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1. Introduction

Dimension theory has been one of the most challenging fuzzy topological issues
since Chang [9] tried to define a topological structure over the system of fuzzy sets
proposed by Zadeh in 1965 [26]. It has been studied by several authors and however
the subject is still dealing with obstacles such as, lack of a satisfactory concept of a
boundary as well as comprehensive definition of a dimension. Adnadjevic introduced
the generalized fuzzy spaces, GF-spaces, and at the same time, defined two dimension
functions F− ind, F− Ind for them [4, 5]. The c-zero dimensional and strongly
c-zero dimensional fuzzy topological spaces and the fuzzy covering dimension are
defined by Ajmal and kohli [6]. Tarres and Cuchillo-Ibanez established that the
c-zero dimensionality and the strongly c-zero dimensionality are not good extension
(in the Lowen sense) and introduced a new definition of the boundary of a fuzzy set
so that it would characterize clopen fuzzy sets as set with empty boundary [10, 11].
As an later strive Baiju and Sunil have extended the concept of covering dimension
of general topological spaces to L-topological spaces [7].

The initial motivation to write down this paper is actually the Example 3.21
where it was proposed as an Erdős-like fuzzy space. However, an application of
our results shows that the space is zero-dimensional and so has no deal with Erdős
space. It is proved among other things that every T1 and normal and so every
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pseudo-metrizable fuzzy space is zero-dimensional. On the other hand, regarding to
the most of former works, passing from zero case would be the first basic step to
develop the theory of fuzzy dimensions. The results of this paper may draw a much
clear picture of the present situation to be able to figure out how far is it from a
satisfactory theory of dimension. Some examples of zero- and non zero-dimensional
spaces are also presented.

2. Preliminaries

This section consists of some definitions and known results that will be used in
this paper. All undefined concepts and notations used here are standard by now and
can be found in [11, 19, 24].

Definition 2.1. A fuzzy set in a nonempty set X is a function (membership func-
tion) from X into the closed unit interval I = [0, 1]. A fuzzy set µ in X is called
crisp if µ(X) ⊂ {0, 1}. The family of all fuzzy sets on X is denoted by IX . For every
fuzzy subset µ ∈ IX , the support of µ is defined by supp(µ) = {x ∈ X : µ(x) > 0} =
µ−1(0, 1].

A fuzzy set µ is said to be contained in a fuzzy set η if µ(x) ≤ η(x) for each x in
X, denoted by µ ≤ η. The union and intersection of a family of fuzzy sets is defined
by

∨
µα = sup(µα) and

∧
µα = inf(µα), respectively.

Definition 2.2. For every x ∈ X and every α ∈ (0, 1), the fuzzy set xα with
membership function

xα(y) =

{
α y = x,
0 y ̸= x,

is called a fuzzy point. xα is said to be contained in a fuzzy set µ, denoted by xα ∈ µ,
if α < µ(x) [24].

We omit the case α = µ(x) in the above definition for some technical reasons. For
instance, every second countable fail to be first countable if we allow the equality.
Anyway, any fuzzy set is the union of all points which are contained in it and that
for every two fuzzy sets µ and ν we have µ ≤ ν if and only if xα ∈ µ implies xα ∈ ν,
for every fuzzy point xα. Any point x1 is called a crisp point. We denote a constant
fuzzy set whose unique value is c ∈ [0, 1] by cX .

Definition 2.3 ([19]). A fuzzy topology is a family δ of fuzzy sets in X which
satisfies the following conditions:

(i) ∀c ∈ I, cX ∈ δ,
(ii) ∀µ, ν ∈ δ ⇒ µ ∧ ν ∈ δ,
(iii) ∀(µj)j∈J ⊂ δ ⇒

∨
j∈J µj ∈ δ.

