Annals of Fuzzy Mathematics and Informatics Volume 10, No. 2, (August 2015), pp. 239–247 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy totally *e*-continuous functions

A. VADIVEL, M.PALANISAMY

Received 17 September 2014; Revised 9 November 2014; Accepted 5 March 2015

ABSTRACT. In this paper, fuzzy *e*-open sets and fuzzy *e*-closed sets are used to define and investigate a new class of functions called fuzzy totally *e*-continuous functions. Relationships between the new class and other classes of functions are established.

2010 AMS Classification: 54A40, 03E72.

Keywords: Fuzzy topological spaces, Fuzzy *e*-open set, Fuzzy *e*-closed set, Fuzzy totally *e*-continuity.

Corresponding Author: A. Vadivel (avmaths@gmail.com)

1. INTRODUCTION

The concept of fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh [14] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang [5]. Since then many fuzzy topologists have extended various notions in classical topology to fuzzy topological spaces. In classical topology the class of totally continuous functions was introduced in [9] and as a consequence of this *e*-open sets and *e*-continuous function is introduced and studied in [7]. The fuzzyfied concept of the totally continuous function is introduced as perfectly fuzzy continuous functions and studied along with other functions in [3]. In 2014 Seenivasan [13] introduced the concept of fuzzy *e*-continuity and fuzzy *e*-open sets in fuzzy topological space. The purpose of this paper is to introduce the concept of fuzzy totally *e*-continuous functions and investigated its basic properties.

2. Preliminaries

Throughout this paper X, Y and Z are always mean fuzzy topological spaces. The class of all fuzzy sets on a universe X will be denoted by I^X . A fuzzy topology on a nonempty set X is a family δ of fuzzy subsets of X which satisfies the following three conditions:

- (i) $0, 1 \in \delta$,
- (ii) If $g, h \in \delta$, their $g \wedge h \in \delta$,

(iii) $f_i \in \delta$ for each $i \in I$, then $\bigvee_{i \in I} f_i \in \delta$.

The pair (X, δ) is called a fuzzy topological space [5]. Let λ be a fuzzy subset of a space X. The fuzzy closure of λ , fuzzy interior of λ , fuzzy δ -closure of λ and the fuzzy δ -interior of λ are denoted by $Cl(\lambda)$, $Int(\lambda)$, $Cl_{\delta}(\lambda)$ and $Int_{\delta}(\lambda)$ respectively. A fuzzy subset λ of space X is called fuzzy regular open [2] (resp. fuzzy regular closed) if $\lambda = Int(Cl(\lambda))$ (resp. $\lambda = Cl(Int(\lambda))$). Now $Cl(\lambda)$ and $Int(\lambda)$ are defined as follows $Cl(\lambda) = \wedge \{\mu : \mu \geq \lambda, \mu \text{ is fuzzy closed in } X\}$ and $Int(\lambda) = \vee \{\mu : \mu \leq \lambda, \mu \text{ is fuzzy open in } X\}$. The fuzzy δ -interior of a fuzzy subset λ of X is the union of all fuzzy regular open sets contained in λ . A fuzzy subset λ is called fuzzy δ -open [10] if $\lambda = Int_{\delta}(\lambda)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e, $\lambda = Cl_{\delta}(\lambda)$).

Definition 2.1 ([11]). A fuzzy set in X is called a fuzzy point iff it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\lambda(0 < \lambda \leq 1)$ we denote this fuzzy point by x_{λ} , where the point x is called its support.

Definition 2.2 ([11]). The fuzzy point x_{λ} is said to be contained in a fuzzy set A, or to belong to A, denoted by $x_{\lambda} \in A$, iff $\lambda \leq A(x)$. Evidently, every fuzzy set A can be expressed as the union of all the fuzzy points which belong to A.

Definition 2.3 ([13]). A fuzzy set λ of a fuzzy topological space X is said to be fuzzy *e*-open if $\lambda \leq Cl(Int_{\delta}\lambda) \vee Int(Cl_{\delta}\lambda)$, where $Cl(\lambda) = \wedge \{\mu : \mu \geq \lambda, \mu \text{ is fuzzy closed in } X\}$ and $Int(\lambda) = \vee \{\mu : \mu \leq \lambda, \mu \text{ is fuzzy open in } X\}$. If λ is fuzzy *e*-open, then $1 - \lambda$ is fuzzy *e*-closed.

