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Abstract. The main aim of this paper is to present another notion

of generalized rough set by using filters, increasing and I-increasing sets.

The important of the current results is reducing the boundary region by in-

creasing the lower approximation and decreasing the upper approximation

which is the main aim of rough set. Moreover, the properties of the new

lower and upper approximations are obtained. Comparisons between the

current approximations and the previous approximations are introduced.
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1. Introduction

In the early of 1982, Pawlak [18] had proposed rough set theory. It has achieved

a large amount of applications in various real-life fields, like economics, medical diag-

nosis, biochemistry, environmental science, biology, chemistry, psychology, conflict

analysis, medicine, pharmacology, banking, market research, engineering, speech

recognition, material science, information analysis, data analysis, data mining, lin-

guistics, networking and other fields can be found in [12, 14, 17].

Rough set is dealing with vagueness (ambiguous) of the set by using the concept

of the lower and upper approximations [18]. The set with the same lower and

upper approximations, called crisp (exact) set, otherwise known as rough (inexact)
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set. The boundary region is defined as the difference between the upper and lower

approximations, and then the accuracy of the set or ambiguous depending on the

boundary region is empty or not respectively. A nonempty boundary region of a set

means that our knowledge about the set is not sufficient to define the set precisely.

The main aim of rough set is reducing the boundary region by increasing the lower

approximation and decreasing the upper approximation.

The standard rough set theory was based on an equivalence relation on a finite

universe X. Various generalized rough set models have been established and their

properties or structures have been investigated intensively [2, 11, 19, 20]. An inter-

esting and natural research topic in rough set theory is to study rough set theory via

topology [1, 9, 10, 12, 13]. The original rough set theory does not consider attributes

with preference-ordered domains, that is, criteria. In fact, in many real-world sit-

uations, we are often faced with the problems in which the ordering of properties

of the considered attributes plays a crucial role. Recently, in [4, 7, 8] had studied

rough set theory via ordered topology.

This paper concerns with investigate another notion of generalized rough set by

using filters, ideals and ordered relation. We consider the filter F∗
R which is generated

by the after-fore sets ξ∗ = {RxR : x ∈ X} that has a nonempty finite intersection. In

addition, we use a partially order relation to construct the increasing and decreasing

sets and also use ideal to construct the I-increasing and I-decreasing sets. Hence, we

define the lower and upper approximations. Some examples are given to illustrate the

new lower and upper approximations. Moreover, the main properties of lower and

upper approximations are obtained and compared to the previous approximations

[4, 7]. It is therefore shown that the current approximations are more generally.

2. Preliminaries

In this section, the needed definitions and results are given.

Definition 2.1 ([3, 12]). If R is a binary relation on X and A ⊆ X, then

(1) the after set of x ∈ X is denoted by xR, where xR = {y ∈ X : xRy}.
(2) the fore set of x ∈ X is denoted by Rx, where Rx = {y ∈ X : yRx}.
(3) the fore-fore set of x ∈ X is denoted by RxR, where RxR = xR ∩Rx.

Definition 2.2 ([16]). Let (X,R) be a poset. A set A ⊆ X is said to be:

(1) decreasing if for every a ∈ A and x ∈ X such that xRa, then x ∈ A.

(2) increasing if for every a ∈ A and x ∈ X such that aRx, then x ∈ A.

Theorem 2.1 ([16]). Let (X,R) be a poset and A ⊆ X. Then, the class of all

increasing (decreasing) sets forms a topology on X which is denoted by τinc(τdec).

Definition 2.3 ([15]). Let F be a non-empty collection of subsets of X. Then, F is

called a filter if it satisfies the following conditions:
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(1) ϕ ̸∈ F.

(2) A1, A2 ∈ F ⇒ A1 ∩A2 ∈ F.

(3) A ∈ F and A ⊆ B ⊆ X ⇒ B ∈ F.

Definition 2.4 ([15]). Let B be a non-empty collection of subsets of X. Then, B

is called a filter base if it satisfies the following conditions:

(1) ϕ ̸∈ B.

(2) B1, B2 ∈ B ⇒ ∃B3 ∈ B : B3 ⊆ B1 ∩B2.

A filter baseB can be turned into a filter by including all sets of P (X) which contains

a set of B, i.e., FB = {A ∈ P (X) : A ⊇ B,B ∈ B}.

