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ABSTRACT. The aim of this paper is to study intuitionistic fuzzy 1-2-
normed space. We have discussed bounded linear operators, strong bound-
edness, weak boundedness, continuity in intuitionistic fuzzy -2-normed
space. Also, we have provided relation between boundedness and continu-
ity. Further we have established some topological results in this new set
up.
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1. INTRODUCTION

I. 1965, L. A. Zadeh[22] introduced the fuzzy set theory. R.Lowen[l1] studied
the basic results in fuzzy set theory. Fuzzy set theory has wide application in almost
all brances of Science and Engineering. A. George and P. V. Veeramani[7] stud-
ied fuzzy metric spaces. The concept of intuitionistic fuzzy set was introduced by
Atanassov[3]. Many authors[l, 2, 5, 8, 10, 13, 14, 17] have studied topological prop-
erties in fuzzy metric spaces, intuitionistic fuzzy metric spaces and related topics.
Saadati and Park[15] coined the notion of intuitionistic fuzzy normed space. Con-
tinuity, boundedness, completeness and compactness in intuitionistic fuzzy normed
spaces are studied in [4, 9, 19, 20, 21] . M. Mursaleen[12] defined the new structure
intuitionistic fuzzy 2-normed space and studied some basic results of normed linear
spaces. Recently, T.K. Samanta and Sumit Mohinta[16] have introduced the concept
of intuitionistic fuzzy i -normed space and discussed continuity and boundedness
in this structure. Some basic results of intuitionistic fuzzy -2-normed space are
discussed in[6].
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In this paper, we have discussed bounded linear operators, strong boundedness,
weak boundedness, strong continuity, weak continuity, sequentially continuity in
intuitionistic fuzzy -2-normed space.

2. PRELIMINARIES
We recall some notations and basic definitions used in this paper.

Definition 2.1 ([18]). A binary operation * : [0,1] x [0,1] — [0, 1] is said to be a
continuous t-norm if it satisfies the following conditions:

(a) * is associative and commutative;

(b) * is continuous;

(c) a*x1=aforall a€l0,1];

(d) a*xb<cxdwhenever a < ¢ and b < d for each a,b,c,d € [0, 1].

Example 2.2. Two typical examples of continuous t-norms are
axb=ab and ax*b= min{a,b}.

Definition 2.3 ([18]). A binary operation ¢ : [0,1] x [0,1] — [0, 1] is said to be a
continuous t-conorm if it satisfies the following conditions:

(a) ¢ is associative and commutative;

(b) © is continuous;

(c) ac0=aqforall a €]0,1];

(d) aob<cod whenever a < ¢ and b < d for each a,b,c,d € [0, 1].

Example 2.4. Two typical examples of continuous t-conorms are
aob=min{a + b,1} and aob= max{a,b}.

Definition 2.5 ([12]). Let V be a real vector space of dimension d, where 2 <
d < 00. A 2-norm on V is a function |-,-]] : V' x V' — R which satisfies for every
x,y,z €V,

(a) ||z,y|| =0 if and only if x and y are linearly dependent;

(0) [z, yll = lly, |;

(©) lloz, yll = lalllz, yl;

(d) llz,y + 2l < [lz, yll + [y, 2.
The pair V, ||, || is then called a 2-normed space.

As an example of a 2-normed space take V = R? being equipped with the 2-norm

||z, y|| :== the area of the parallelogram spanned by the vectors x and y, which may
be given explicitly by the formula ||z, y|| = |z1y2 — x2y1|, 2 = (21, 22),y = (y1,Y2)-

Definition 2.6 ([12]). The five-tuple (V, p,v,*,0) is said to be an intuitionistic
fuzzy 2-normed space (for short, IF 2-NS) if V is a vector space over F € {R,C},
* is a continuous t-norm, ¢ is a continuous t-conorm, and p,v are fuzzy sets on
V xV x (0, 00) satisfying the following conditions. For every z,y,z € V and s,t > 0,

(a) plz,y,t) +v(z,y,t) <1

(0) p(z,y,t) > 0;

(¢) p(x,y,t) =11if and only if  and y are linearly dependent;
(d) plaw,y,t) = ple,y, 1) for each a 0;
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(6) ,u(x,yﬁ)*,u(x,z,s) (xay+zat+s);

(f) p(z,y,-): (0,00) — [0,1] is continuous;

(9) lim¢soo p(x,y,t) = 1 and limy—o p(x, y,t) = 0;
(h) w(z,y,t) = u( z,t);

&) vz y.t) < 1;

(j) v(z,y,t) =0 if and only if x and y are linearly dependent;
(k) viaz,y,t) =v(z,y, ﬁ) for each a0 # 0;

(1) v(z,y,t)ov(z,z,8) > v(x,y+ 2t + 5);
(m) v(z,y,-): (0,00) — [0,1] is continuous;

(n) limi— oo v(z,y,t) =0 and lim;_,o v(z, y,t) 1,
(0) (:vaa ) - V(yaxat)'

In this case (p,v)s is called an intuitionistic fuzzy 2-norm on V. We denote it by

Example 2.7 ([12]). Let (V,|-,||) be 2-normed space over F' and let a * b = ab
and a ¢ b = min{a + b, 1}, for all a,b € [0,1] and every ¢t > 0, consider u(z,y,t) =

C e — ol
t eyl T+ sy
normed space.