Definition 2.4 ([13]). Let X be a fuzzy topological space and λ be any fuzzy set in X. The fuzzy *e*-closure of λ in X is denoted by $eCl(\lambda)$ defined as follows: $eCl(\mu) = \wedge \{\lambda : \lambda \geq \mu, \lambda \text{ is a fuzzy } e\text{-closed set of } X\}$. Similarly we can define $eInt(\lambda)$.

Remark 2.5. For a fuzzy set λ of X, $1 - eInt(\lambda) = eCl(1 - \lambda)$.

Theorem 2.6 ([13]). In a fuzzy topological space X, λ is a fuzzy e-closed (resp. fuzzy e-open) if and only if $\lambda = eCl(\lambda)$ (resp. $\lambda = eInt(\lambda)$).

Definition 2.7. Let X and Y be two fuzzy topological spaces. Let $\lambda \in I^X$, $\mu \in I^Y$. Then $f(\lambda)$ is a fuzzy subset of Y, defined by $f(\lambda) : Y \to [0, 1]$

$$f(\lambda)(y) = \begin{cases} \sup_{x \in f^{-1}(\{y\})} \lambda(x) & \text{if } f^{-1}(\{y\}) \neq \phi \\ 0 & \text{if } f^{-1}(\{y\}) = \phi. \end{cases}$$

and $f^{-1}(\mu)$ is a fuzzy subset of X, defined by $f^{-1}(\mu)(x) = \mu(f(x))$.

Definition 2.8. A function $f : X \to Y$ is said to be fuzzy totally continuous [4] (resp. fuzzy *e*-continuous [13]) if the inverse image of every fuzzy open set in Y is a fuzzy Clopen (resp. fuzzy *e*-open) set in X.

Definition 2.9 ([12]). A fuzzy topological space X is called fuzzy T_0 -space if for any pair of distinct fuzzy points x_t and x_s , there exist a fuzzy open set λ such that $x_t \in \lambda$ and $x_s \notin \lambda$ or $x_t \notin \lambda$ and $x_s \in \lambda$. **Definition 2.10** ([12]). A fuzzy space X is said to be fuzzy T_2 (= fuzzy Hausdorff) if for each pair of fuzzy points x_{α} and y_{β} such that $x_{\alpha} \neq y_{\beta}$ in X, there exist disjoint fuzzy open sets λ and μ in X such that $x_{\alpha} \in \lambda$ and $y_{\beta} \in \mu$.

Definition 2.11 ([8]). A collection μ of fuzzy sets in a fuzzy space X is said to be cover of a fuzzy set η of X if $(\bigvee_{A \in \mu} A)(x) = 1$, for every $x \in s(\eta)$. A fuzzy cover μ of a fuzzy set η in a fuzzy space X is said to be have a finite subcover if there exists a finite subcollection $\rho = \{A_1, A_2, \ldots, A_n\}$ of μ such that $(\bigvee_{j=1}^n A_j)(x) \ge \eta(x)$, for every $x \in s(\eta)$, where $s(\eta)$ denotes the support of a fuzzy set η .

Definition 2.12 ([1]). A fuzzy topological space (X, τ) is said to be fuzzy Lindelöf, if for each family $\mathscr{B} \subset \tau$ and for each $\alpha \in I$ such that $\bigvee_{\lambda \in \mathscr{B}} \lambda \geq \alpha$, there exist for each $\epsilon \in (0, \alpha]$ a countable subset \mathscr{B}_0 of \mathscr{B} such that $\bigvee_{\lambda \in \mathscr{B}_0} \lambda \geq \alpha - \epsilon$.

Definition 2.13 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy $e T_1$ if for each pair of distinct points x and y of X, there exists fuzzy e-open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$, $x \notin U_2$ and $y \notin U_1$.

Definition 2.14 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy $e-T_2$ (i.e., fuzzy e-Hausdorff) if for each pair of distinct points x and y of X, there exists disjoint fuzzy e-open sets U and V such that $x \in U$ and $y \in V$.

Definition 2.15 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy *e*-regular if for each closed set F of X and each $x \in X - F$, there exists disjoint fuzzy *e*-open sets U and V such that $x \in U$ and $F \leq V$.

Definition 2.16 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy *e*-normal if for every two disjoint fuzzy closed sets A and B of X, there exist two disjoint fuzzy *e*-open sets U and V such that $A \leq U$ and $B \leq V$ and $U \wedge V = 0$.

3. Fuzzy Totally *e*-continuous Function

We have introduced the following definition

Definition 3.1. A function $f : X \to Y$ is said to be fuzzy totally *e*-continuous if the inverse image of every fuzzy open set in Y is a fuzzy *e*-Clopen (that is, fuzzy *e*-open and fuzzy *e*-closed) set in X.

