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Abstract. In this paper, our approach is to study properties of ap-
proximations on nearness approximation spaces. Afterwards, our aim is
to define near semigroups and near ideals on near approximation spaces.
We introduce some properties of these nearness structures. The nearness
of sets and, in particular, the nearness of algebraic structures on nearness
approximation spaces fits within the milieu of fuzzy sciences theory.
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1. INTRODUCTION

Rough sets were introduced in 1982 [13]. An algebraic approach to rough sets
has been given by Iwinski [7]. Afterwards, rough subgroups were introduced by
Biswas and Nanda [1]. Rough ideal in a semigroup were introduced by Kuroki [8].
In 2004 and 2006, Davvaz investigated the concept of roughness of rings and modules
[2, 3] (and other algebraic approaches to rough sets in [9, 23, 22, 24]).

In 2007, near set theory and nearness approximation spaces were introduced by
J. F. Peters as a generalization of rough set theory [15, 16, 19]. In this theory, Peters
utilizes the features of objects to define the nearness of objects [17] and, consequently,
the classification of the universal set with respect to the available information of the
objects. More recent work considers generalized approach theory in the study of the
nearness of nonempty sets that resemble each other and a topological framework for
the study of nearness and apartness of sets [10, 18, 20]. Nonempty sets are near,
provided the sets resemble each other descriptively. It is the resemblance of sets
that places near set theory in the fuzzy sciences theory milieu, since membership of
a set in a family of near sets depends on a comparison of object descriptions that are
usually not exact and such inexact descriptions establish the resemblance of each set
in a family of sets that are descriptively near each other. In 2013, Öztürk and İnan
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[11] combined the soft sets approach with near set theory, which gives rise to the
new concepts of soft nearness approximation spaces (SNAS), soft lower and upper
approximations.

Near set theory begins with the selection of probe functions that provide a basis for
describing and discerning affinities between objects in distinct perceptual granules.
A probe function is a real-valued function representing a feature of physical objects.
But in this paper, in a more general setting that includes data mining, probe func-
tions φi would be defined to allow for non-numerical values, i.e., let φi : X −→ V ,
where V is the value set for the range of φi [21]. This more general definition of
φi ∈ F is also better in setting forth the algebra and logic.

In 2012, İnan and Öztürk [5, 6] investigated the basic concepts of the algebraic
structures of the near set theory. They introduced the concept of near groups,
weak cosets, near normal subgroups, homomorphism of near groups on nearness
approximation spaces. Moreover, in 2014, Öztürk et al. [12] introduced near group
of weak cosets on nearness approximation spaces. In this article, our aim is to
improve the concept of nearness semigroup theory, which extends the notion of a
semigroup to include the algebraic structures of near sets. Also, we introduce some
properties of aproximations and these algebraic structures.

2. Preliminaries

In this section we give some definitions and properties regarding near sets [15].
Objects are known by their descriptions. An object description is defined by

means of a tuple of function values Φ (x) associated with an object x ∈ X. Assume
that B ⊆ F is a given set of functions representing features of sample objectsX ⊆ O.
Let φi ∈ B, where φi : O −→ R. In combination, the functions representing object
features provide a basis for an object description Φ : O −→ RL, a vector containing
measurements associated with each functional value φi (x), where the description
length |Φ| = L.

Object Description: Φ(x) = (φ1 (x) , φ2 (x) , φ3 (x) , ..., φi (x) , ..., φL (x)).
Sample objects X ⊆ O are near each other if and only if the objects have similar

descriptions. Recall that each φ defines a description of an object. Then let ∆φi

denote ∆φi = |φi (x
′)− φi (x)| where x, x′ ∈ O. The difference ∆φ leads to a

definition of the indiscernibility relation ∼B introduced by Z. Pawlak [14].
Let x, x′ ∈ O, B ⊆ F .

∼B= {(x, x′) ∈ O ×O | ∀φi ∈ B, ∆φi = 0 }
is called the indiscernibility relation on O where description length i ≤ |Φ|.
Let B ⊆ F be a set of functions representing features of objects x, x′ ∈ O. Objects

x, x′ are called minimally near each other, if there exists φi ∈ B such that x ∼{φi} x′,
∆φi

= 0. This is called the ”Nearness Description Principle - NDP”. The objects
in a class [x]B ∈ ξB are near objects [15].