δ is called a fuzzy topology for X, and the pair (X, δ) is called a fuzzy topological
space. Open fuzzy sets, closed fuzzy sets and fuzzy clopens are defined as usual. In
Chang’s definition of fuzzy topology, which we will refer to as quasi fuzzy topology,
condition (i) should be replaced by (i)′ 0, 1 ∈ δ. A base or subbase for a fuzzy space
have the same meaning in the classic sense.
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Definition 2.4 ([22]). Let P = {xα : x ∈ X,α ∈ (0, 1]} and P∗ = P ∪{x0 : x ∈ X}.
A fuzzy metric on X is a mapping d : P∗ × P∗ → [0,∞) which satisfies, for all
xα, yβ , zγ ∈ P∗, the following conditions,

(1) If yβ ⊂ xα (i.e., y = x, β ≤ α), then d(xα, yβ) = 0,
(2) d(xα, zγ) ≤ d(xα, yβ) + d(yβ , zγ),
(3) d(xα, yβ) = d(y1−β , x1−α),
(4) If yβ ̸⊂ xα, then d(xα, yβ) > 0.

For instance, it is clear that the mapping d(xα, yβ) = max{d1(x, y), β−α}, where
d1 is a metric on X, is a fuzzy metric. In the above definition , if (4) (or (3),(4)) is
omitted, then d is called a fuzzy pseudo-metric (or fuzzy quasi-metric).

Let d be a fuzzy quasi-metric for X, then for any xα ∈ P∗ and ε > 0, Bε(xα) =∨
{yβ : d(xα, yβ) < ε} is a fuzzy set which is called an ε-open ball of xα. The family

of all fuzzy open balls B = {Bε(xα) : xα ∈ P, ε > 0}, corresponding to fuzzy (quasi-,
pseudo-) metric d, forms a base for some fuzzy topology δd on X.

Recall that a fuzzy topological space (X, δ) is said to be T1 if every fuzzy point
is a closed fuzzy set, and it is called regular (normal) when for every fuzzy point
xα (for every closed fuzzy set ν) in X and for every open fuzzy set µ such that
xα ∈ µ (ν ≤ µ), there exists an open fuzzy set η such that xα ∈ η ≤ cl(η) ≤ µ
(ν ≤ η ≤ cl(η) ≤ µ). The following Proposition is standard.

Proposition 2.5. A fuzzy topological space X is normal if and only if for any two
closed fuzzy sets µ and ν with the property that µ(x) + ν(x) ≤ 1 for every x ∈ X
and that µ(x) + ν(x) = 1 implies µ(x) = 1 or ν(x) = 1, there exist open fuzzy sets
η1 and η2 such that µ ≤ η1, ν ≤ η2 and η1(x) + η2(x) ≤ 1 for every x ∈ X.

Theorem 2.6 ([22]). If fuzzy topological space (X, δ) is fuzzy regular and has a
σ-fuzzy locally finite base, then it is fuzzy pseudo-metrizable.

Definition 2.7 ([14]). To every regular space X one assigns the small inductive
dimension of X, denoted by ind X, which is an integer larger than or equal to −1,
or the ”infinite number” ∞; the definition of the dimension function ind consists in
the following conditions:

(i) ind X = −1 if and only if X = ∅,
(ii) ind X ≤ n where n = 0, 1, ... , if for every point x ∈ X and each neigh-

bourhood V ⊂ X of the point x there exists an open set U ⊂ X such that
x ∈ U ⊂ V and ind FrU ≤ n− 1,

(iii) ind X = n if ind X ≤ n and ind X > n− 1, i.e., the inequality ind X ≤ n− 1
does not hold,

(iv) ind X = ∞ if ind X > n for n = -1, 0, 1, ...

Example 2.8. The space Qc ⊂ R of irrational numbers is zero-dimensional because
it has a countable base consisting of open-and-closed sets, viz., the sets of the form
Qc ∩ (a, b), where a and b are rational numbers.

3. Zero-dimensional spaces

The concept of the boundary is essential in the definition of inductive dimensions
of topological spaces according to the Definition 2.7, see also [14]. By a similar
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manner Adnadjevic defined the inductive dimensions for generalized fuzzy spaces
[4]. Cuchillo and Tarres [11] proposed a new definition of a fuzzy boundary as
follows,

Definition 3.1 ([11]). Let µ be a fuzzy set in a fuzzy topological space X. The
fuzzy boundary of µ, denoted by Fr(µ), is defined as the infimum of all closed fuzzy
sets σ in X with the property σ(x) ≥ µ(x) for all x ∈ X for which µ(x)−µ◦(x) > 0.