Then (V,u,v,*,0) is an intuitionistic fuzzy 2-

3. INTUITIONISTIC FUZZY %-2-NORMED SPACE

Definition 3.1. Let ¥ be a function defined on the real field R into itself satisfying
the following properties;

(a) Y(—t) =(t) forallt € R

(0) v(1) =1

(c) 1 is strictly increasing and continuous on (0, 00)

(d) t<(t) Vte (0,00)

(e) limg—0 () =0 and lim, o0 () = 00.
Example 3.2. (1) Y(a) = |af.

(2) ¥(a) = |a|”én € RT.

3) dla) = 22 n e Nt

laf +1
Definition 3.3. The five-tuple (V, u, v, *,0) is said to be an intuitionistic fuzzy -
2-normed space, if V is a vector space over F € {R,C}, * is a continuous t-norm, ¢
is a continuous t-conorm, and u, v are fuzzy sets on V x V x (0, 00) satisfying the
following conditions. For every x,y,z € V and s,t > 0,

(a) p(z,y, )+V(fc,y,t) <1

(0) p(x,y,t) >

(¢) p(z,y,t) = 1 1f and only if z and y are linearly dependent;
(d) plax,y,t) = p(z,y, (a)) for each « #£ 0;

(e) plz,y,t) = p(z,z,8) < p(z,y + 2t +5);

(f) m(z,y,-):(0,00) — [0, 1] is continuous;

(9) limy—oo p(@,y,t) = 1 and limy o pu(x, y, 1) = 0;

(h) p(z,y,t) = ply, =,1);

(1) v(z,y,t) <1
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(j) v(z,y,t) =0 if and only if x and y are linearly dependent;
(k) viaz,y,t) =v(z,y, ﬁ) for each « # 0;
(1) v(z,y,t)ov(z,2,8) > v(z,y+ 2z,t+ 3);
(m) v(z,y,-): (0,00) — [0,1] is continuous;
)

limy o0 (2,9, t) = 0 and lim;_o v(x,y,t) = 1;
(o) v(z,y,t) =v(y,x,t).
In this case (u,v)s is called an intuitionistic fuzzy 1-2-norm on V.

Definition 3.4. Let (V,u,v,*,0) be an intuitionistic fuzzy 1-2-normed space. A
sequence {z,} is said to be convergent to x € V with respect to the intuitionistic
fuzzy 1-2-norm (u,v)s, if for every » > 0 and ¢ > 0, r € (0,1) there exists ng € N
such that u(x, — x,2,t) > 1 —r and v(z, — z,2,t) < r for all n > ng and for all
zeV.

Definition 3.5. Let (V, u,v,*,0) be an intuitionistic fuzzy -2-normed space. A
sequence {z,} in V is said to be Cauchy if for each r > 0 and each ¢t > 0,r € (0,1)
there exists ng € N such that p(z, — xm,2,t) > 1 —r and v(z, — Ty, 2,t) < r for
all n,m > ng and for all z € V.

Definition 3.6. Let (V, u,v,*,0) be an intuitionistic fuzzy 1-2-normed space and
let 7 € (0,1),# > 0 and = € X.The set B(z,rt) = {y € V : uly — x,2,t) >
1—7r v(y—=x,zt) <rVzeV}is called the open ball with center 2 and radius r
with respect to t.

Definition 3.7. Let (V, u,v,*,0) be an intuitionistic fuzzy -2-normed space. A
set U C V is said to an open set if each of its points is the centre of some open ball
contained in U. The open set in an intuitionistic fuzzy ¥-2-normed space (V, u, v, *, )
is denoted by U.

Theorem 3.8. In intuitionistic fuzzy 1-2-normed space (V,u,v,*,¢). A sequence
{zn} converges to x if and only if u(x, —x,2,t) = 1 and v(z, — x,2,t) = 0 as
n — o0o.

Theorem 3.9. The limit is unique for a convergent sequence {xy} in intuitionistic
fuzzy 1-2-normed space (V, p, v, x,0).

Theorem 3.10. In IF 1)-2-NS (V, p, v, %,0). Every convergent sequence is a cauchy
sequence.

Theorem 3.11. In IF ¢-2-NS (V, p, v, %,0). A sequence {x,} is a cauchy sequence
if and only if W(Tnip — x,2,t) = 1 and v(Tp4p — 2, 2,t) = 0 as n — oo.

Definition 3.12. An intuitionistic fuzzy 1-2-normed space (V, u, v, *,0) is said to
be complete if every cauchy sequence in IF 1-2-NS (V, u, v, *,¢) is convergent.

Theorem 3.13. Let (V, p, v, *,0) be a IF 1)-2-NS. A sufficient condition for the IF
Y-2-NS (V, u,v,%,0) to be complete is that every Cauchy sequence in (V, i, v, *,0)
has a convergent subsequence.

The proofs of theorems 3.8, 3.9, 3.10, 3.11, 3.13 are easily obtained using [6].
346
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Definition 3.14. Let(V, u,v, x,¢) be an intuitionistic fuzzy ¥-2-normed space. A
subset A of V is said to be I F5-bounded if there exist ¢ > 0 and 0 < r < 1 such that
wly—x,2z,t) >1—rand v(y —x,z,t) <rforall z,y € A and for all z€ V.

Theorem 3.15. In an intuitionistic fuzzy -2-normed space every compact set is
closed and IF5-bounded.

Lemma 3.16. A subset A of R is [Fy-bounded in (R, u,v,*,0) if and only if it is
bounded in R.