The basic idea in the near set approach to object recognition is to compare object
descriptions. Sets of objects X,X ′ are considered near each other, if the sets contain
objects with at least partial matching descriptions.

Let X,X ′ ⊆ O, B ⊆ F . Set X is called near X ′, if there exists x ∈ X, x′ ∈ X ′,
φi ∈ B such that x ∼{φi} x′.
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Symbol Interpretation
B B ⊆ F ,

r
(|B|

r

)
, i.e. , |B| probe functions φi ∈ B taken r at a time,

Br r ≤ |B| probe functions in B,
∼Br Indiscernibility relation defined using Br,
[x]Br

[x]Br
= {x′ ∈ O | x ∼Br x′} , equivalence class,

O⧸ ∼Br O⧸ ∼Br=
{
[x]Br

| x ∈ O
}
= ξO,Br , quotient set,

Nr (B) Nr (B) = {ξO,Br | Br ⊆ B} , set of partitions,
νNr νNr : ℘ (O)× ℘ (O) −→ [0, 1] , overlap function,

Nr (B)∗ X Nr (B)∗ X =

∪
[x]Br

[x]Br
⊆X

, lower approximation,

Nr (B)
∗
X Nr (B)

∗
X =

∪
[x]Br

[x]Br
∩X ̸=∅

, upper approximation,

BndNr(B) (X) Nr (B)
∗
X⧹Nr (B)∗ X =

{
x ∈ Nr (B)

∗
X | x /∈ Nr (B)∗ X

}
.

Table 1: Nearness Approximation Space Symbols

A nearness approximation space (NAS) is a tuple NAS = (O,F ,∼Br , Nr, νNr )
where the approximation space NAS is defined with a set of perceived objects
O, set of probe functions F representing object features, indiscernibility relation
∼Br

defined relative to Br ⊆ B ⊆ F , collection of partitions (families of neighbour-
hoods) Nr (B), and overlap function νNr .

A semigroup is an algebraic structure on a nonempty set S together with an
associative binary operation. That means, a semigroup is a set S together with a
binary operation “·” that satisfies:

(i) For all a, b ∈ S, a · b ∈ S.
(ii) For all a, b, c ∈ S, the equation a · (b · c) = (a · b) · c holds in S.
A nonempty subset A of a semigroup S is said to be a subsemigroup of S, if

a · b ∈ A for all a, b ∈ A, i.e., A2 ⊆ A.
A nonempty subset A of a semigroup S is said to be a left (resp. right) ideal of

S if SA ⊆ A (resp. AS ⊆ A). A is said to be an ideal of S, provided it is both a left
ideal and a right ideal of S [4].

3. Some Properties of Approximations

Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space and let “.” be a
binary operation defined on O. In this section, we will use “xy” instead of “x · y”
for x, y ∈ O.

Definition 3.1. Let X ⊆ O and Br ⊆ F , r ≤ |B|. A indiscernibility relation ∼Br

on O is called a complete indiscernibility relation ∼Br on perceptual objects O, if
[x]Br

[y]Br
= [xy]Br

for all x, y ∈ X.

Theorem 3.2. Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space and
X,Y ⊂ O, then the following statements hold;

289
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(1) Nr (B)∗ (X) ⊆ X ⊆ Nr (B)
∗
(X),

(2) Nr (B)
∗
(X ∪ Y ) = Nr (B)

∗
(X) ∪Nr (B)

∗
(Y ),

(3) Nr (B)∗ (X ∩ Y ) = Nr (B)∗ (X) ∩Nr (B)∗ (Y ),
(4) X ⊆ Y implies Nr (B)∗ (X) ⊆ Nr (B)∗ (Y ),
(5) X ⊆ Y implies Nr (B)

∗
(X) ⊆ Nr (B)

∗
(Y ),

(6) Nr (B)∗ (X ∪ Y ) ⊇ Nr (B)∗ (X) ∪Nr (B)∗ (Y ),
(7) Nr (B)

∗
(X ∩ Y ) ⊆ Nr (B)

∗
(X) ∩Nr (B)

∗
(Y ).