It is ready to see that µ is clopen fuzzy set if and only if Fr(µ) = 0X. So
regarding this boundary if the definition of the Adnadjevic’s dimension function is
particularized, in the case of zero-dimensionality, we get the following well known
definition.

Definition 3.2 ([11]). A fuzzy topological spaceX is zero-dimensional, (ind(X) = 0)
if for each fuzzy point xα in X and every open fuzzy set µ containing xα, there exists
a clopen fuzzy set σ (equivalentely, a fuzzy set σ in X with Fr(σ) = 0X ) such that
xα ∈ σ ≤ µ.

Throughout this paper we use the above definition.

Example 3.3. Let δ be the fuzzy topology on X = [0, 1] with subbase
{cX : c ∈ I} ∪ {µ}, where

µ(x) =

{
0 0 ≤ x ≤ 1

2 ,
1
3

1
2 < x ≤ 1,

Clearly any non-constant open fuzzy sets has the form

ν(x) =

{
a 0 ≤ x ≤ 1

2 ,
b 1

2 < x ≤ 1,
; 0 ≤ a ≤ b ≤ 1

3

There exists no clopen fuzzy set σ such that σ ≤ µ because the constant fuzzy
sets are the only clopen fuzzy sets. Thus ind(X) ̸= 0. Note that X does not satisfy
even the rare separation axiom T1.

Example 3.4. Let X = {0, 1} with the fuzzy topology generated by the subbasis:
{γ, cX : c ∈ I}, where γ : X → I is the fuzzy set defined by γ(x) = 1− x. It is easy
to see that the non-constant open fuzzy sets are

δ(x) =

{
a x = 0,
0 x = 1,

; 0 ≤ a ≤ 1

The fuzzy point 0 1
2
is contained in the open fuzzy set γ and there exists no clopen

fuzzy set ν with the property 0 1
2
∈ ν ≤ γ. Thus ind(X) ̸= 0. Note that ind(X) = 0

if {cX : c ∈ I} be the fuzzy topology on X.

Remark 3.5. Let (X, δ) be a fuzzy topological space and Y ⊂ X, then the family
δ1 = {µ|Y : µ ∈ δ} is a fuzzy topology for Y and (Y, δ1) is called a subspace of
(X, δ). If ind(X) = 0, then ind(Y) = 0. Note that restriction of every clopen fuzzy
subset of X on subspace Y is a clopen fuzzy set in Y .

Following [19], we denote by (X,ω(τ)) the fuzzy topological space generated by a
topological space (X, τ) consisting of all lower semi continuous functions f : X → I.
The space (X,ω(τ)) is called the induced fuzzy topological space of (X, τ). Any
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fuzzy topology which is equal to ω(τ) for some topology τ is called a topologically
generated fuzzy topology. Clearly, a fuzzy set in ω(τ) is clopen if and only if it is
continuous with respect to τ . An extension of a topological property for fuzzy spaces
is called a good extension when the underlying topology τ has this property if and
only if the induced fuzzy topology ω(τ) has it [20].

Proposition 3.6. Zero-dimensionality in quasi fuzzy topological spaces is a good
extension. Indeed ind(X, τ) = 0 if and only if ind(X, ω(τ)) = 0.

Proof. This is straightforward. □
Recall that for a topological space (X, τ), the quasi fuzzy topology generated by

subbase {χU : U ∈ τ} is called the characteristic quasi fuzzy topology on X.

Proposition 3.7. Let X be the characteristic quasi fuzzy topological space of any
non zero-dimensional space. Then ind(X) ̸= 0.

Proof. This is straightforward. □
The following proposition provides a base for induced topology consisting of finite

intersections of constants and the charactristic functions over the open fuzzy sets.

Proposition 3.8. Let (X, τ) be a topological space. If δ is the fuzzy topology gener-
ated by the subbase {χU : U ∈ τ} ∪ {cX : 0 ≤ c ≤ 1} on X then δ contains all lower
semi-continuous mappings, that is, δ = ω(τ).

