balls in (X, ||.||λ) ∀λ ∈ A, where
at least one of the balls contains the point x̃ (λ) ∀λ ∈ A, since x̃∈̃U . If we take
the soft set whose λ components are these open balls containing x̃ (λ) in (X, ||.||λ)
∀λ ∈ A, by Proposition 3.16, this soft set will be soft open ball in

(
X̌, ||.||

)
containing

x̃ and contained in U , which proves that x̃ is an interior point of U .
Conversely, let any soft element x̃∈̃U be an interior point of U . Then for each x̃∈̃U
there exists a open ball B(x̃, r̃) such that SS(B(x̃, r̃))⊆̃U . Now if we take all soft
elements of U then U = SS (∪x̃∈̃U {x̃}) ⊆̃ ∪x̃∈̃U {SS(B(x̃, r̃))} ⊆̃U . i.e. U is a soft
open set. □
Proposition 3.23. Let

(
X̌, ||.||

)
be a soft normed linear space and x̃n be any se-

quence in a soft closed set F . If x̃n ↪→ x̃ then x̃∈̃F .

Proof. Let x̃ /̃∈F , then x̃ (λ) /∈ F (λ) for some λ ∈ A ⇒x̃ (λ) ∈ X − F (λ), where
X−F (λ) is open in (X, ||.||λ). Now since x̃n ↪→ x̃ ⇒x̃n (λ) → x̃ (λ), so the sequence
x̃n (λ) is eventually in X − F (λ), which contradicts that the sequence x̃n is in F .
Hence x̃∈̃F . □

4. Soft Banach algebra and its properties

Definition 4.1. Let V be an algebra over a field C of complex numbers and let A
be the parameter set and (G,A) be a soft set over V . Now (G,A) is said to be a
soft algebra of V over C if G(λ) is a sub algebra of V ∀λ∈A.
It is very easy to see that in a soft algebra the soft elements satisfy the properties:

(x̃ỹ)z̃ = x̃(ỹz̃)

x̃(ỹ + z̃) = x̃ỹ + x̃z̃, (x̃+ ỹ)z̃ = x̃z̃ + ỹz̃
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α̃(x̃ỹ) = (α̃x̃)ỹ = x̃(α̃ỹ)

where for all x̃, ỹ, z̃∈̃Ǧ and for any soft scalar α̃, x̃ỹ(λ) = x̃(λ)ỹ(λ) and α̃x̃(λ) =
α̃(λ)x̃(λ). If

(
Ǧ, A

)
is also a soft Banach space with respect to a soft norm that

satisfies the inequality ||x̃ỹ||≤̃||x̃||||ỹ|| and if
(
Ǧ, A

)
contains an identity ē such that

x̃ē=ēx̃=x̃ with ||ē|| = 1̄, then (G,A) is called a soft Banach algebra. In addition, if in
a soft Banach algebra (G,A), x̃ỹ = ỹx̃, ∀x̃, ỹ∈̃Ǧ then (G,A) is called a commutative
soft Banach algebra.

Proposition 4.2. (G,A) is a soft Banach algebra iff G (λ) is a Banach algebra
∀λ ∈ A.

Proof. Proof follows from the definition of soft algebra and Proposition 3.14. □

Proposition 4.3. In a soft Banach algebra if x̃n ↪→ x̃ and ỹn ↪→ ỹ then x̃nỹn ↪→ x̃ỹ.
i.e. multiplication in a soft Banach algebra is continuous.

Proof. Since x̃n ↪→ x̃ and ỹn ↪→ ỹ in (G,A). So x̃n (λ) → x̃ (λ) and ỹn (λ) → ỹ (λ)
∀λ ∈ A in (G (λ) , ||.||λ). Now since G (λ) is Banach algebra ∀λ ∈ A (by Propo-
sition 4.2) and in Banach algebra multiplication is continuous so, x̃n (λ) ỹn (λ) →
x̃ (λ) ỹ (λ)∀λ ∈ A, which proves that x̃nỹn ↪→ x̃ỹ ( by Proposition 3.6). □

Proposition 4.4. Every parametrized family of crisp Banach algebras on a crisp
vector space V can be considered as a soft Banach algebra on the soft vector space
V̌ .