Definition 2.5 ([15]). Let ξ be a non-empty collection of subsets of X. Then, ξ is

called a filter-subbases on X if it satisfies the finite intersection property, i.e., any

finite subcollection of ξ has a non empty intersection.

Definition 2.6 ( [6]). A non-empty collection I of subsets of a set X is called an

ideal on X, if it satisfies the following conditions:

(1) A ∈ I and B ∈ I ⇒ A ∪B ∈ I.
(2) A ∈ I and B ⊆ A ⇒ B ∈ I.

Definition 2.7 ([5]). Let (X,R) be a poset and I be an ideal on X. Then, a set

A ⊆ X is called:

(1) I-decreasing set iff Ra ∩A
′ ∈ I ∀a ∈ A.

(2) I-increasing set iff aR ∩A
′ ∈ I ∀a ∈ A.

Proposition 2.1 ([5]). For every ideal I on X, any increasing set is I-increasing
set.

Theorem 2.2 ([5]). Let (X,R) be a poset, I be an ideal on X and A ⊆ X. Then,

τI−inc = {A ⊆ X : A is I-inc set } is a topology on X, which is finer than the

topology that is generated by the increasing sets. In other words, τinc ⊆ τI−inc.

Definition 2.8 ([18]). Let R be an equivalence relation on a finite universe X and

A ⊆ X. Then, the lower and upper approximations respectively are defined:

R(A) = {x ∈ X : [x]R ⊆ A}.
R(A) = {x ∈ X : [x]R ∩A ̸= ϕ}.
Boundary, positive and negative regions are also defined:

BNR(A) = R(A)−R(A).

POSR(A) = R(A).

NEGR(A) = X −R(A).

Definition 2.9 ([4]). A triple (X, τR, ρ) is called an order topological approximation

space “OTAS”, where τR is the topology generated by any relation R and ρ is a

partially order relation,
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Definition 2.10 ([4]). Let (X, τR, ρ) be an OTAS , A ⊆ X. Then, the lower (re-

spectively upper) approximation is given by:

Rinc(A) = ∪{G ∈ τR : G is an increasing, G ⊆ A}.
Rdec(A) = ∪{G ∈ τR : G is a decreasing, G ⊆ A}.
R

inc
(A) = ∩{F ∈ τ

′

R : F is an increasing, A ⊆ F}.
R

dec
(A) = ∩{F ∈ τ

′

R : F is a decreasing, A ⊆ F}.
BNinc(A) = R

inc
(A) \Rinc(A).

BNdec(A) = R
dec

(A) \Rdec(A).

αinc(A) =
|Rinc(A)|
|Rinc

(A)|
.

αdec(A) =
|Rdec(A)|
|Rdec

(A)|
, αinc is an increasing accuracy and αdec is a decreasing accuracy.

Definition 2.11 ([7]). A quadrable (X, τR, ρ, I) is said to be ideal order topological

approximation space (IOTAS, for short), where τR is a topology generated by any

relation R, ρ is a partially order relation and I is an ideal on X.

Definition 2.12 ([7]). Let (X, τR, ρ, I) be an IOTAS and A ⊆ X. Then, the lower,

upper approximations, boundary region and accuracy respectively are given by:

RI−inc(A) = ∪{G ∈ τR : G is an I-increasing, G ⊆ A}.
RI−dec(A) = ∪{G ∈ τR : G is an I-decreasing, G ⊆ A}.
R

I−inc
(A) = ∩{F ∈ τ

′

R : F is an I-increasing, A ⊆ F}.
R

I−dec
(A) = ∩{F ∈ τ

′

R : F is an I-decreasing, A ⊆ F}.
BNI−inc(A) = R

I−inc
(A) \RI−inc(A).

BNI−dec(A) = R
I−dec

(A) \RI−dec(A).

αI−inc(A) =
|RI−inc(A)|
|RI−inc

(A)|
.

αI−dec(A) =
|RI−dec(A)|
|RI−dec

(A)|
, αI−inc is an I-increasing accuracy and αI−dec is an I-

decreasing accuracy.

Definition 2.13 ([7]). A triple (X,FR, ρ) is said to be generalized order topological

approximation space (GOTAS, for short), where FR is a filter generated by any

relation R and ρ is a partially ordered relation.

Definition 2.14 ([7]). Let (X,FR, ρ) be a GOTAS and A ⊆ X. Then, the lower,

upper approximations, boundary region and accuracy respectively are given by:

R∗inc(A) = ∪{G ∈ FR : G is an increasing,G ⊆ A}.