Proof. Let f : X → I be a lower semi-continuous function. For every x in X and
every ε > 0 choose 0 < c < 1 with f(x) − ε < c < f(x) and let U = {z ∈ X :
f(z) > c}. Thus U is an open neighborhood of x and for every z ∈ U we have
0 < f(z)− c · χU (z) < ε where c · χU agrees with the open fuzzy set χU ∧ cX . Now
it is easy to verify that

f = sup{c · χU : x ∈ X and ε > 0}.
□

Using characteristic functions over open sets of τ easily implies that if ω(τ) is T1,
reagular or normal then τ is too. Next proposition presents a generalization of this
fact for the separation properties T1 and regularity.

Proposition 3.9. Let δ be a fuzzy topology on a set X. Then the family {Uµ,t :
µ ∈ δ and 0 < t < 1} where Uµ,t = {x ∈ X : µ(x) > t} generates a topology τ = i(δ)
on X such that ω(τ) is finer than δ. Indeed, τ is the coarsest topolology on X that
makes all members of δ lower semi-continuous. Moreover, if δ is T1 or regular then
τ is too.

Proof. Note that any µ ∈ δ is clearly a lower semi-continuous function with respect
to τ and hence δ ⊂ ω(τ). Suppose that δ is T1. Let x, y be two distinct points in X
and let 0 < α < 1 be an arbitrary number. There exists µ ∈ δ that contains xα but
misses yα. So if α < c < µ(x) then Uµ,c is an open neighborhood of x which does not
contain y. Finally suppose that δ is regular and let x be an arbitrary point in X that
is contained in open set Uµ,t. Choose a number α so that t < α < µ(x). There exists
an open fuzzy set ν with xα ∈ ν ≤ ν̄ ≤ µ. Since α < ν(x) we may choose a number
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s with α < s < ν(x). Now Uν,s is an open neighborhood of x that is contained in
the closed set E = {z ∈ X : ν̄(z) ≥ s} and that E ⊂ {z ∈ X : µ(z) > t}. It implies
that x ∈ Uν,s ⊂ Uν,s ⊂ Uµ,t. Thus τ is regular. □

The converse is also true and for the separation properties T1 and regularity is
readily obtained by applying characteristic functions. The property of being normal
is a consequence of the more strong result due to Katětov [17] and Tong [25]. We
bring a proof of it for the sake of completeness.

Proposition 3.10. Let X be a normal space. If f and g are lower and upper
semi-continuous functions from X to I respectively, with g ≤ f then there exists a
continuous mapping h : X → I such that g ≤ h ≤ f .

Proof. For each pair (m,n) of natural numbers with m ≤ n we define disjoint closed
subsets Em,n = {x : f(x) ≤ m/n} and Fm,n = {x : g(x) ≥ m/n + 1/2n} of X.
Let fm,n be a continuous function that is equal to m/n + 1/2n on Em,n and to
1 on Fm,n. Put fi = minj<i fm,n. It is readily verified that for every x ∈ X we
have g(x) ≤ fi(x) and that fn < f(x) or |fn(x) − f(x)| < 3/2n. It follows that
if f0 = inf fn then g(x) ≤ f0(x) ≤ f(x) for every x ∈ X. Applying this result
to functions −f and −f0 we obtain g0 = sup gn such that f0(x) ≤ g0(x) ≤ f(x)
for every x ∈ X. With no loss of generality we may assume that fn+1 ≤ fn and
gn+1 ≥ gn for every n ∈ N and every x ∈ X. Now if we let ki = maxj≤i[min{fj , gj}]
and li = max{ki−1, fi} then sup ki = inf li and so if we define h(x) as this common
value then h is as required. □

Note that the above result asserts that for any normal space (X, τ) the induced
fuzzy space (X,ω(τ)) is zero-dimensional.

Remark 3.11. It is proved that a T1 space X is Tychonoff if and only if for every
lower semi-continuous function h : X → I there exists a collection of real continuous
mappings {fs} such that h = sup fs [8, Proposition 5, Page 146]. For metric spaces
h can be expressed as a limit of an increasing sequence of continuous functions; see
[18, Theorem 23.19]. In other words, when (X, τ) is Tychonoff the collection of all
real continuous functions in (X,ω(τ)) forms a base for the induced fuzzy topology.
This yields the following result.