Proof. Let ||.||λ : λ ∈ A be a family of crisp norms on the vector space V such that
(V, ||.||λ) are Banach algebra ∀λ ∈ A. Now let us define ||.|| : V̌ → R(A)∗ by
||x̃||(λ) = ||x̃(λ)||λ, ∀λ ∈ A,∀x̃∈̃V̌ . Then by Example 2.23 (V̌ , ||.||) is a soft normed

linear space. Now to show that (V̌ , ||.||) is a soft Banach algebra we have to show
that ||x̃ỹ||≤̃||x̃||||ỹ|| ∀ x̃,ỹ∈̃V̌ and (V̌ , ||.||) is complete.
Now ||x̃ỹ||(λ) = ||x̃(λ)ỹ(λ)||λ ≤ ||x̃(λ)||λ||ỹ(λ)||λ ≤||x̃||(λ)||ỹ||(λ) ∀λ ∈ A, which
shows that ||x̃ỹ||≤̃||x̃||||ỹ||.
Now let x̃n be a Cauchy sequence in V̌ . Then for any ϵ̃>̃0̄ there exists a soft
natural number Ñ such that ||x̃n+p− x̃n||(λ)<̃ ϵ̃

2 (λ) ∀n ≥ Ñ(λ)∀λ ∈ A⇒||x̃n+p(λ)−
x̃n(λ)||λ<̃ ϵ̃

2 (λ) ∀n ≥ Ñ(λ), ∀λ ∈ A. i.e. x̃n(λ) is a Cauchy sequence in (V, ||.||λ)
∀λ ∈ A . Since (V, ||.||λ) are Banach algebra ∀λ ∈ A, so there exist xλ such that
x̃n(λ) converge to xλ, ∀λ ∈ A. Hence there must exist some Nλ(> N (λ)) such that
||x̃n(λ)−xλ||λ<̃ ϵ̃

2 (λ) ∀n ≥ Nλ, ∀λ ∈ A. Now ||x̃n−x̃||(λ) =||x̃n(λ)−xλ||λ<̃||x̃n(λ)−
x̃Nλ

(λ) ||λ+||x̃Nλ
− xλ (λ) ||λ<̃ϵ̃(λ) ∀n > N (λ), ∀λ ∈ A, where x̃(λ) = xλ. This

shows that (V, ||.||) is a soft Banach space. Hence (V, ||.||) is a soft Banach algebra.
□

Definition 4.5. A soft element x̃∈̃Ǧ is said to be invertible if it has an inverse in Ǧ
i.e. if there exists a soft element ỹ∈̃Ǧ such that x̃ỹ = ỹx̃ = ē and then ỹ is called the
inverse of x̃, denoted by x̃−1. Otherwise x̃ is said to be non-invertible soft element
of Ǧ.
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Remark 4.6. Clearly ē is invertible. If x̃ is invertible, then we can verify that the
inverse is unique. because if ỹx̃ = ē = x̃.z̃ Then ỹ = ỹē = ỹ(x̃z̃) = (ỹx̃)z̃ = ēz̃ = z̃.
Further, if x̃ and ỹ are both invertible then x̃ỹ is invertible and (x̃ỹ)−1 = ỹ−1x̃−1.
For (x̃ỹ)(ỹ−1x̃−1) = x̃(ỹỹ−1)x̃−1 = x̃ēx̃−1 = ē and similarly (ỹ−1x̃−1)(x̃ỹ)= ē .

Definition 4.7 ([1]). Let (G, ∗) be a group and (F,A) be a soft set over G. Then
(F,A) is said to be a soft group over G if and only if F (λ) is a subgroup of (G, ∗)
for all λ ∈ A.

Proposition 4.8. Let (G, ∗) be a group and (F,A) be a soft set over G. If for any
x̃, ỹ ∈̃(F,A)

(1) x̃∗̃ỹ∈̃(F,A)
(2) x̃−1∈̃(F,A),

where x̃∗̃ỹ (λ) = x̃ (λ) ∗ ỹ (λ) and x̃−1 (λ) = (x̃ (λ))
−1

.
Then (F,A) is a soft group over G.