It is clear that every fuzzy totally continuous function is fuzzy totally *e*-continuous and every fuzzy totally *e*-continuous function is fuzzy *e*-continuous.

However, none of the above implications are reversible as shown in the following examples.

Example 3.2. Let $X = \{a, b, c\}, Y = \{p, q\}$ $\tau = \{0, 1, \alpha, \beta, \gamma\}$ and $\sigma = \{0, 1, \delta\}$ where $\alpha = \frac{0.5}{a} + \frac{0}{b} + \frac{0}{c}, \beta = \frac{0}{a} + \frac{0.5}{b} + \frac{0}{c}, \gamma = \frac{0.5}{a} + \frac{0.5}{b} + \frac{0}{c}$ and $\delta = \frac{0.5}{p} + \frac{0}{q}$. Define $f : (X, \tau) \to (Y, \sigma)$ as follows: f(a) = p, f(b) = f(c) = q. Then f is fuzzy totally e-continuous. However, it is not fuzzy totally continuous, since for the fuzzy open set δ of $(Y, \sigma), f^{-1}(\delta) = \alpha$, which is not fuzzy closed in (X, τ) .

Example 3.3. Let I = [0, 1] and μ_1, μ_2 and μ_3 be fuzzy sets of I defined as

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$
$$\mu_2(x) = \mu_3(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4} \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2} \\ 0 & \text{if } \frac{1}{2} \le x \le 1 \end{cases}$$

Clearly, $\tau_1 = \{0, 1, \mu_1, \mu_2, \mu_1 \lor \mu_2\}$ and $\tau_2 = \{0, 1, \mu_3\}$ are fuzzy topologies on I. Let $f: (I, \tau_1) \to (I, \tau_2)$ be defined by f(x) = x for each $x \in I$. Then f is fuzzy totally *e*-continuous but not fuzzy totally continuous, since for the fuzzy open set μ_3 of $(I, \tau_2), f^{-1}(\mu_3) = \mu_3$, is fuzzy open in (I, τ_1) but not fuzzy closed in (I, τ_1) .

Example 3.4. Let $X = Y = \{a, b, c\}, \tau = \{0, 1, \alpha, \beta, \gamma, \delta\}$ and $\sigma = \{0, 1, \lambda\}$ where $\alpha = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \beta = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.5}{c}, \gamma = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.4}{c}, \delta = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.4}{c}$ and $\lambda = \frac{0.6}{a} + \frac{0.9}{b} + \frac{0.5}{c}$. Define $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Clearly f is fuzzy *e*-continuous but not fuzzy totally *e*-continuous, since for the fuzzy open set λ of $(Y, \sigma), f^{-1}(\lambda) = \lambda$ is fuzzy *e*-open in (X, τ) but not fuzzy *e*-closed in (X, τ) .

Example 3.5. Let I = [0,1] and μ_1, μ_2 and μ_3 be fuzzy sets of I in Example 3.3 Consider fuzzy topologies $\tau_1 = \{0, 1, \mu_1, \mu_2, \mu_1 \lor \mu_2\}$ and $\tau_2 = \{0, 1, \mu_1 \lor \mu_2\}$ are fuzzy topologies on I. Let $f : (I, \tau_1) \to (I, \tau_2)$ be defined by f(x) = x for each $x \in I$. Then f is fuzzy e-continuous but not fuzzy totally e-continuous, since for the fuzzy open set $\mu_1 \lor \mu_2$ of $(I, \tau_2), f^{-1}(\mu_1 \lor \mu_2) = \mu_1 \lor \mu_2$ is fuzzy e-open in (X, τ_1) but not fuzzy e-closed in (X, τ_1) .

Definition 3.6. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be strongly fuzzy *e*-continuous if and only if $f^{-1}(\lambda)$ is fuzzy *e*-Clopen whenever $\lambda \in I^Y$.

It is evident that every strongly fuzzy *e*-continuous function is fuzzy totally *e*-continuous. However, the converse is not true as shown in the following example.