Proposition 3.12. (X, τ) is Tychonoff if and only if (X,ω(τ)) is zero-dimensional.

The normality of a fuzzy topology δ does not imply the normality of i(δ) in
general.

Example 3.13. Let X = I, A = [0, 1/2], ν = 1
3χA and

µ(x) =

{
1
3 0 ≤ x ≤ 1

3 ,
1
2

1
3 < x ≤ 1,

Let δ be the fuzzy topology induced by {µ, ν} ∪ {cX : 0 ≤ c ≤ 1}. It is ready to see
that δ is normal but i(δ) is not normal. Note that δ is not zero-dimensional.

We modify the construction methods applied in the proofs of Proposition 3.10 by
controling required maps to get the following generalization.

Theorem 3.14. Every T1 and normal fuzzy topology δ on a set X is zero-dimensional.
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Proof. We prove that for every µ ∈ δ and every fuzzy point xα ∈ µ there exists a
clopen fuzzy set f with xα ∈ f ≤ µ. Let α ≤ r < µ(x) be a rational number and let
r0, r1, . . . be a sequence consisting of all rational numbers in the interval [0, r] with
r0 = 0 and r1 = r. For every rn we may choose open fuzzy set νn such that νm ≥ νn
whenever rm < rn. Let ν1 be an open fuzzy set such that xr ∈ ν1 ≤ ν1 ≤ µ. Put
ν0 = µ. Suppose that νn has been constructed. Let rl and rm be the nearest ones to
rn+1 between r0, r1, . . . , rn from left and right. We have νm ≤ νl and there exists
νn+1 ∈ δ such that νm ≤ νn+1 ≤ νn+1 ≤ νl. This complete our inductive task. Now
we define f =

∨
n≥0 νn ∧ rn. Clearly, f is an open fuzzy set that is contained in µ

and that f(x) ≥ α. One may directly verify that 1− f =
∨

n≥0[(1− νn)∧ (1− rn)].
So f is a closed fuzzy set too. □

The converse of Theorem 3.14 is not true. For example if (X, τ) is the Niemytski
plane then it is well known that X is a Tychonoff space which is not normal; see
[15]. So by Proposition 3.12 (X,ω(τ)) is zero-dimensional.

Corollary 3.15. Every pseudo-metrizable fuzzy topological space is zero-dimensional.

In view of Proposition 2.5 and following the same method in [15, Lemma 1.5.15.]
we have the following characterization.

Proposition 3.16. A fuzzy topological space X is normal if and only if for every
closed fuzzy set µ and every open fuzzy set ν that contains µ there exists a countable
family {ηn}∞n=1 of open fuzzy sets such that ηn ≤ ν for every n, and that µ =∨∞

n=1 ηn.

Corollary 3.17. Any T1 regular fuzzy space with a countable base is zero-dimensional.

A subset of a topological space is called a C-set if it can be written as an inter-
section of clopen subsets of the space. By [13, Proposition 6.1] a space X is almost
zero-dimensional (AZD) if and only if for every x ∈ X and every neighborhood U of
x there exists a C-set neighborhood V of x with V ⊂ U . This concept is originally in-
troduced by Oversteegen and Tymchatyn in the realm of separable metrizable spaces
[21], and they showed among others that the dimension of such space is at most one;
see [1] for a simpler proof and generalization. It is clear that every zero-dimensional
space is almost zero-dimensional. Almost zero-dimensionality is clearly hereditary
and preserved under products. Note that every σ-compact almost zero-dimensional
space is zero-dimensional; see [3] for more informations.

Regarding above conditions it is natural to define an analogy for almost zero-
dimensionality in fuzzy case as follows.

Definition 3.18. A fuzzy topological space is called almost zero-dimensional if it is
T1 and for every fuzzy point xα and every open fuzzy set µ contains xα there exists
a fuzzy neighborhood ν of xα with xα ∈ ν ≤ µ such that ν is an intersection of
clopen fuzzy sets.