Proof. Proof is obvious. □
Note 4.9. This shows that in a soft algebra, the soft set generated by the all
invertible elements is a soft group with respect to the composition defined as in
Proposition ??.

Definition 4.10. A series
∞∑

n=1

x̃n of soft elements is said to be soft convergent if the

partial sum of the series s̃k =
k∑

n=1

x̃n is soft convergent.

Proposition 4.11. Let (G,A) be a soft Banach algebra. If x̃∈̃Ǧ satisfies ||x̃||<̃1̄,

then (ē− x̃) is is invertible and (ē− x̃)−1 = ē+
∞∑

n=1

x̃n.

Proof. Since (G,A) is soft algebra, so we have ||x̃j ||≤̃||x̃||j for any positive integer j,

so that the infinite series
∞∑

n=1

||x̃||n is soft convergent because ||x̃||<̃1̄. So the sequence

of partial sum s̃k =
k∑

n=1

x̃n is a soft Cauchy sequence since ||
k+p∑
n=k

x̃n|| <̃
k+p∑
n=k

||x̃||n.

Since (G,A) is soft complete so
∞∑

n=1

x̃n is soft convergent. Now let s̃ = ē +
∞∑

n=1

x̃n.

Now it is only we have to show that s̃ = (ē− x̃)−1.
We have

(4.1) (ē− x̃)(ē+ x̃+ x̃2 + ...x̃n) = (ē+ x̃+ x̃2 + ...x̃n)(ẽ− x̃) = ē− x̃n+1

Now again since ||x̃||<̃1̄ so x̃n+1 ↪→ θ̄ as n→ ∞. Therefore letting n→ ∞ in and
remembering that multiplication in G is continuous we get,

(ē− x̃)s̃ = s̃(ē− x̃) = ẽ
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. So that s̃ = (ē− x̃)−1. This proves the proposition. □

Corollary 4.12. Let G be a soft Banach algebra. If x̃ ∈ G and ||ē− x̃|| < 1̄, then

x̃−1 exists and x̃−1 = ē+
∞∑
j=1

(ē− x̃)j .

Corollary 4.13. Let G be a soft Banach algebra. Let x̃ ∈ G and µ̃ be a soft scalar

such that |µ̃|>̃||x̃||. Then (µ̃ē− x̃)−1 exists and (µ̃ē− x̃)−1 =
∞∑

n=1

µ̃−nx̃n−1(x̃0 = ẽ).

Proof. ỹ ∈ G be such that ỹ−1exists in G and α̃ be a soft scalar such that α̃(λ) ̸= 0,
∀λ ∈ A. Then it is clear that

(α̃ỹ)−1 = α̃−1ỹ−1.

Having noted this we can write

µ̃ē− x̃ = µ̃(ē− µ̃−1x̃)

and now we show that (ē− µ̃−1x̃)−1 exists. We have ||ē− (ē− µ̃−1x̃)|| = ||µ̃−1x̃|| =
|µ̃|−1||x̃|| <̃1̄ by hypothesis. So, By Corollary 4.12 (ē − µ̃−1x̃)−1 exists and hence
(µ̃ē − x̃)−1 exists. For the infinite series representation, using the Proposition 4.11
we have

(µ̃ē− x̃)−1 = µ̃−1(ē− µ−1x̃)−1

= µ̃−1(ē+

∞∑
n=1

[ē− (ē−µ̃−1x̃)]n

= µ̃−1(ē+

∞∑
n=1

(µ̃−1x̃)n]

=
∞∑

n=1

µ̃−nx̃n−1.

This proves the corollary. □

Proposition 4.14. Let G be a soft Banach algebra. The soft set S generated by the
set of all invertible soft elements of G is a soft open subset in G.