Lemma 3.17. A sequence {3, } is convergent in the intuitionistic fuzzy -2-normed
space (V, p, v, %,0) if and only if it is convergent in (R,]|-|).

Corollary 3.18. If the real sequence {8,} is IFy-bounded, then it has at least one
limit point.

The proofs of theorem 3.15, lemmas 3.16, 3.17 and corollary 3.18 are easy so
omitted.

Note that if ¢ Sttg then w(tl)tg ¥(t2) which gives ﬁ > @ Now
w(xty, z,t) = p(x, 2, th)) > u(x, z, Wtz‘)) = u(xts, z,t). Hence,
(3.1) wlaty, z,t) > p(wta, z,t) if t1 < to.
Theorem 3.19. Let {x1, - ,x,} be a linearly independent set of vectors in vector

space V' and (V, p, v, %,0) be an intuitionistic fuzzy 1p-2-normed space. Then there
are numbers ¢,d # 0 and an intuitionistic fuzzy ¥-2-normed space (R, p, v, *,9) such

that for every choice of real scalars aq,--- , a,, we have,

(32) plarzs + -+ an®p, 2,t) < po(cfip(ar) + - +(an)], z,t)
and

(33) V(alxl +-+ anxnvt) > VO(d[¢(a1) et 'l/J(O[n)], th)'

Proof. Put s = |aq|+---+|ay|. If s =0, all o;’s must be zero so all ¢(c;) must be
zero, hence (3.2) and (3.3) holds for any ¢,d # 0. If s > 0, by using definition 3.1,
we have,

Y(ar) > ol Y(an) > o
cllar) + - A Ylam)] = [laa| + - 4 [an]].
By using (3.1), we get,
po(c[¥(an) + -+ d(an)], 2,1) < polcflar| + - + |om]], 2, 1).
Hence, (3.2) takes the form,
plarzy + -+ Qnn, 2,t) < polcf|ar| + - + |anl], 2, ).
Dividing by s, we get,

o1x Ty t ar|+--+ |a, t
p(BE L O(Cu, 5
o]+ A fan] s

)<y
t

g/u'()(cazaf)'
S

s s s
347
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Putting =L = 3;,
t n
(3.4) p(Brzi+ -+ Bnxn, 2,t') < pole,z,t'),  where t' = -, Z 1B;| = 1.

Similarly,

t n
(3.5) v(Brz1+ -+ BnTn, z,t') > vo(d, 2, 1), where t' = -, Z 16| = 1.
s
j=1
Hence, it suffices to prove the existence of ¢,d # 0 and an intuitionistic fuzzy-i-
2-norm (po, vo)2 such that (3.4) and (3.5) holds.
Suppose that this is not true. Then there exists a sequence {y,,} of vectors

n
m :Bl,mxl +"'+Bn,mxm (Z‘ﬁj,m‘ = 1)7
j=1

such that p(ym,z,t) — 1 and v(ym,z,t) — 0 as m — oo for every ¢t > 0. Since
> i1 Bjm| = 1, we have |8; | < 1 and then by Lemma 3.16, the sequence of {3, }
is IF-bounded. In according to Corollary 3.18, {31 ,,, } has a convergent subsequence,
let 81 denote the limit of that subsequence and let {y ,,,} denote the corresponding
subsequence of {y,,}. By the same argument, {y1,.,} has a subsequence {ya2,} for
which the corresponding sequence of real scalars {2, } converges to some Ss.

Continuing this process, after n steps we obtain a subsequence {yn.m} of {ym}
such that

n n
Ynym = Z’Yj,mirj, (Z 1Yjm| = 1) and v, — 3; as m — oo.

Since,
n n
lgln,u(yn,m_Zﬁjxjvzat):l%rgl:u(z Yim — ﬁj Tj, 2, t)
j=1 j=1
. t t
> tim (1 = 1)1, 2, =) 5 1 o = B 2 ) )
m n n
=1
and
n
lifgny(ymm — Z;ﬂjxj,z,t) :h,%ny Z Vim — Bi);, 2, t)
j= =1

S hyan (V((ryl,m - Bl)xlaza %) S OM((’Yn,m - Bn)mna 2 %))
=0.

We have, lim y,m = E Bizi, ( E |8;| = 1), so that not all 3; can be zero.
m—00
— =
348



!S. G. Dapke and ?C. T. Aage /Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 343-360

Put y = Z;lzl Bjx; then y # 0 because {z1, - ,z,} is a linearly independent
set. Since p(ym,z,t) — 1 and v(ym,2,t) — 0 by assumption, then we have
1(Yn,m, 2,t) = 1 and v(Yn,m, 2,t) — 0. Hence

t t
(9, 28) = 1 = Yom) + Yo 2,0) = (B0 = Yoo 20 5) * 1Yams 2,5) ) = 1
and
t t
V(yv th) = V((y - yn,m) + Yn,m> Zat) S (V(y — Yn,m, %, 5) < V(yn,ﬁh 2y 5)) — 0.
Thus y = 0 which is a contradiction. O

Definition 3.20. Let (V, u, v, *,0) and (V,u/,v/,%',¢') be intuitionistic fuzzy-1)-2-
normed spaces then intuitionistic fuzzy-1-2-norms (u, ) and (p', '), are said to
be equivalent whenever z,, —*) z in (V, u,v, *,0) if and only if z, W'Y 2 in
(‘/7 /”L/7 V/’ */7 0,).

Theorem 3.21. On a finite dimensional vector space V, every two intuitionistic
fuzzy--2-norms (u,v)2 and (,u', 1/')2 are equivalent.