According to the definition any almost zero-dimensional fuzzy space is T1 and
regular. So by Corollary 3.17 we have the following result.

Proposition 3.19. Every almost zero-dimensional fuzzy space with a countable base
is zero-dimensional.
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We conclude this section by constructing an interesting example of a
zero-dimensional fuzzy space on the basis of Erdős space and in the view of Corol-
lary 3.17. Consider the Hilbert space ℓ2 consisting of all square summable sequences
x = (x0, x1, ...) of the real numbers. Erdős [16] introduced the closed subspace of ℓ2

consisting of all x ∈ ℓ2 such that every coordinate xi is in the convergent sequence
{0}∪{ 1

n : n ∈ N}. This space is now known as Complete Erdős space. The set of all

rational sequences in ℓ2 is known Erdős space E. Both spaces are one-dimensional
and universal elements for the class of almost zero-dimensional spaces, that is, ev-
ery almost zero-dimensional space can be imbedded in E or Ec. For a number of
characterizations and generalizations see [12, 2].

The following fact is essential for us.

Proposition 3.20. Every closed ball in E is a closed and co-dense subset with
respect to product topology. In other words, the norm is a lower semi-continuous
mapping with respect to product topology.

Proof. Let B = {x ∈ E : ∥x∥ ≤ r} and let y be a point in E with ∥y∥2 =
∑∞

i=0 |yi|2 >
r2. There exists an integer k suth that

∑k
i=0 |yi|2 > r2. We may choose δ > 0 so

that the inequalities |zi − yi| < δ for all 0 ≤ i ≤ k imply
∑k

i=0 |zi|2 > r2. Now

W = (
k∏

i=0

(yi − δ, yi + δ)×
∏
i>k

R) ∩ E

is an open neighborhood of y with respect to product topology which any point of
it has the norm larger than r. The rest of statements in the proposition are some
trivialities. □

Recall that the Cantor set is an universal for all separable metrizable zero-
dimensional spaces, that is, every such space can be imbedded into Cantor set.
Specially the countable product of rationals, Qω, can be imbedded into C. In the
following example we follow the method in [23] and use essentially this fact that
every non-empty clopen set of Erdős space is unbounded [16].

Example 3.21. Let φ be an imbedding of E = ℓ2 ∩ Qω with product topology,
into the Cantor ternary set C such that φ(0) = 0 and let X = φ(E) \ {0}. Let
B = {Wk : k ∈ N} be a base for X consisting of nonempty clopen sets. Note that

every φ−1(Wk) is unbounded in E. Define ψ : X → [0, 1] by ψ(x) = ∥q∥
1+∥q∥ , where

x = φ(q) and ∥.∥ is the norm of ℓ2. Let P = Q ∩ (0, 1). For every r ∈ P put
Ur = {x ∈ X : ψ(x) < r} and fr = ψ1−r ∧ χUr . It is clear that 0 < ψ < fr < fs
whenever r < s. Note that every fuzzy point xα is contained in some fr. Evidenty
φ−1(Ur) = {q : ∥q∥ < r

1−r} is open and bounded in E and so Ur is not open in X.
Let

{c0, c1, ct : t ∈ P} ∪ {χWk
: k ∈ N} ∪ {fr : r ∈ P}

be a subbase for a fuzzy topology δ on X which is obviously countable. It is ready
to see that δ is T1.

Now we prove that X is a fuzzy regular space. It suffices to show that for every
fr and every fuzzy point xα ∈ fr there exists a C-set neighborhood µ such that
xα ∈ µ ≤ fr. First notice that for every r ∈ P if Ūr = {x ∈ X : ψ(x) ≤ r} then the
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fuzzy set χŪr
is a C-set by Proposition 3.20. Let t be a number with α < t < fr(x)

and then choose a number s with s < α such that for every y with ψ(y) > s we have
t < fr(y). Now by another appeal to Proposition 3.20 if Wj is a clopen such that
Wj ∩ Ūs = ∅ then µ = tχŪt∩Wj

is a fuzzy C-set neighborhood as required.
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