Proof. x̃0∈̃S. We have to show that x̃0 is a soft interior point of G. Consider the
open sphere S(x̃0,

1
||x̃−1

0 || ) with centre at x̃0 and radius 1
||x̃−1

0 || . Every soft element x̃

of this sphere satisfies the inequality

(4.2) ||x̃0 − x̃||<̃ 1

||x̃−1
0 ||
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Let ỹ = x̃−1
0 x̃ and z̃ = ē − ỹ then we have ||z̃|| = ||ỹ − ē|| = ||x̃−1

0 x̃ − x̃−1
0 x̃0||

≤̃||x̃−1
0 ||||x̃− x̃0||<̃1̄ . So by Proposition 4.11, ē− z̃ is invertible i.e. ỹ is invertible.

Hence ỹ∈̃S. Now x̃0∈̃S, ỹ∈̃S and so by Remark 4.6, x̃0ỹ ∈ S. But

x̃0ỹ = x̃0x̃
−1
0 x̃ = x̃

So any x̃ satisfying the inequality (4.2) belongs to S. This shows that S is a soft
open subset of G. □

Corollary 4.15. The soft set P (= Sc) of G is soft closed subset of G.

Definition 4.16. A mapping T from a soft normed linear space G onto G is said
to be continuous if for any sequence x̃n, x̃n ↪→ x̃ implies T (x̃n) ↪→ T (x̃).

Proposition 4.17. In a soft Banach algebra G, the mapping x̃ ↪→ x̃−1 of S onto S
is continuous.

Proof. Let x̃0 ∈ S and let {x̃n} be a sequence of soft elements in S such that x̃n ↪→ x̃0

as n → ∞. To prove x̃ ↪→ x̃−1 is continuous, it is enough to show that x̃−1
n ↪→ x̃−1

0 .
Now

||x̃−1
n − x̃−1

0 || = ||x̃−1
n (x̃0 − x̃n)x̃

−1
0 ||

(4.3) ≤̃||x̃−1
n ||||x̃0 − x̃n||||x̃−1

0 ||.

Since x̃n ↪→ x̃0 , for any given ϵ̃>̃0̄, there exists Ñ such that for all n ≥ Ñ(λ),

(4.4) ||x̃n − x̃0||(λ)<̃
1̄

2||x̃−1
0 ||

(λ)wherewe have taken ϵ̃ =
1̄

2||x̃−1
0 ||

Now

(4.5) ||ē− x̃−1
0 x̃n|| = ||x̃−1

0 (x̃0 − x̃n)||≤̃||x̃−1
0 ||||(x̃− x̃n||

Using (4.4) and (4.5) we get

(4.6) ||ē− x̃−1
0 x̃n||(λ)<̃

1̄

2̄
(λ) =

1

2
∀n ≥ Ñ(λ)

So by Corollary 4.12, x̃−1
0 x̃n is invertible and its inverse is given by x̃−1

n x̃0 =

(x̃−1
0 x̃n)

−1 = ē+

∞∑
n=1

(ē− x̃−1
0 x̃n)

n. Thus ||x̃−1
n x̃0||≤̃1̄+

∞∑
n=1

||e− x̃−1
0 x̃n||n≤̃ 1̄

1−||e−x̃−1
0 x̃n||

≤̃ 2̄ by (4.6). This gives ||x̃−1
n x̃0||<̃2̄ so that we have

(4.7) ||x̃−1
n || = ||x̃−1

n x̃0x̃
−1
0 ||≤̃||x̃−1

n x̃0||||x̃−1
0 ||≤̃2̄||x̃−1

0 ||
From (4.3))and (4.7) we get

||x̃−1
n − x̃−1

0 || (λ) ≤̃ 2||x̃−1
0 || (λ) ||x̃0 − x̃n|| (λ) ||x̃−1

0 || (λ) → 0 asn → ∞.

This proves that x̃−1
n ↪→ x̃−1

0 as n → ∞. So the mapping x̃ ↪→ x̃−1 of S onto S is
continuous. □
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Corollary 4.18. In a soft Banach algebra G, the mapping x̃−1 ↪→ x̃ of S onto S is
continuous.