Proof. Let dimV = n and {v1,...,v,} be a basis for V. Then every € V has a
unique representation x = Z?Zl ajv;. Let oy, — 1) 2 in (V, v, %,0) but for each
m € N, z, has a unique representation, i.e. Z, = 1,1 + -+ + 0y mVp. By
theorem 3.19, there are ¢,d # 0 and an intuitionistic fuzzy-1-2- norm (g, )2 such
that (3.2) and (3.3) hold. So

,[L(l‘m — T, Z7t) = /L((al,m - 041)1)1 + (a2,m - QQ)UZ +-- (an,m - an)vn)

< po (e[ ¥(@1m — 1) + ¥lazm — a2) + -+ Y(anm — an)| )
< pole (@jm — aj), 2, 1)
and
V(Tm — x,2,t) > vo(d Y(ojm — @ ), 2,1).

Now, if m — oo then p(z;, —z,2,t) = 1 and v(z,, — x, z,t) — 0 for every ¢ > 0 and
hence ¥(ajm —a) — 0in R.
On the other hand,

t t
W (Tm —x,2,t) > u’((oq,m — )y, *) ! M’((an,m — )V, 2, *)
n n

*,u’(vl z ;) *’~~*’u/<v z ;>
- ) 7 nsy )
nw(aLm - al) nw(an,m - an)

:u'(vl z ;) <>'-~-<>’u’(v z ;)
o nw(al,m - 041) " nd)(an,m - an)

Since Y(ajm—aj) =0 — o0 and thus we have p/(v;, 2 -1

t t )
> np(ag,m—ayj) > np(a,mey)

and v/'(vj, 2, m) — 0 Then z,, —*") 2 in (Vi v/ %,0). With the same
’ 349
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’ ’ . . . .
argument, x,, —®* )2 zin (V, ', v/, o) implies z,, =2 z in (V, u, v, *,0).
O

4. CONTINUOUS LINEAR OPERATORS

Definition 4.1. Let (V, u, v, x,0), (V' /', v/, ', ¢') are intuitionistic fuzzy-t-2-normed
spaces. A linear operator T : (V, u, v, x,0) = (V/, p/, v/, %', ¢') is said to be intuition-
istic fuzzy-1-2-continuous (IF-1-2-C) at 2y € V if for given € > 0, € (0,1) there
exists some § = d(a,€) > 0,8 = B(a,¢) € (0,1) such that for z € V and for all
nonzero z € V,

w(x — g, 2,0) > ¥(B) and v(z — 39, 2,0) < (1 —¥(B))
= W (Tx —Txg,2,€) > () and V' (Tx — Txg, z,€) < (1 — ().
If T is IF-4-2-C at each point of V then it is said to be IF-¢-2-C on V.

Definition 4.2. Let (V, p, v, *,0), (V' 1/, v/, «',¢') are intuitionistic fuzzy-1-2-normed
spaces. A linear operator T : (V, u, v, x,¢) = (V/, i/, v/, %', ¢') is said to be intuition-
istic fuzzy-1-2-strongly continuous (IF-¢-2-SC) at xy € V if for given € > 0 there
exists some § = d(€) > 0 such that for z € V and for all nonzero z € V,

W (Tx — Txg, z,€) > plx — x0,2,0) and  V'(Tx — Txo,2,¢) < v(x — x0, 2,0).
If T is IF-¢-2-SC at each point of V then T is said to be IF-1-2-SC on V.

Definition 4.3. Let (V, u, v, x,0), (V' 1/, v/, ', o’) are intuitionistic fuzzy-1-2-normed
spaces. A linear operator T : (V, u, v, *,0) — (V' 1/, V', %', o) is said to be intuition-
istic fuzzy-1-2-weakly continuous (IF-¢-2-WC) at xg € V if for given € > 0, € (0,1)
there exists some ¢ = d(a, €) > 0 such that for z € V and for all nonzero z € V,

w(x —xz,2,0) > Y(a) and v(r—x0,2,0) < (1 —¢(a))
=/ (Tz — Txg,2,€) > Y(a) and V'(Tx —Txg,2,6) < (1 — ()
ie. p(T(x—m9),2,6) >(a) and V(T(x—m0),2,6) < (1—1(a)).
If T is IF-¢-2-WC at each point of V then T is said to be IF-1-2-WC on V.

Definition 4.4. Let (V, p, v, *,0), (V' 1/, v/, +', ') are intuitionistic fuzzy-1)-2-normed
spaces. A linear operator T : (V, u, v, *,0) — (V' 1/, V', %', o) is said to be intuition-
istic fuzzy-1-2-sequentially continuous (Seq-IF-1-2-C) at z¢ € V if for any sequence
{zr}, k>1with z; — x¢ implies Tz — Txo.
i.e.  lim p(ry —x0,2,t) =1 and lim v(xp —zg,2,t) =0 V>0
k—o0 k—o0

= lim p/'(Tzy — Twxo,2,t) =1 and lim V' (Txp — Txg,2,t) =0 Vt>0.
k—o0 k—o00

If T is sequentially IF-1-2-C at each point of V then T is said to be sequentially
IF-9-2-C on V.