Proof. (1) Let x ∈ Nr (B)∗ (X), then x ∈ [x]Br
⊆ X and Nr (B)∗ (X) ⊆ X. Let x ∈

X then x ∈ [x]Br
and we have [x]Br

∩X ̸= ∅. Then observe that x ∈ Nr (B)
∗
(X).

Hence, X ⊆ Nr (B)
∗
(X).

(2)
x ∈ Nr (B)

∗
(X ∪ Y ) ⇔ [x]Br

∩ (X ∪ Y ) ̸= ∅
⇔

(
[x]Br

∩X
)
∪
(
[x]Br

∩ Y
)
̸= ∅

⇔ [x]Br
∩X ̸= ∅ or [x]Br

∩ Y ̸= ∅
⇔ x ∈ Nr (B)

∗
(X) or x ∈ Nr (B)

∗
(Y )

⇔ x ∈ Nr (B)
∗
(X) ∪Nr (B)

∗
(Y ).

Thus Nr (B)
∗
(X ∪ Y ) = Nr (B)

∗
(X) ∪Nr (B)

∗
(Y ).

(3)
x ∈ Nr (B)∗ (X ∩ Y ) ⇔ [x]Br

⊆ X ∩ Y
⇔ [x]Br

⊆ X and [x]Br
⊆ Y

⇔ x ∈ Nr (B)∗ (X) and x ∈ Nr (B)∗ (Y )
⇔ x ∈ Nr (B)∗ (X) ∩Nr (B)∗ (Y ).

Hence, Nr (B)∗ (X ∩ Y ) = Nr (B)∗ (X) ∩Nr (B)∗ (Y ).
(4) Let X ⊆ Y , then X ∩ Y = X, consequently by (3) we have Nr (B)∗ (X) =

Nr (B)∗ (X ∩ Y ) = Nr (B)∗ (X) ∩ Nr (B)∗ (Y ). Then observe that Nr (B)∗ (X) ⊆
Nr (B)∗ (Y ).

(5) Let X ⊆ Y , then X ∪ Y = Y , consequently by (2) we have Nr (B)
∗
(Y ) =

Nr (B)
∗
(X ∪ Y ) = Nr (B)

∗
(X) ∪ Nr (B)

∗
(Y ). This implies that Nr (B)

∗
(X) ⊆

Nr (B)
∗
(Y ).

(6) We know that X ⊆ X ∪ Y and Y ⊆ X ∪ Y , consequently by (4) we have
Nr (B)∗ (X) ⊆ Nr (B)∗ (X ∪ Y ) and Nr (B)∗ (Y ) ⊆ Nr (B)∗ (X ∪ Y ).

Hence, Nr (B)∗ (X) ∪Nr (B)∗ (Y ) ⊆ Nr (B)∗ (X ∪ Y ).
(7) SinceX∩Y ⊆ X andX∩Y ⊆ Y , consequently by (5) we haveNr (B)

∗
(X ∩ Y )

⊆ Nr (B)
∗
(X) and Nr (B)

∗
(X ∩ Y ) ⊆ Nr (B)

∗
(Y ).

Hence, Nr (B)
∗
(X ∩ Y ) ⊆ Nr (B)

∗
(X) ∩Nr (B)

∗
(Y ). □

Theorem 3.3. Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space. If X
and Y are nonempty subsets of perceptual objects O, then

Nr (B)
∗
(X)Nr (B)

∗
(Y ) ⊆ Nr (B)

∗
(XY ) .

Proof. Let z ∈ Nr (B)
∗
(X)Nr (B)

∗
(Y ), then we have z = xy with x ∈ Nr (B)

∗
(X)

and y ∈ Nr (B)
∗
(Y ). Thus there exist elements k, l ∈ O such that k ∈ [x]Br

∩ X

and l ∈ [y]Br
∩ Y . Consequently, k ∈ [x]Br

, l ∈ [y]Br
, x ∈ X and y ∈ Y . Since ∼Br

is an indiscernibility relation on O, kl ∈ [x]Br
[y]Br

⊆ [xy]Br
. Since kl ∈ XY , we

observe that kl ∈ [xy]Br
∩XY and so xy ∈ Nr (B)

∗
(XY ).