Example 3.7. Let $X = Y = \{a, b, c\}, \tau = \{0, 1, \alpha, \beta, \gamma, \delta\}$ and $\sigma = \{0, 1, \lambda\}$ where $\alpha = \frac{0.4}{a} + \frac{0.5}{b} + \frac{0.5}{c}, \beta = \frac{0.6}{a} + \frac{0.4}{b} + \frac{0.4}{c}, \gamma = \frac{0.6}{a} + \frac{0.6}{b} + \frac{0.5}{c}, \delta = \frac{0.4}{a} + \frac{0.4}{b} + \frac{0.4}{c}$ and $\lambda = \frac{0.4}{a} + \frac{0.5}{b} + \frac{0.5}{c}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is fuzzy totally *e*-continuous but not strongly fuzzy *e*-continuous, since for the fuzzy set $\mu = \frac{0.6}{a} + \frac{0.4}{b} + \frac{0.4}{c} \in I^Y, f^{-1}(\mu) = \mu$ is fuzzy *e*-open in (X, τ) but not fuzzy *e*-closed in (X, τ) .

Recall that a fuzzy topological space (X, τ) is called a discrete fuzzy topological space if $\tau = I^X$.

Example 3.8. Let I = [0, 1] and μ_1 and μ_2 and μ_3 be fuzzy sets of I in Example 3.3 Consider fuzzy topologies $\tau_1 = \{0, 1, \mu_1, \mu_2, \mu_1 \lor \mu_2\}$ $\tau_2 = \{0, 1, \mu_3\}$ are topologies on *I*. Let $f : (I, \tau_1) \to (I, \tau_2)$ be defined by f(x) = x for each $x \in I$. Then *f* is fuzzy totally *e*-continuous but not strongly fuzzy *e*-continuous, since for the fuzzy set $\mu_1 \lor \mu_2$ in (I, τ_2) , $f^{-1}(\mu_1 \lor \mu_2) = \mu_1 \lor \mu_2$ is fuzzy *e*-open in (X, τ_1) but not fuzzy *e*-closed in (X, τ_1) . **Theorem 3.9.** Every fuzzy totally e-continuous function onto a discrete fuzzy topological space is strongly fuzzy e-continuous.

Proof. Obvious.

Definition 3.10. A fuzzy topological space (X, τ) is said to be fuzzy *e*-connected if there does not exist fuzzy *e*-open sets λ and μ such that $\lambda + \mu = 1$, $\lambda \neq 0$ and $\mu \neq 0$.

Theorem 3.11. If f is fuzzy totally e-continuous function from a fuzzy e-connected space X into any fuzzy topological space Y, then Y is indiscrete fuzzy topological space.

Proof. Suppose Y is not indiscrete. Then Y has a proper $(\neq 0 \text{ and } \neq 1)$ fuzzy open set λ (say). Then by hypothesis on f, $f^{-1}(\lambda)$ is a proper fuzzy *e*-Clopen subset of X, which is a contradiction to the assumption that X is fuzzy *e*-connected. \Box

Definition 3.12. A fuzzy topological space X is fuzzy $e T_2$ if for any pair of distinct fuzzy points x_t and x_s , there exist fuzzy e-open sets λ and μ such that $x_t \in \lambda$, $x_s \in \mu$ and $eCl(\lambda) \leq 1 - eCl(\mu)$.

Theorem 3.13. Let $f : (X, \tau) \to (Y, \sigma)$ be an injective fuzzy totally e-continuous function. If Y is fuzzy T_0 , then X is fuzzy $e-T_2$.

Proof. Let x_t and y_s be any two distinct fuzzy points of X. Then $f(x_t) \neq f(y_s)$. Since Y is fuzzy T_0 , there exists a fuzzy open set say λ in Y such that $f(x_t) \in \lambda$ and $f(y_s) \notin \lambda$. This mean $x_t \in f^{-1}(\lambda)$ and $y_s \notin f^{-1}(\lambda)$. Since f is fuzzy totally econtinuous, $f^{-1}(\lambda)$ is fuzzy e-Clopen set of X. Also $x_t \in f^{-1}(\lambda)$ and $y_s \in 1 - f^{-1}(\lambda)$. Now put $\mu = 1 - f^{-1}(\lambda)$. Then $f^{-1}(\lambda) = eCl(f^{-1}(\lambda))$ and $eCl(1 - f^{-1}(\lambda)) = eCl(\mu) = 1 - f^{-1}(\lambda)$ (since $f^{-1}(\lambda)$ is fuzzy e-closed) and $eCl(f^{-1}(\lambda)) = f^{-1}(\lambda) = 1 - eCl(1 - f^{-1}(\lambda)) = 1 - eCl(\mu) \leq 1 - eCl(\mu)$.

Theorem 3.14. If $f: X \to Y$ is fuzzy totally e-continuous and $g: Y \to Z$ is fuzzy continuous, $g \circ f: X \to Z$ is a fuzzy totally e-continuous function.