Theorem 4.5. Let (V, p, v, *,0), (V' 1/, v/, ¥, o) are intuitionistic fuzzy-1-2-normed
spaces. Let T : (V,u,v,x,0) = (V' 1/, v/, %', o) be a linear operator.
(a) If T is IF)-2-SC on V iff it is IF)-2-SC at point xy.
(b) If T is IF-0-2-WC on V iff it is IF-1p-2-WC' at point x.
(¢) If T is Seq-IF-1-2-C on V iff it is Seq-IF--2-C at point x.
350
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(d) If T is IF-¢-2-C on V iff it is IF-)-2-C at point x.

Proof. (a) Let T be IF-¢-2-SC at xg € V then for given € > 0 there exists some
0 = d(e) > 0 such that for z € V and for all nonzero z € V,

(4.1) W/ (Tx —Txg,2,€) > p(x — x9,2,6) and V' (Tx — Txo, 2,¢) < v(x — 20, 2,0).

Take any y € V and replace x by « + z¢ — y, by (4.1), we get

/

w(Te+Txg—Ty —Txg, z,€) > p(x + x0 —y — o, 2,0) and
V'(Tz + Txg — Ty — Two, 2,€) < v(x + 20 — Y — T0,2,0)
W (Tx — Ty, z,€) > u(z —y,2,6) and
V(Tx — Ty, z,€) <v(z—1y,2,0)
= T is [F-¢-2-SC at y.

Since, y is arbitrary, hence T is [F-¢-2 SC on V.

Conversely, if T is IF-1-2 SC on V then by (4.2), T is IF-¢-2 SC at any z, € V.
The Proof of (b) follows easily by using (4.3) and (4.5)(a).
The Proof of (¢) follows easily by using (4.4) and (4.5)(a).
The Proof of (d) follows easily by using (4.1) and (4.5)(a).

Theorem 4.6. If a linear operator T : (V, p,v,x,0) — (V' @/, v/, %', 0') is IF-1p-2-
SC then it sequentially IF--2-C but converse need not true.

O

Proof. Let {z}, k >1 be a sequence such that z; — xo.

i.e. lim p(zp —x0,2,6) =1 and  lim v(xg — xp,2,t) =0, Vi>0.
k—o00 k—o00

Let T : (V,p,v,%,0) — (V' 1/ v/, %', is TF-4p-2-SC at x¢ € V if for given € > 0
there exists some d = d(e) > 0 such that for z € V and for all nonzero z € V,

W (Tx — Txg, z,€) > plx — x0,2,0) and V' (Tx — Txg,2,€) < v(z — 30, 2,0)

4

W (Txy — Txg, 2,€) > p(xy — x0,2,0) and v'(Txy — Txg, 2,€) < vz — 0, 2,9)

= lim g/ (Txr — Txo,2,€) > lim pu(zy — z0,2,9) and
k—o0 k—o0

)
lim v/ (T — Txo, 2, €)
k—o0
)
)

< lim v(zy — g, 2,0)
k—o0
>1 and klim V' (Txy — Txo,2,€) <0
—00

= lim g/ (Txp — Txo,2,6) =1 and lim /' (Txy, — Txo, 2,¢) =0
k—o0 k—o0

= Tuxp — Txg, (since, € >0 is arbitrary).

By (4.4), T is sequentially IF-¢-2-C at xy. Hence, T is sequentially IF-1-2-C on
V. O

Conversely, we provide example to prove sequentially IF-1-2-C does not imply
IF-4-2-SC.
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Example 4.7. Let (V,]|e,e||) be 2-normed space. Define a x b = min{a,b} and
a©b=max{a,b} for all a,b € [0,1].

t
Wix,z,t) = ——— V(x,2,t) = M, t> ||z, 2| and
t+cl|z, 2] t+cllz, ||
t |z, 2]
T, 2,t) = ——, vz, 2,t) = ———, t> |z, 2|
e R s P M
Then (V, p, v, x,0), (V, i/, v, %, o) are intuitionistic fuzzy-1-2-normed spaces.
. [, 2||*
Consider, T'(z, z,t) = —————,
2 = 22

choose sequence {xy}, k > 1 such that x, — xo. Now for all ¢ > 0, we have

lim p(zr —xo,2,t) =1 and lim v(zp — x0,2,t) =0
k—oo k—o0

= lim ||z — x| = 0.
k—o00
Now,
/ t
y (Txk; - Txo, Z?t) = (zk,2)* (z0,2)
t+ C” T+(@k,2)2  1+(=0,2)2 ”

_ t1 + (2, 2)2I[I1 + (w0, 2)||
HIL + (ks 2)2 (11 + (0, 2)?[| + cll(zr, 2)* + (zk, 2)* (20, 2)* = (w0, 2)* = (wk, 2)? (20, 2)*||
_ tI1 + (zk, 2)?[l11 + (20, 2)°
L+ (ks 22111+ (0, 2)2 [+ ell (2 — w0, 2) [ (k=0 2) (2k + @0, 2)2 + (24, 2)? — (20, 2) (21 — 70, 2) ||
Similarly,

(z ,z zo,z)4
1+(zk,2)? 1+(wo,2)?%

(Txk — TCC()7 Z, t

(zg,2)* (wg,2)*
H‘ C‘ T 2)? ~ T4 (00.2)?

_ cll(@x — o, 2) |l (zr—0, 2) (@k + w0, 2)* + (21, 2)* — (w0, 2)* (xk — @0, 2)||
¢ + (zk, 2)2 (11 + (o, 2)?[| + cll(zk — @0, 2)[[[[(zk—0, 2) (@) + 0, 2)? + (2 2)2 — (20, 2) (21 — 20, )

Since, limy_, oo ||z — zo|| = 0, it follows that,

klim W (Txy —Txg,z,t) =1 and lim V' (Txy — Txo,2,t) =0, V>0
—o0

k—o0

=Tz, — Txg.