Hence, Nr (B)
∗
(X)Nr (B)

∗
(Y ) ⊆ Nr (B)

∗
(XY ). □
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Theorem 3.4. Let ∼Br be a complete indiscernibility relation on O. If X and Y
are nonempty subsets of O, then Nr (B)∗ (X)Nr (B)∗ (Y ) ⊆ Nr (B)∗ (XY ).

Proof. Let z ∈ Nr (B)∗ (X)Nr (B)∗ (Y ), then z = xy with x ∈ Nr (B)∗ (X) and
y ∈ Nr (B)∗ (Y ). Thus we have [x]Br

⊆ X and [y]Br
⊆ Y . Since ∼Br is a complete

indiscernibility relation on O, we have that [xy]Br
= [x]Br

[y]Br
⊆ XY and so

xy ∈ Nr (B)∗ (XY ).
Consequently, Nr (B)∗ (X)Nr (B)∗ (Y ) ⊆ Nr (B)∗ (XY ). □

4. Near Semigroups and Near Ideals

Definition 4.1. Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space and
let “·” be a binary operation defined on O.

A subset S of the set of perceptual objects O is called a near semigroup on
nearness approximation space or shortly nearness semigroup, provided the following
properties are satisfied:

(1) For all x, y ∈ S, x · y ∈ Nr (B)
∗
(S),

(2) For all x, y, z ∈ S, (x · y) · z = x · (y · z) property holds in Nr (B)
∗
(S).

Example 4.2. Let O = {o, a, b, c, d, e, f, g, h, i} be a set of perceptual objects and
B = {φ1, φ2, φ3} ⊆ F be a set of probe functions. Values of the probe functions

φ1 : O −→ V1 = {α1, α2, α3, α4},
φ2 : O −→ V2 = {α1, α2, α3} and
φ3 : O −→ V3 = {α1, α2, α3, α4}

are given in Table 2.

o a b c d e f g h i
φ1 α1 α2 α2 α3 α1 α1 α4 α2 α3 α2

φ2 α3 α3 α1 α1 α2 α2 α2 α3 α1 α3

φ3 α2 α3 α1 α3 α4 α2 α1 α3 α2 α3

Table 2

Let “·” be a binary operation of perceptual objects on O as in Table 3.

· o a b c d e f g h i
o o a o o o o o g o o
a a a b c c c f g h i
b o b b o o o f o o o
c c b c c d o o g h o
d o o o d d e o o h i
e o e o c e e o g h o
f o a o c f f o f b i
g g a b c d d e g h o
h o a h h o o e h o o
i i i o o d o o g o i

Table 3
291
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Let S = {d, e, f} be a subset of perceptual objects and let “·” be an operation on
S ⊆ O as in Table 4.

· d e f
d d e o
e e e o
f f f o

Table 4

[o]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (o) = α1}
= {o, d, e} = [d]φ1

= [e]φ1
,

[a]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (a) = α2}
= {a, b, g, i} = [b]φ1

= [g]φ1
= [i]φ1

,

[c]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (c) = α3}
= {c, h} = [h]φ1

,

[f ]φ1
= {x′ ∈ O | φ1 (x

′) = φ1 (f) = α4}
= {f}.

Hence, we get that ξφ1 =
{
[o]φ1

, [a]φ1
, [c]φ1

, [f ]φ1

}
.

[o]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (o) = α3}
= {o, a, g, i} = [a]φ2

= [g]φ2
= [i]φ2

,

[b]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (b) = α1}
= {b, c, h} = [c]φ2

= [h]φ2
,

[d]φ2
= {x′ ∈ O | φ2 (x

′) = φ2 (d) = α2}
= {d, e, f} = [e]φ2

= [f ]φ2
.

Thus we have that ξφ2 =
{
[o]φ2

, [b]φ2
, [d]φ2

}
.