R∗dec(A) = ∪{G ∈ FR : G is a decreasing,G ⊆ A}.

R∗inc(A) =

{
∩{H ∈ F

′

R : H is an increasing,A ⊆ H}.
X if not exists H ∈ F

′

R : H is an increasing, A ⊆ H.
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R∗dec(A) =

{
∩{H ∈ F

′

R : H is a decreasing,A ⊆ H}.
X if not exists H ∈ F

′

R : H is a decreasing, A ⊆ H.

BN∗inc(A) = R∗inc(A) \R∗inc(A).

BN∗dec(A) = R∗dec(A) \R∗dec(A).

α∗inc(A) =
|R∗inc(A)|
|R∗inc(A)|

.

α∗dec(A) =
|R∗dec(A)|
|R∗dec(A)|

.

Definition 2.15 ([7]). A quadrable (X,FR, ρ, I) is said to be generalized ideal order

topological approximation space (GIOTAS, for short), where FR is a filter generated

by any relation R, ρ is a partially order relation and I an ideal on X.

Definition 2.16 ([7]). Let (X,FR, ρ, I) be a GIOTAS and A ⊆ X. Then, the lower,

upper approximations, boundary region and accuracy of a set A with respect to a

relation R by using the notion of I-increasing and I-decreasing sets are given by:

R∗I−inc(A) = ∪{G ∈ FR : G is an I − increasing,G ⊆ A}.

R∗I−dec(A) = ∪{G ∈ FR : G is an I − decreasing,G ⊆ A}.

R∗I−inc(A) =

{
∩{H ∈ F

′
R : H is an I − increasing,A ⊆ H}.

X if not exists H ∈ F
′
R : H is an I − increasing, A ⊆ H.

R∗I−dec(A) =

{
∩{H ∈ F

′
R : H is an I − decreasing,A ⊆ H}.

X if not exists H ∈ F
′
R : H is an I − decreasing, A ⊆ H.

BN∗I−inc(A) = R∗I−inc(A) \R∗I−inc(A).

BN∗I−dec(A) = R∗I−dec(A) \R∗I−dec(A).

α∗I−inc(A) =
|R∗I−inc(A)|
|R∗I−inc(A)|

.

α∗I−dec(A) =
|R∗I−dec(A)|
|R∗I−dec(A)|

.

Lemma 2.1 ([7]). Let R be a binary relation on X. Then, τR \ϕ ⊆ FR, where τR is

the topology generated by the subbase ξ = {xR : x ∈ X} and FR is a filter generated

by the same subbase.
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3. Generalized rough sets via filters by using increasing and

decreasing sets

The goal of this section is to introduce a new notion of lower and upper approxi-

mations to decrease the boundary region and increase the accuracy of sets. This new

notion is generated by using filters and increasing (decreasing) sets. We consider the

filter which is generated by the after-fore sets that has a nonempty finite intersec-

tion. To construct the filter F∗
R, let ξ

∗ = {RxR : x ∈ X} be a subbase of a filter F∗
R

also we use partially order relation to construct the increasing and decreasing sets

and hence define the lower and upper approximation by using the increasing and

decreasing sets. The current approximations are compared with El-Shafei et al.’s

approximations [4] and Kandil et al.’s approximations [7].

Definition 3.1. A triple (X,F∗
R, ρ), is said to be generalized order topological ap-

proximation space (GOTAS, for short), where F∗
R is a filter generated by any relation

R and ρ is a partially ordered relation.

Definition 3.2. Let (X,F∗
R, ρ) be a GOTAS and A ⊆ X. Then, the lower, upper

approximations, boundary region and accuracy respectively are given by:

R∗∗inc(A) = ∪{G ∈ F∗
R : G is an increasing,G ⊆ A}.

R∗∗dec(A) = ∪{G ∈ F∗
R : G is a decreasing,G ⊆ A}.

R∗∗inc(A) =

{
∩{H ∈ F∗′

R : H is an increasing,A ⊆ H}.
X if not exists H ∈ F∗′

R : H is an increasing, A ⊆ H.

R∗∗dec(A) =

{
∩{H ∈ F∗′

R : H is a decreasing,A ⊆ H}.
X if not exists H ∈ F∗′

R : H is a decreasing, A ⊆ H.

BN∗∗inc(A) = R∗∗inc(A) \R∗∗inc(A).

BN∗∗dec(A) = R∗∗dec(A) \R∗∗dec(A).