Definition 4.19. Let G be a soft Banach algebra. A soft element z̃ ∈ G is called a
soft topological divisor of zero if there exists a sequence {z̃n}, z̃n ∈ G, ||z̃n|| = 1̄ for
n = 1, 2, 3..... and such that either z̃z̃n ↪→ Θ or z̃nz̃ ↪→ Θ.

Proposition 4.20. The soft set Z is a soft subset of P , where Z denotes the set of
all soft topological divisors of zero.

Proof. Let z̃ ∈ Z. The there exists a sequence {z̃n} such that ||z̃n|| = 1̄ for n =
1, 2, 3..... and either z̃z̃n ↪→ Θ or z̃nz̃ → Θ as n → ∞. Suppose that z̃z̃n ↪→ Θ.
If possible, let z̃ ̸∈ P . Then z̃ (λ)

−1
exists for some λ. Now as multiplication is

continuous operation, we should have

z̃n (λ) = z̃ (λ)
−1

(z̃z̃n) (λ) → z̃ (λ)
−1

Θ(λ) = θ asn → ∞.

This contradicts the fact that ||z̃n|| = 1̄ for n = 1, 2, 3..... . Hence Z is a soft
subset of P . □

Definition 4.21. Let
(
X̌, ||.||

)
be a soft normed linear space and Y ∈ S (X) . A soft

element α̃ ∈ X̌ is called a soft boundary elements of Y if there exist two sequence
x̃n and ỹn of soft elements in Y and Y c respectively such that x̃n ↪→ α̃ and ỹn ↪→ α̃.

Proposition 4.22. The boundary of P is a soft subset of Z.

Proof. Let z̃ be a boundary point of P . So there exist two sequences of soft elements
r̃n in S and s̃n in P such that

(4.8) r̃n ↪→ z̃ and s̃n ↪→ z̃.

Since P is soft closed so z̃∈̃P . Now let us write r̃−1
n z̃ − ē = r̃−1

n (z̃ − r̃n). The
sequence

{
r̃−1
n (λ)

}
given above is unbounded ∀λ ∈ A. If not, then there exists some

λ ∈ A and n (λ) such that ||r̃−1
n z̃ − ē|| (λ) < 1 ∀n ≥ n (λ), ∀λ ∈ A. So that by

Corollary 4.12, r̃−1
n z̃ (λ) is regular and hence z̃ (λ) = r̃n (λ)

(
r̃−1
n z̃

)
(λ) is regular,

contradicting z̃∈̃P . Hence
{
r̃−1
n (λ)

}
is unbounded ∀λ ∈ A so that

(4.9) ||r̃−1
n || ↪→ ∞̄ asn → ∞.

Now let us define z̃n =
r̃−1
n

||r̃−1
n || . From the definition of z̃n, we have

(4.10) ||z̃n|| = 1̄.

Further

(4.11) z̃z̃n =
z̃r̃−1

n

||r̃−1
n ||

=
ē+ z̃r̃−1

n − ē

||r̃−1
n ||

=
ē+ (z̃ − r̃n) r̃

−1
n

||r̃−1
n ||

.

But

(4.12)
ē+ (z̃ − r̃n) r̃

−1
n

||r̃−1
n ||

=
ē

||r̃−1
n ||

+ (z̃ − r̃n) z̃n.
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From (4.11) and (4.12), we get

(4.13) z̃z̃n =
ē

||r̃−1
n ||

+ (z̃ − r̃n) z̃n.

Using (4.8), (4.9) and (4.10) in (4.13) we see that z̃z̃n ↪→ Θ as n → ∞. Hence z̃ is
a topological divisor of zero. □

5. CONCLUSSION

In a soft normed linear space we have been able to define a new concept of con-
vergence of a sequence of soft elements, which we call soft convergence. We have
defined a soft topology [15] generated by a soft norm and which is also known to
be a topology of sets [10]. We are also able to introduce a definition of soft Ba-
nach algebra and study some of its properties. It is just the begining to study in
this direction. Since spectral theory in Banach algebra has various applications in
quantum theory, string theory etc., there is an ample scope of further research in
studying spectral theory of Banach algebra in soft setting.
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