[o]φ3
= {x′ ∈ O | φ3 (x

′) = φ3 (o) = α2}
= {o, e, h} = [e]φ3

= [h]φ3,

[a]φ3
= {x′ ∈ O | φ3 (x

′) = φ3 (a) = α3}
= {a, c, g, i} = [c]φ3

= [g]φ3
= [i]φ3

,

[b]φ3
{x′ ∈ O | φ3 (x

′) = φ3 (b) = α1}
= {b, f} = [f ]φ3

,

[d]φ3
= {x′ ∈ O | φ3 (x

′) = φ3 (d) = α4}
= {d}.

So we obtain that ξφ3 =
{
[o]φ3

, [a]φ3
, [b]φ3

, [d]φ3

}
.

Therefore, for r = 1, a set of partitions of O is N1 (B) = {ξφ1 , ξφ2 , ξφ3}.
Then, we can write

N1 (B)
∗
(S) =

∪
[x]φi

[x]φi
∩S ̸=∅

= {o, d, e} ∪ {f} ∪ {d, e, f} ∪ {o, e, h} ∪ {b, f} ∪ {d}
= {o, b, d, e, f, h}.

From Definition 4.1, subset S of perceptual objects O is a nearness semigroup.
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We defined a collection of partitions N1 (B), where N1 (B) = {ξO,B1 | B1 ⊆ B}.
Families of neighborhoods are constructed for each combination of probe functions

in B using
(|B|

1

)
, i.e., |B| probe functions taken 1 at a time. We can give an example

for r = 2.

Example 4.3. Let O = {o, a, b, c, d, e, f, g, h, i} be a set of perceptual objects and
B = {φ1, φ2, φ3, φ4} ⊆ F be a set of probe functions. Values of the probe functions

φ1 : O −→ V1 = {α1, α2, α3, α4, α5},
φ2 : O −→ V2 = {α2, α3, α4, α5},
φ3 : O −→ V3 = {α1, α3, α5} and
φ4 : O −→ V4 = {α3, α4,α5}

are given in Table 5.

o a b c d e f g h i
φ1 α1 α2 α2 α5 α1 α1 α2 α4 α1 α3

φ2 α4 α2 α3 α5 α4 α5 α3 α5 α2 α2

φ3 α1 α5 α1 α1 α1 α1 α3 α1 α3 α1

φ4 α5 α5 α3 α4 α5 α3 α3 α5 α3 α5

Table 5

Let “·” be a binary operation of perceptual objects on O as in Table 6.

· o a b c d e f g h i
o o a o o o o o g o o
a a a b c c c f g h i
b o b b o o o f o o o
c c b c c d o o g h o
d o o o d d e o o h i
e o e o c e e o g h o
f o a o c f f o f b i
g g a b c d d e g h o
h o a h h o o e h o o
i i i o o d o o g o i

Table 6

Let S = {d, e, f} be a subset of perceptual objects. Then, “·” be an operation of
perceptual objects on S ⊆ O as in Table 7.

· d e f
d d e o
e e e o
f f f o

Table 7
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[a]{φ1,φ2} = {x′ ∈ O | φ1 (x
′) = φ2 (x

′) = φ1 (a) = φ2 (a) = α2}
= {a},

[c]{φ1,φ2} = {x′ ∈ O | φ1 (x
′) = φ2 (x

′) = φ1 (c) = φ2 (c) = α5}
= {c}.

Hence, we get that ξ(φ1,φ2) = ξ(φ2,φ1) =
{
[a]{φ1,φ2} , [c]{φ1,φ2}

}
.

[o]{φ1,φ3} = {x′ ∈ O | φ1 (x
′) = φ3 (x

′) = φ1 (o) = φ3 (o) = α1}
= {o, d, e} = [d]{φ1,φ3} = [e]{φ1,φ3}.

Thus we have that ξ(φ1,φ3) = ξ(φ3,φ1) =
{
[o]{φ1,φ3}

}
.

[f ]{φ2,φ3} = {x′ ∈ O | φ2 (x
′) = φ3 (x

′) = φ2 (f) = φ3 (f) = α3}
= {f}.