α∗∗inc(A) =
|R∗∗inc(A)|
|R∗∗inc(A)|

.

α∗∗dec(A) =
|R∗∗dec(A)|
|R∗∗dec(A)|

.

The following Lemma 3.1 presents the relationship between the filters F∗
R, FR and

topology τR which is necessary to prove Propositions 3.1 and 3.2.

Lemma 3.1. Let ξ = {xR : x ∈ X} be a subbase of the filter FR and ξ∗ = {RxR :

x ∈ X} be a subbase of the filter F∗
R. Then, we have

(1) if B is a filterbase for FR and Bx ∈ B, then ∃B∗
x ∈ B∗ which is a filterbase

for F∗
R, such that B∗

x ⊆ Bx.

(2) FR ⊆ F∗
R.
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(3) τR \ ϕ ⊆ F∗
R.

Proof. (1) Let B be a filterbase for FR and Bx ∈ B. Then, we have two cases:

Case 1 ifBx = xR, then ∃ B∗
x = RxR ∈ B∗ such thatRxR = B∗

x ⊆ Bx = xR

Case 2 if Bx = ∩x∈X(xR), then ∃ B∗
x = ∩x∈X(RxR) ∈ B∗ such that

∩x∈X(RxR) = B∗
x ⊆ Bx = ∩x∈X(xR)

(2) Let A ∈ FR. Then, ∃ Bx ∈ B such that Bx ⊆ A

⇒ ∃ B∗
x ∈ B∗ such that B∗

x ⊆ Bx

⇒ B∗
x ⊆ Bx ⊆ A

⇒ A ∈ F∗
R. Hence, FR ⊆ F∗

R.

(3) From Lemma 2.1 τR \ ϕ ⊆ FR. Hence, τR \ ϕ ⊆ FR ⊆ F∗
R.

□

The following proposition presents the relationship between the current approxi-

mations and the approximations in [4] (Definition 2.10).

Proposition 3.1. Let (X, τR, ρ) be an OTAS, (X,F∗
R, ρ) be a GOTAS and A ⊆ X.

Then,

(1) Rinc(A) ⊆ R∗∗inc(A) (Rdec(A) ⊆ R∗∗dec(A)).

(2) R∗∗inc(A) ⊆ Rinc(A) (R
∗∗dec(A) ⊆ Rdec(A)).

(3) BN∗∗inc(A) ⊆ BNinc(A) (BN∗∗dec(A) ⊆ BNdec(A)).

(4) α∗∗inc(A) ≥ αinc(A) (α∗∗dec(A) ≥ αdec(A)).

Proof. The proof is straightforward from Definitions 2.10, 3.2 and Lemma 3.1. □

The following proposition presents the relationship between the current approxi-

mations and Kandil et al.’s approximations [7] (Definition 2.14).

Proposition 3.2. Let (X,FR, ρ) be a GOTAS, (X,F∗
R, ρ) be a GOTAS and A ⊆ X.

Then,

(1) R∗inc(A) ⊆ R∗∗inc(A) (R∗dec(A) ⊆ R∗∗dec(A)).

(2) R∗∗inc(A) ⊆ R∗inc(A) (R∗∗dec(A) ⊆ R∗dec(A)).

(3) BN∗∗inc(A) ⊆ BN∗inc(A) (BN∗∗dec(A) ⊆ BN∗dec(A)).

(4) α∗∗inc(A) ≥ α∗inc(A) (α∗∗dec(A) ≥ α∗dec(A)).

Proof. The proof is straightforward from Definitions 2.14 [7], 3.2 and Lemma 3.1. □

Propositions 3.1 and 3.2 show that the current method in Definition 3.2 reduces

the boundary region by increasing the lower approximation and decreasing the upper

approximation with the comparison of El-Shafei et al.’s method in Definition 2.10

[4] and Kandil et al.’s method in Definition 2.14 [7]. Moreover, it shows that the

current accuracy in Definition 3.2 is greater than the previous one in [4, 7].