Hence, T is Seq-IF-1-2-C on V.

Let € > 0 be given. Then
W (Tzy, — Txg, z,€) > p(x — 9, 2, 0)
=

ell1 + (25, 2)* 11 + (20, 2)°|

ell1 + (ks 2)2 |11 + (w0, 2)%[| + ¢l (zr — 20, 2) | [(TK—0, 2)(Tk + T0, 2)% + (Tk, 2)% — (20, 2)* (Tk — @0, 2)
>0

§+ ||z — o, 2|
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and

V' (Txy — Txo, 2,€) < v(x — 29,2,0)
=

cll(zr — xo, 2) ||| (xr—0, 2) (x1 + x0, 2)* + (2k, 2)* — (w0, 2)* (2% — T0, 2)||

€|l + (z, 2)2| 11 + (0, 2)2[| + cll(zr — z0, 2) || |(ZK—0, 2) (@K + 20, 2)? + (21, 2)? — (20, 2)?(xk — T0, 2) |
< 0 .
d+ ||z — o, 2|

So

€ll1 + (z, 2) 11 + (w0, 2)?||

(4.2) = dlz + wo, 2|[[|(z, 2)% + (w0, 2)? + (2, 2)* (20, 2)?||

Clearly, T is IF-¢-2-SC at z if there exists § > 0 satisfying (4.2) for all = # xg.
Let

1+ (2, 2)* |11 + (w0, 2)?|l
llx + o, z||||(z, 2)? + (z0, 2)? + (z, 2)?(z0, 2)?||

then 0 = £4; satisfying (4.2). But ¢; = 0 which is impossible. So, T is not IF-1-2-SC
at xo. Hence T is not IF-¢-2-SC on V.

5y =

Theorem 4.8. If a linear operator T : (V, p,v,x,0) — (V' pu/, v/, «', o) is [F-)p-2-
SC then it IF--2-WC.

Proof. A linear operator T : (V, u, v, x,0) = (V, i/, v/, *',¢') is IF-¢-2-SC at xg € V
then for given € > 0 there exists some § = d(e) > 0 such that for x € V and for all
nonzero z € V,

W (Tx —Txg, z,€) > plx — x0,2,6) and  V'(Tx — Txo,2,€) < v(z — z0, 2,0).
Let pu(x — xg, 2,0) > ¥(a) and v(z — x9,2,9) < (1 — («)) then

W (Tx — Txg, z,€) > plx — x0,2,6) > P(a) and V' (Tx — Txg, z,€) < v(x — 29,2,0) < 1 — ()
=/ (Tx — Txg,2,€) > (a) and V' (Tx — Txg,2,€) < (1 —(a)).

So T is IF-4-2-WC at zy. Hence, T is IF-¢-2-WC on V. O
Theorem 4.9. A linear operator T : (V,u,v,*,0) — (V' 1/, v/« o) is [F-1)-2-C
on V iff it is sequentially IF-)-2-C on V.

Proof. Let a linear operator T : (V,p,v,%,0) — (V' u/ v/« o) is IF-4)-2-C at
xo € V then by (4.1), for given € > 0, a € (0,1) there exists some § = d(a,€) >
0,8 = B(a,€) € (0,1) such that for z € V and for all nonzero z € V,

w(x —xg, 2,0) > ¥(B) and v(z — xg, 2,9) < (1 —(B))
= W (Tx —Txg,z,€) > Y(a) and V' (z — z9,2,0) < (1 — ()
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Let {z}, k > 1 be a sequence such that z; — ¢ so there exists positive integer kg
such that,

w(xg — o, 2,0) > (B8) and v(x, — o, 2,0) < (1 —¢(B))
= p/(Txy — Txo, 2,€) > () and V' (z), — 20,2,0) < (1 — (), Vk > ko
which gives
lim p(zk — zo,2,0) > (8) and lim v(xy — xo, 2,0) < (1 —¢(B))
k—oo k—o0
= klim ' (Txy — Txg, 2,€) > 1(a) and klim V(zk — 20,2,0) < (1 —9¢(a)), Vk>ko
—00 —00
which gives
hm W (Txy — Txg,2,6) =1 and lim v'(z — 20,2,6) =0, Vk > ko

k—o0

= T;L‘k — T'zy, (since € > 0 is arbitrary).

By (4.4), we get T is sequentially IF-¢-2-C at z. Hence, T is sequentially IF-1-2-C
on V.

Conversely, let T is sequentially IF-1-2-C on V so T is sequentially IF-¢-2-C at
xg. If possible T is not IF-¢-2-C at z( then for given ¢ > 0, € (0, 1) there exists
some 0 = d(a,€) > 0,8 = B(a,€) € (0,1) such that for y € V and for all nonzero
zeV,

(43) /14(1'0 - Y 275) > Qlj(ﬁ) and I/({EO - Y 275) < (1 - 1/1(»3))
(4.4) but p'(Txg — Ty, z,€) < (a) and v (Txg — Ty, z,€) > (1 — ().