Hence, we have that ξ(φ2,φ3) = ξ(φ3,φ2) =
{
[f ]{φ2,φ3}

}
.

[b]{φ2,φ4} = {x′ ∈ O | φ2 (x
′) = φ4 (x

′) = φ2 (b) = φ4 (b) = α3}
= {b, f} = [f ]{φ2,φ4},

[g]{φ2,φ4} = {x′ ∈ O | φ2 (x
′) = φ4 (x

′) = φ2 (g) = φ4 (g) = α5}
= {g}.

So we get that ξ(φ2,φ4) = ξ(φ4,φ2) =
{
[b]{φ2,φ4} , [g]{φ2,φ4}

}
.

[a]{φ3,φ4} = {x′ ∈ O | φ3 (x
′) = φ4 (x

′) = φ3 (a) = φ4 (a) = α5}
= {a},

[f ]{φ3,φ4} = {x′ ∈ O | φ2 (x
′) = φ4 (x

′) = φ2 (g) = φ4 (g) = α3}
= {f, h} = [h]{φ3,φ4},

Hence, we obtain that ξ(φ3,φ4) = ξ(φ4,φ3) =
{
[a]{φ3,φ4} , [f ]{φ3,φ4}

}
.

Therefore, for r = 2, a set of partitions of O is
N2 (B) =

{
ξ(φ1,φ2), ξ(φ1,φ3), ξ(φ2,φ3), ξ(φ2,φ4), ξ(φ3,φ4)

}
.

Then, we can write

N2 (B)
∗
(S) =

∪
[x]{φi,φj}

[x]{φi,φj}∩S ̸=∅

= {o, d, e} ∪ {f} ∪ {b, f} ∪ {f, h}
= {o, b, d, e, f, h}.

From Definition 4.1, subset S of perceptual objects O is a nearness semigroup.

Definition 4.4. Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space, S be
a nearness semigroup and I a nonempty subset of S. If Nr (B)

∗
(I) is a left (right,

two sided) ideal of S, then I is called a nearness left (right, two sided) ideal of S.

Theorem 4.5. Let (O,F ,∼Br , Nr, νNr ) be a nearness approximation space. Then
(1) If S is a semigroup of perceptual objects O, then S is a near semigroup on

nearness approximation space.
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(2) If I is a left (right, two-sided) ideal of nearness semigroup S, then I is a
nearness left (right, two-sided) ideal of nearness semigroup S.

Proof. (1) Let S be a semigroup of perceptual objects O. Since S ⊆ O, by Theorem
3.2.(1), we have that ∅ ̸= S ⊆ Nr (B)

∗
(S).

This means that x · y ∈ Nr (B)
∗
(S) for all x, y ∈ S and (x · y) · z = x · (y · z)

property holds in Nr (B)
∗
(S) for all x, y, z ∈ S. Hence, S is a nearness semigroup

on nearness approximation space.
(2) Let I be a left ideal of nearness semigroup S, that is, SI ⊆ I. We know that

S ⊆ Nr (B)
∗
(S). Then, by Theorems 3.3 and 3.2.(5), we have that

S
(
Nr (B)

∗
(I)

)
⊆ Nr (B)

∗
(S)Nr (B)

∗
(I)

⊆ Nr (B)
∗
(SI) ⊆ Nr (B)

∗
(I).

This means that Nr (B)
∗
(I) is a left ideal of nearness semigroup S, and so I is a

nearness left ideal of nearness semigroup S. Also, we can easily show that I is a near
right ideal of nearness semigroup S. Hence, I is a nearness left, right or two-sided
ideal of nearness semigroup S. □

The Theorem 4.5 shows that the notion of a nearness semigroup (left ideal, right
ideal, two-sided ideal) is an extended notion of an ordinary semigroup (left ideal,
right ideal, two-sided ideal).

Theorem 4.6. Let ∼Br be a complete indiscernibility relation on O, S ⊆ O be a
semigroup, A ⊆ S and (O,F ,∼Br , Nr, νNr ) be a nearness approximation space.

(1) Let A be a subsemigroup of semigroup S. Then Nr (B)∗ (A) is, if it is
nonempty, a subsemigroup of S.