The following example is computed the lower, upper approximations, boundary

region and accuracy for all subset of X by using El-Shafei et al.’s Definition 2.10 [4],

Kandil et al.’s Definition 2.14 [7] and the present method in Definition 3.2.
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Example 3.1. Let X = {a, b, c, d}, ρ = ∆ ∪ {(a, c), (a, d), (b, c), (d, c)}, and
R = {(b, b), (c, c), (d, d), (a, b), (a, d), (b, c), (b, d), (c, a), (c, b), (c, d), (d, a), (d, b), (d, c)}.
Then, ξ = B = {{b, d}, {b, c, d}, X}, τR = {X,ϕ, {b, d}, {b, c, d}},
FR = {{b, d}, {a, b, d}, {b, c, d}, X}, ξ∗ = {{d}, {b, c, d}, X},B∗ = {{d}, {b, c, d}, X}
and F∗

R = {{d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}, X}.
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The following Proposition 3.3 studies the main properties of the current lower

and upper approximations.

Proposition 3.3. Let (X,F∗
R, ρ) be a GOTAS and A,B ⊆ X. Then,

(1) R∗∗inc(A) ⊆ A ⊆ R∗∗inc(A) (R∗∗dec(A) ⊆ A ⊆ R∗∗dec(A)), equality hold if

A = ϕ or X.

(2) A ⊆ B ⇒ R∗∗inc(A) ⊆ R∗inc(B) (R∗inc(A) ⊆ R∗∗dec(B)).

(3) A ⊆ B ⇒ R∗∗inc(A) ⊆ R∗∗inc(B) (R∗∗dec(A) ⊆ R∗∗dec(B)).

(4) R∗∗inc(A ∩ B) ⊆ R∗∗inc(A) ∩ R∗∗inc(B) (R∗∗dec(A ∩ B) ⊆ R∗∗dec(A) ∩
R∗∗dec(B)).

(5) R∗∗inc(A ∪ B) ⊇ R∗∗inc(A) ∪ R∗∗inc(B) (R∗∗dec(A ∪ B) ⊇ R∗∗dec(A) ∩
R∗∗dec(B)).

(6) R∗∗inc(A ∪ B) = R∗∗inc(A) ∪ R∗∗inc(B) (R∗∗dec(A ∪ B) = R∗∗dec(A) ∪
R∗dec(B)).

(7) R∗∗inc(A ∩ B) = R∗∗inc(A) ∩ R∗∗inc(B) (R∗∗dec(A ∩ B) = R∗∗dec(A) ∩
R∗∗dec(B)).

(8) x ∈ R∗∗inc(A) ⇔ G ∩A ̸= ϕ, ∀ G ∈ F∗
R, G is a decreasing set containing x.

(x ∈ R∗∗dec(A) ⇔ G ∩ A ̸= ϕ, ∀ G ∈ F∗
R, G is an increasing set containing

x).

(9) x ∈ R∗∗inc(A) ⇔ ∃G ∈ F∗
R, G is an increasing set containing x such that

G ⊆ A.

(10) R∗∗inc(R∗∗inc(A)) = R∗∗inc(A) (R∗∗dec(R∗∗dec(A)) = R∗∗dec(A)).

(11) R∗∗inc(R∗∗inc(A)) = R∗∗inc(A) (R∗∗dec(R∗∗dec(A)) = R∗∗dec(A)).

Proof. 1.: Straightforward.

2.: Let x ̸∈ R∗∗inc(B). Then, ∃ F ∈ F∗′

R , F is an increasing, F ⊇ B ⊇ A, x ̸∈
F ⇒ x ̸∈ R∗∗inc(A).

3.: Similar to part 2.

4.: It is directly from part 2.

5.: It is directly from part 3.

6.: R∗∗inc(A∪B) ⊇ R∗∗inc(A)∪R∗∗inc(B) (by part 4) and to prove R∗∗inc(A∪
B) ⊆ R∗∗inc(A) ∪ R∗∗inc(B), let x ̸∈ R∗∗inc(A) ∪ R∗∗inc(B). Then, x ̸∈
R∗∗inc(A) and x ̸∈ R∗∗inc(B) ⇒ ∃F1, F2 ∈ F∗′

R , F1, F2 are increasing, such

that x ̸∈ F1, F1 ⊇ A, x ̸∈ F2, F2 ⊇ B ⇒ x ̸∈ F1 ∪ F2, (which is an increasing

by Theorem 2.1), F1 ∪ F2 ⊇ A∪B ⇒ x ̸∈ R∗∗inc(A∪B). Then, R∗∗inc(A∪
B) ⊆ R∗∗inc(A)∪R∗∗inc(B). Hence, R∗∗inc(A∪B) = R∗∗inc(A)∪R∗∗inc(B).

7.: Similar to No. 6.