Thus for 8= £, § =2, k=1,2.--- there exists {y;} such that,

B+l R+l
(20— Yo 21 ) > () and vl — Yo 2, ) < (1= ()
1\ Zo Yk, z ]f—f‘l k+1 0 yk77k+1 k+1
but u'(Txo — Tyk, 2,¢€) < Y(a) and v/ (Txg — Tyk, z,€) > (1 — p(a)).
Taking § > 0 there exists ko such that =5 +1 > ¢ for all k > kg then
(20 — o 6) = 0 — o2 ) > (H(—m)) and
(X0 — Yk, 2,0) = H(To yk7,k+1 k1
1 k
_ < _ - 1 — (-2
V(:EO ykazvé)—y(l‘o ykaz7k+1)<( q/}(k_i_l))
1 k
. B > 1 B ko
7 e m e 5 0) 2 Jig o —e 5 ) > I WG = 1 and
k
. o < 1 o =
Q10 Vo =y, 2,0) < lim v(wo =y, 2o ) < Jin (1 =g ) =0

= lim p(zo —yk,2,0) =1 and lim v(xg—yx,2,0) =0
k—o0 k—o0
= {yr} = o,
from (4.3), lim W (Txog — Tyk, 2,¢) < P(a) and klim V' (Txg — Tyk, z,€) > (1 — ()
—00

hm W (Txg — Tyx,2,€) #1 and  lim v/'(Txo — Ty, z,€) # 0.
"k—oo 354 k—o0
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*. Ty does not converge to Txg but {yx} — xg, which is contradiction to our
assumption that T is sequentially IF-1y-2-C at zy. Hence, T is IF-¢-2-C at zg so T
is [F-¢-2-C on V. O

Theorem 4.10. A linear operator T : (V, p,v,*,0) — (V' u/, v/, %', 0') is [F-)-2-SC
on V then it is IF-1-2-C on V but converse need not true.

Proof. Let T is IF-4-2-SC on V then by using (4.6) and (4.9) it is IF-¢-2-C on V.
Converse easily disproved by using theorem (4.9) and example (4.7). O

5. BOUNDED LINEAR OPERATORS

Definition 5.1. Let (V, u, v, x,0), (V, i/, ', %', ¢') are intuitionistic fuzzy-4-2-normed
spaces. A linear operator T : (V, p, v, *,0) — (V, ', v/, %', o) is said to be (IF-1)-2-
SB) intuitionistic fuzzy-1-2-strongly bounded if there exist constants h, k € R — {0}
such that for every z, z(nonzero) € V and for every t > 0,

W (Tx,z,t) > p(hw,z,t)  and V'(Tz,z,t) < v(kz,z,t).

Definition 5.2. Let (V, u, v, x,0), (V, i/, ', %', ¢') are intuitionistic fuzzy-4-2-normed
spaces. A linear operator T : (V, p, v, *,0) — (V,u/,v/, %', ¢) is said to be (IF-1)-2-
WB) intuitionistic fuzzy-1-2-weakly bounded if there exist { > 0 such that for all
x, z(nonzero) € V and for every ¢ > 0,

u(lz,z,t) > a and v(z,z,t)<1-—a

t
—)>a and v(z,z,—)<1l—-«
Ok s 5w
W (Tx,z,t) >a and  V(Tw,2,t) <1—a.

ie.  p(z,z,

Theorem 5.3. Let (V, p, v, x,0), (V, 1/, v/ ', o) are intuitionistic fuzzy--2-normed
spaces. If a linear operator T : (V, p,v,*%,0) — (V, (!, v/ ' o) is IF-1p-2-SB then it
is IF--2-WB but converse is not true.
Proof. Let a linear operator T : (V, p,v,*,0) — (V,u/, v/, %', ¢') is IF-1)-2-SB. Then
by (5.1) there exists constants h, k € R — {0} such that for every z, z(nonzero) € V
and for every ¢t > 0,

W (T, z,t) > plhe,z,t) and V(T 2,t) < v(kx,z,t)
t
(

. / t !
i.e. w(Tx,z,t) > wlx, 2z, —= and v (Tz,z,t) <v
(T 208) 2 o2 ) (T.200) < (2, 5 7)
t t
=  y(Tx,z,t) > plx,z,——) and V' (Tz, 2,1t) <v(z,z,
(T 200) 2 o2, ) (Ta200) < vl ).
Thus for any « € (0,1) there exists [ > 0 such that,
w(lz,z,t) >a and vz, zt) <1-—
t t
ie.  u(x,z,—=<)>a and v(z, 11—«
SO ( wm)
= y/(Tx,z,t) >a and V(Tz, 2,t) <
Hence by (5.2) a linear operator T is IF-y-2-WB. O
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We provide following example to show converse is not true.

Example 5.4. Let (V,]|e,o||) be 2-normed space. Define a * b = min{a, b} and
a©b=max{a,b} for all a,b € [0,1].

t* — ||z, 2|? 2||z, 2|l
z,2,t) = — " plr,zt)= Tt —  t>]x 2] and
2 ) t2 + ||z, 2|2 ( ) 2 + ||z, 2| I, 2]
t |z, 2|
! )= —— ! z,t) = ! t> ||z, z|.
H (:177 Z’ ) t+ ||x, Z||7 V (x7 b ) t—|— || , ||7 || b ||

Then (V, u, v, *,0), (V, i/, v/, «',¢') are intuitionistic fuzzy-1-2-normed spaces.
Now, for ¢ > ||z, z|, wu(lx,z,t) >«

t
2
N 1;,)(51)2 - ||$,Z||2

—_— (6%
2 -

RN

2 — ()2, 2|

ISR R Rl
= =9’z 2)? = ot® + ap(l)?|z, 2|7
= 2 —at® > ap(1)?||z, 2] + 0 (1)?|z, 2|2
= *(1—a)>|z,2]P(0)*(1+ )
2 £*(1-a)
= ||z, 2| < W
S o] < TP
P11 +a)2