(2) Let I be a left (right, two-sided) ideal of S. Then Nr (B)∗ (I) is, if it is
nonempty, a left (right, two-sided) ideal of Nr (B)∗ (S).

Proof. (1) Let A be a subsemigroup of semigroup S, then by Theorems 3.4 and
3.2.(4), we have that

Nr (B)∗ (A)Nr (B)∗ (A) ⊆ Nr (B)∗ (AA)
⊆ Nr (B)∗ (A).

This means that Nr (B)∗ (A) is, if it is nonempty, a subsemigroup of S ⊆ O.
(2) Let I be a left ideal of S, i.e., SI ⊆ I. Then, by Theorems 3.4 and 3.2.(4), we

have that

Nr (B)∗ (S)Nr (B)∗ (I) ⊆ Nr (B)∗ (SI)
⊆ Nr (B)∗ (I).

This means that Nr (B)∗ (I) is, if it is nonempty, a left ideal of Nr (B)∗ (S). The
other cases can be seen in a similar way. □

Definition 4.7. Let I be a subset of S ⊆ O. If Nr (B)
∗
(I) is a bi-ideal of S, then

I is called a nearness bi-ideal of S.

Theorem 4.8. Let ∼Br be an indiscernibility relation on O and S ⊆ O. If I is a
bi-ideal of S, then it is a nearness bi-ideal of S.
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Proof. Let I be a bi-ideal of S. Then, by Theorems 3.3 and 3.2.(5), we have that(
Nr (B)

∗
(I)

)
(S)

(
Nr (B)

∗
(I)

)
⊆ Nr (B)

∗
(I)Nr (B)

∗
(S)Nr (B)

∗
(I)

⊆ Nr (B)
∗
(ISI)

⊆ Nr (B)
∗
(I).

From Theorem 4.6.(1), we obtain that Nr (B)
∗
(I) is a bi-ideal of S, that is, I is a

nearness bi-ideal of S. □

Theorem 4.9. Let ∼Br be a complete indiscernibility relation on O and S ⊆ O. If
I is a bi-ideal of S, then Nr (B)∗ (I) is, if it is nonempty, a bi-ideal of Nr (B)∗ (S).

Proof. Let I be a bi-ideal of S. Then, by Theorems 3.4 and 3.2.(6), we have

Nr (B)∗ (I)Nr (B)∗ (S)Nr (B)∗ (I) ⊆ Nr (B)∗ (ISI)
⊆ Nr (B)∗ (I).

From Theorem 4.6.(1), we obtain that Nr (B)∗ (I) is, if it is nonempty, a bi-ideal of
Nr (B)∗ (S). □

Theorem 4.10. Let ∼Br be an indiscernibility relation on O and S ⊆ O. If I is a
right ideal of S and J is a left ideal of S, then

Nr (B)
∗
(IJ) ⊆ Nr (B)

∗
(I) ∩Nr (B)

∗
(J) .

Proof. Let I be a right ideal of S and J be a left ideal of S, then IJ ⊆ IS ⊆ I and
IJ ⊆ SJ ⊆ J . Thus IJ ⊆ I ∩ J . Hence, it follows from Theorem 3.2.(5) and (7)
that

Nr (B)
∗
(IJ) ⊆ Nr (B)

∗
(I ∩ J) ⊆ Nr (B)

∗
(I) ∩Nr (B)

∗
(J).

□

Theorem 4.11. Let ∼Br
be an indiscernibility relation on O and S ⊆ O. If I is a

right ideal of S and J is a left ideal of S, then

Nr (B)∗ (IJ) ⊆ Nr (B)∗ (I) ∩Nr (B)∗ (J) .

Proof. Let I be a right ideal of S and J be a left ideal of S, then IJ ⊆ IS ⊆ I and
IJ ⊆ SJ ⊆ J . Thus IJ ⊆ I ∩ J . Hence, it follows from Theorem 3.2.(3) and (4)
that

Nr (B)∗ (IJ) ⊆ Nr (B)∗ (I ∩ J) ⊆ Nr (B)∗ (I) ∩Nr (B)∗ (J).

□
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