8.: “⇒” Let x ∈ R∗∗inc(A). Then, there exists G ∈ F∗
R, G is a decreasing set

containing x such that G ∩A = ϕ.

⇒ A ⊆ G
′
, G

′ ∈ F∗′

R which is an increasing set.

⇒ R∗∗inc(A) ⊆ G
′
.
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⇒ R∗∗inc(A) ∩G = ϕ, which is a contradiction.

“⇐” Let G ∩ A ̸= ϕ, ∀ G ∈ F∗
R, G is a decreasing set containing x, x ̸∈

R∗∗inc(A).

⇒ x ∈ R∗∗inc
′

(A) ∈ F∗
R, R

∗∗inc
′

(A) is a decreasing set.

⇒ R∗∗inc
′

(A) ∩A ̸= ϕ, which is a contradiction as (A ⊆ R∗∗inc(A)).

9.: It is directly from Definition 3.2.

10.: It is directly from parts 1 and 2.

11.: It is directly from parts 1 and 3.

□

Example 3.1 shows that the inclusion in Proposition 3.3 parts 1, 4 and 5 can not be

replaced by equality relation (for part 1, if A = {d}, R∗∗inc(A) = X,R∗∗inc(A) = ϕ,

also if A = {d}, R∗∗dec(A) = X,R∗∗dec(A) = ϕ. Then, R∗∗inc(A) ⊈ A ⊈ R∗∗inc(A)

and also R∗∗dec(A) ⊈ A ⊈ R∗∗dec(A)). In a similar way, we can add examples to

part 4 and 5 ). Moreover, the converse of parts 2 and 3 is not necessarily true (i.e.,

R∗∗inc(A) ⊆ R∗∗inc(B) ̸⇒ A ⊆ B, take A = {a, b, c}, B = {b, c, d}, then R∗∗inc(A) =

ϕ,R∗∗inc(B) = {b, c, d}. Therefore, R∗∗inc(A) ⊆ R∗∗inc(B), but A ⊈ B. In a similar

way, we can add examples to show that R∗∗dec(A) ⊆ R∗∗dec(B) but A ⊈ B).

4. Generalized rough sets via filter by using I-increasing and

I-decreasing sets

In this section, we use the I-increasing and I-decreasing sets instead of increasing

and decreasing sets which are used in Section 3 to introduce a new notion of lower

and upper approximations. Moreover, the main properties of the current lower and

upper approximations are studied. Furthermore, comparisons between the current

approximations in this section, Sections 3 and the previous approximations in [4]

and [7] are introduced.

Definition 4.1. A quadrable (X,F∗
R, ρ, I) is said to be generalized ideal order topo-

logical approximation space (GIOTAS, for short), where F∗
R is a filter generated by

any relation R, ρ is a partially ordered relation and I is an ideal.

Definition 4.2. Let (X,F∗
R, ρ, I) be a GIOTAS and A ⊆ X. Then, the lower, upper

approximations, boundary region and accuracy of a set A with respect to a relation

R by using the notion of I-increasing and I-decreasing sets are given by:

R∗∗I−inc(A) = ∪{G ∈ F∗
R : G is an I − increasing,G ⊆ A}.

R∗∗I−dec(A) = ∪{G ∈ F∗
R : G is an I − decreasing,G ⊆ A}.

R∗∗I−inc(A) =

{
∩{H ∈ F∗′

R : H is an I − increasing,A ⊆ H}.
X if not exists H ∈ F∗′

R : His an I − increasing, A ⊆ H.

372



A. Kandil et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 361–379

R∗∗I−dec(A) =

{
∩{H ∈ F∗′

R : H is an I − decreasing,A ⊆ H}.
X if not exists H ∈ F∗′

R : H is an I − decreasing, A ⊆ H.

BN∗I−inc(A) = R∗∗I−inc(A) \R∗∗I−inc(A).

BN∗∗I−dec(A) = R∗∗I−dec(A) \R∗∗I−dec(A).

α∗∗I−inc(A) =
|R∗∗I−inc(A)|
|R∗∗I−inc(A)|

.

α∗∗I−dec(A) =
|R∗∗I−dec(A)|
|R∗∗I−dec(A)|

.

The following proposition presents the relationship between El-Shafei et al.’s

method in Definition 2.10 [4] and the current approximations in Definition 4.2.