L e i< @ )z 4+ tp(1)(1+ )3

7 b()(1+a)z
R { PO+
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On similar lines, we can prove v(hz, z,t) <1—a = v'(Tx,2,t) <1 —a. By (5.2)
linear operator T is IF-¢-2-WB. Conversely, for t > ||z, z||,

t

/Ll(waZat) > p(hw, z,t) < ,LL/(Tvaat) > p(w, 2, W)
t (w(tw — |, 2|]?
= > e 2
¢ 2 — (¥(h))? 2
N > (¥( ))zllx,ZII2
t+ llz, 2l 2+ ((h)? |z, 2|l
& P4 )3, 22 =7 = ()t 2))* + @, 2P = (w(h)? |, 2]
& W)tz 2l + (L(R)*t]z, 2l° + (0(h) ||z, 2)* > ¢z, 2|
& ()22t 2] + ||z, 2]°) > 2|z, 2|2
)|z, 2||?
& h))? > ’
W2 S, 2+ e, TP
t?||z, 2|2 3
>
< v(h) 2 <2tHx,zH2 + ||x,z||3)
& PY(h) =00 as t— 0.

Hence, T is not IF--2-SB.

Theorem 5.5. Let (V, p, v, x,0), (V, (', v/, «', o) are intuitionistic fuzzy-1-2-normed
spaces. Let T : (V,u,v,%,0) = (V,p/, v/, «',0") be a linear operator then T is strongly
IF--2-C if and only if T is strongly IF--2-B.

Proof. Let T be a strongly IF-1-2-B then by (5.1) then there exist constants h,k €
R — {0} such that for every x, z(nonzero) € V and for every t > 0,

W (Tx, z,t) > p(hz,z,t) and V'(Tx,2,t) < v(kz,z,t)
t t
T > — (T < —
=u'( x,z,t)_u(w,z,w(h)) and v'( x,z,t)_u(x,z,qp(k))
=u' (Tr — Ty, 2, t) > u(x—mo,z,L> and V/(Tx — Txg,2,t) < V(x—xo,z, L)
¥(h) ¥(k)

=u'(Tx — Tz, 2,t) > ,u(h(ac — xo),z,t) and V' (Tx —Tzo,z,t) < Z/(k:(x —x0), z7t)
=T be a strongly IF —¢y—2—-C.

Conversely, Let T be a strongly IF-1-2-C then by (4.2) if for given e there exists
some 0 = d(e) > 0 such that for € X and for all nonzero z € X,

W (Tx —Txg, z,€) > plx — x0,2,6) and V'(Tx — Txo,2,€) < v(z — x0, 2,0).
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Suppose that = # xg and ¢ > 0 putting U = w(ﬂ) then
t

N/(Tx7 z,1) = M/(w( )TUv z,1)

=4/ (TU, z,

1
t

$((3))
=/ (TU, z,€)
> (U, z,0)

Similarly, we obtain v'(Tz, z,t) < v(hx, z,t). Hence, T is strongly IF-1-2-B. O

Theorem 5.6. Let (V, p, v, x,0), (V, 1/, v/, «', ") are intuitionistic fuzzy-1-2-normed
spaces. Let T : (V, p,v,*,0) — (V, (', V', ', ") be a linear operator then T is IF-1i)-
2-WC if and only if T is IF-1)-2-WB.

Proof. Let T be a IF-¢-2-WB then by (5.2) then there exist constants [ > 0 such
that for every x, z(nonzero) € V and for every ¢t > 0,

p(lz,z,t) >« and v(z,z,t) <1—«

= W (Tx,z,t) > a and V'(Tz,2,t) <1—aq,
then
w(l(x —xzp),2,t) > a and v(l(z—xzg),2,t) <1—«
= yW/(Tz —Tzo,2,t) >a and V' (Tx—Txg,2,t)<1—a
= ThbealF—¢y—-2-WC.
Conversely,

Let T be a IF-¢-2-WC at x = ¢ then by (4.3) if for given e = 1, € (0, 1) there
exists some § = d(a, €) > 0 such that for z € X and for all nonzero z € X,

wx —xg,2,0) > a and vz —xg,20) < (1—a)
= u'(Tx —Txo,2,1) >a and V'(Tz —Txg,2,1) < (1 — ).
If 2 # x9 and ¢t > 0. Take z = Uy ().

We have
1l / -1
e, 2,0) = a = p(Uv7(5),2,0) = a =/ (TUV (), %11) > a
w(U,z,t8) > a = p/(TU, 2,t) > «
t 1
Uz, ——)>a= u(TU,2t) > a, where = —
) = a=p( )



!S. G. Dapke and ?C. T. Aage /Ann. Fuzzy Math. Inform. 10 (2015), No. 3, 343-360

Similarly,
V(ZU,z,t) <l-a= V’(TU,Z,IS) <1l-—aq,

so T is TF-y-2-WB.
If x = zg then u(ac — mo,z,t) = ,u’(Tx — Txo,z,t> =1 and V(x — xo,z,t) =

y’(Tm —Txo,z,t) =0,

SO u(lU,z,t) > a = u’(TU,z,t) > o and V(lU,Z,t) <l-a= V’(TU,z,t> <
—a,
so T is IF-¢-2-WB. Hence, T is [F-1-2-WB. g
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