Proposition 4.1. Let (X, τR, ρ) be an OTAS, (X,F∗
R, ρ, I) be a GIOTAS and A ⊆

X. Then,

(1) Rinc(A) ⊆ R∗∗I−inc(A) (Rdec(A) ⊆ R∗∗I−dec(A)).

(2) R∗∗I−inc(A) ⊆ R
inc

(A) (R∗∗I−dec(A) ⊆ R
dec

(A)).

(3) BN∗∗I−inc(A) ⊆ BNinc(A) (BN∗I−dec(A) ⊆ BNdec(A)).

(4) α∗∗I−inc(A) ≥ αinc(A) (α∗∗I−dec(A) ≥ αdec(A)).

Proof. The proof is straightforward from Definitions 2.10 [4], 4.2, Propositions 2.1

and Lemma 3.1. □

The following proposition presents the relationship between A.Kandil et al.’s ap-

proximations in Definition 2.12 [7] and the current approximations in Definition

4.2.

Proposition 4.2. Let (X, τR, ρ, I) be an IOTAS, (X,F∗
R, ρ, I) be a GIOTAS and

A ⊆ X. Then,

(1) RI−inc(A) ⊆ R∗∗I−inc(A) (RI−dec(A) ⊆ R∗∗I−dec(A)).

(2) R∗∗I−inc(A) ⊆ R
I−inc

(A) (R∗∗I−dec(A) ⊆ R
I−dec

(A)).

(3) BN∗∗I−inc(A) ⊆ BNI−inc(A) (BN∗∗I−dec(A) ⊆ BNI−dec(A)).

(4) α∗∗I−inc(A) ≥ αI−inc(A) (α∗∗I−dec(A) ≥ αI−dec(A)).

Proof. The proof is straightforward from Definitions 2.12 [7], 4.2 and Lemma 3.1. □

The following proposition presents the relationship between Kandil et al.’s ap-

proximations in Definition 2.14 [7] and the current approximations in Definition

4.2.

Proposition 4.3. Let (X,FR, ρ) be a GOTAS, (X,F∗
R, ρ, I) be a GIOTAS and

A ⊆ X. Then,

(1) R∗inc(A) ⊆ R∗∗I−inc(A) (R∗dec(A) ⊆ R∗∗I−dec(A)).

(2) R∗∗I−inc(A) ⊆ R∗inc(A) (R∗∗I−dec(A) ⊆ R∗dec(A)).
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(3) BN∗∗I−inc(A) ⊆ BN∗inc(A) (BN∗∗I−dec(A) ⊆ BN∗dec(A)).

(4) α∗∗I−inc(A) ≥ α∗inc(A) (α∗∗I−dec(A) ≥ α∗dec(A)).

Proof. The proof is straightforward from Definitions 2.14 [7], 4.2, Propositions 2.1

and Lemma 3.1. □

The following proposition presents the relationship between Kandil et al.’s ap-

proximations in Definition 2.16 [7] and the current approximations in Definition

4.2.

Proposition 4.4. Let (X,FR, ρ, I) be a GIOTAS, (X,F∗
R, ρ, I) be a GIOTAS and

A ⊆ X. Then,

(1) R∗I−inc(A) ⊆ R∗∗I−inc(A) (R∗I−dec(A) ⊆ R∗∗I−dec(A)).

(2) R∗∗I−inc(A) ⊆ R∗inc(A) (R∗∗I−dec(A) ⊆ R∗I−dec(A)).

(3) BN∗∗I−inc(A) ⊆ BN∗I−inc(A) (BN∗∗I−dec(A) ⊆ BN∗I−dec(A)).

(4) α∗∗I−inc(A) ≥ α∗I−inc(A) (α∗∗I−dec(A) ≥ α∗I−dec(A)).

Proof. The proof is straightforward from Definitions 2.16 [7], 4.2 and Lemma 3.1. □

The following proposition presents the relationship between the present approxi-

mations in Definitions 3.2 and 4.2.

Proposition 4.5. Let (X,F∗
R, ρ) be a GOTAS, also (X,F∗

R, ρ, I) be a GIOTAS and

A ⊆ X. Then,

(1) R∗∗inc(A) ⊆ R∗∗I−inc(A) (R∗∗dec(A) ⊆ R∗∗I−dec(A)).

(2) R∗∗I−inc(A) ⊆ R∗∗
inc(A) (R

∗∗I−dec(A) ⊆ R∗∗
dec(A)).

(3) BN∗∗I−inc(A) ⊆ BN∗∗inc(A) (BN∗∗I−dec(A) ⊆ BN∗∗
dec(A)).

(4) α∗∗I−inc(A) ≥ α∗∗inc(A) (α∗∗I−dec(A) ≥ α∗∗dec(A)).

Proof. The proof is straightforward from Definitions 3.2, 4.2 and Proposition 2.1

and Lemma 3.1. □

Let I = {ϕ, {c}, {d}, {c, d}}, in Example 3.1. Then, we calculate the lower, upper

approximations, boundary region and accuracy for all subset of X by using El-Shafei

et al.’s Definition 2.10 [4], A.Kandil et al.’s Definitions 2.12, 2.14, 2.16 [7] and the

current approximations in Definitions 3.2, 4.2.
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Proposition 4.6. Let (X,FR, ρ, I) be a GIOTAS and A,B ⊆ X. Then,

(1) R∗∗I−inc(A) ⊆ A ⊆ R∗∗I−inc(A) (R∗∗I−dec(A) ⊆ A ⊆ R∗∗I−dec(A)), equal-

ity hold if A = ϕ or X.

(2) A ⊆ B ⇒ R∗∗I−inc(A) ⊆ R∗∗I−inc(B) (R∗∗I−inc(A) ⊆ R∗∗I−dec(B)).

(3) A ⊆ B ⇒ R∗∗I−inc(A) ⊆ R∗∗I−inc(B) (R∗∗I−dec(A) ⊆ R∗∗I−dec(B)).

(4) R∗∗I−inc(A∩B) ⊆ R∗∗I−inc(A)∪R∗∗I−inc(B) (R∗∗I−dec(A∩B) ⊆ R∗∗I−dec(A)∪
R∗∗I−dec(B)).

(5) R∗∗I−inc(A∪B) ⊇ R∗∗I−inc(A)∩R∗∗I−inc(B) (R∗∗I−dec(A∪B) ⊇ R∗∗I−dec(A)∩
R∗∗I−dec(B)).

(6) R∗∗I−inc(A∪B) = R∗∗I−inc(A)∪R∗∗I−inc(B) (R∗∗I−dec(A∪B) = R∗∗I−dec(A)∪
R∗∗I−dec(B)).

(7) R∗∗I−inc(A∩B) = R∗∗I−inc(A)∩R∗∗I−inc(B) (R∗∗I−dec(A∩B) = R∗∗I−dec(A)∩
R∗∗I−dec(B)).

(8) R∗∗I−inc(R∗∗I−inc(A)) ⊇ R∗∗I−inc(A) (R∗∗I−dec(R∗∗I−dec(A)) ⊇ R∗∗I−dec(A)).

(9) R∗∗I−inc(R∗∗I−inc(A)) ⊆ R∗∗I−inc(A) (R∗∗I−dec(R∗∗I−dec(A)) ⊆ R∗∗I−dec(A)).

Proof. The proof is similar to Proposition 3.3. □

Let I = {ϕ, {c}, {d}, {c, d}}, in Example 3.1. Then, it shows that the inclusion

in Proposition 4.6 parts 1, 4 and 5 can not be replaced by equality relation (for

part 1, if A = {d}, R∗∗I−dec(A) = X,R∗∗I−dec(A) = ϕ. Then, R∗∗I−dec(A) ⊈
A ⊈ R∗∗I−dec(A)), also we can add examples to show that R∗∗I−inc(A) ⊈ A ⊈
R∗∗I−inc(A). In a similar way, we can add examples to part 4 and 5 ). Moreover, the

converse of parts 2 and 3 is not necessarily true (i.e., R∗∗I−inc(A) ⊆ R∗∗I−inc(B) ̸⇒
A ⊆ B, take A = {a, b, c}, B = {b, c, d}, then R∗∗I−inc(A) = ϕ,R∗∗I−inc(B) =

{b, c, d}. Therefore, R∗∗I−inc(A) ⊆ R∗∗inc(B), but A ⊈ B. In a similar way, we can

add examples to show that R∗∗I−dec(A) ⊆ R∗∗I−dec(B), but A ⊈ B).

5. Conclusion

In this paper, different methods are proposed to achieve the main aim of rough

set which is reducing the boundary region and increasing the accuracy of sets. Com-

parison between the current approximation and previous approximation [4, 7] is

presented. The current approximations are better than the previous approxima-

tion [4, 7], because it reduces the boundary region and increases the accuracy with

comparison to the previous one [4, 7].
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