Proof. Obvious.

Theorem 3.15. Let $p_i : X_1 \times X_2 \to X_i (i = 1, 2)$ be the projection of $X_1 \times X_2$ on X_i . If $f : X \to X_1 \times X_2$ is fuzzy totally e-continuous, then $p_i \circ f$ is also fuzzy totally e-continuous.

Proof. This follows directly from Theorem 3.14

Theorem 3.16. Let $f : X_1 \to X_2$ be a function. If the graph $g : X_1 \to X_1 \times X_2$ of f is fuzzy totally e-continuous, then f is also fuzzy totally e-continuous.

Proof. This follows directly from Theorem 3.15

Definition 3.17 ([13]). A mapping $f : X \to Y$ is said to be a fuzzy *e*-irresolute if $f^{-1}(\lambda)$ is fuzzy *e*-open in X for every fuzzy *e*-open set λ in Y.

Theorem 3.18. If $f : X \to Y$ is fuzzy e-irresolute and $g : Y \to Z$ is fuzzy totally e-continuous function, then $g \circ f : X \to Z$ is a fuzzy e-continuous function.

 \square

Proof. Straightforward.

Definition 3.19. A function $f : X \to Y$ is said to be fuzzy totally *e*-open if the image of every fuzzy open subset of X is fuzzy *e*-Clopen of Y.

Theorem 3.20. If $f : X \to Y$ is fuzzy open and $g : Y \to Z$ is fuzzy totally e-open, then $g \circ f$ is fuzzy totally e-open.

Proof. Straightforward.

 \Box

Definition 3.21. A function $f : X \to Y$ is said to be fuzzy almost *e*-open if the image of every fuzzy *e*-Clopen subset of X is fuzzy open subset of Y.

Theorem 3.22. If $f : X \to Y$ is an onto fuzzy almost e-open and fuzzy totally e-continuous function and $g : Y \to Z$ is a function such that $g \circ f$ is fuzzy totally e-continuous, then g is fuzzy continuous.

Proof. Let λ be a fuzzy open subset of Z. Then $(g \circ f)^{-1}(\lambda)$ is a fuzzy e-Clopen subset of X. But $f(g \circ f)^{-1}(\lambda) = g^{-1}(\lambda)$ is a fuzzy open subset of Y. Hence, g is fuzzy continuous.

Theorem 3.23. If $f : X \to Y$ is fuzzy totally e-continuous function and A is fuzzy open crisp subset of X, then $f_A : A \to Y$ is also fuzzy totally e-continuous.

Proof. Let λ be a fuzzy open subset of Y, then $f^{-1}(\lambda)$ is fuzzy e-Clopen in X. Now, $f^{-1}(\lambda)$ is fuzzy e-Clopen in X and A is a fuzzy open crisp subset of a fuzzy topological space X, then $f^{-1}(\lambda) \cap A$ is fuzzy e-Clopen set in A. But, $f^{-1}(\lambda) \cap A = f_A^{-1}(\lambda)$ is fuzzy e-Clopen set in A. Hence f_A is fuzzy totally e-continuous. \Box

Definition 3.24. A function $f : X \to Y$ is called slightly fuzzy *e*-continuous if $f^{-1}(\lambda)$ is fuzzy *e*-closed in X for every fuzzy Clopen set λ of Y.

Theorem 3.25. If $f : X \to Y$ is a fuzzy e-irresolute and $g : Y \to Z$ is slightly fuzzy e-continuous, then $g \circ f : X \to Z$ is slightly fuzzy e-continuous.

Proof. Let λ be any fuzzy clopen set of Z. Then by hypothesis on g, $g^{-1}(\lambda)$ is fuzzy e-closed in Y. Now $(g \circ f)^{-1}(\lambda) = f^{-1}(g^{-1}(\lambda))$ and therefore by hypothesis on f, $(g \circ f)^{-1}(\lambda)$ is fuzzy e-closed. This proves that $g \circ f$ is slightly fuzzy e-continuous. \Box

Definition 3.26. A fuzzy space X is said to be:

- (i) fuzzy mildly *e*-compact if every fuzzy *e*-Clopen cover of X has a finite subcover;
- (ii) fuzzy mildly countably e-compact if every fuzzy e-Clopen countably cover of X has a finite subcover;
- (iii) fuzzy mildly e-Lindelöf if every cover of X by fuzzy e-Clopen sets has a countable subcover;
- (iv) fuzzy compact [6] if every fuzzy open cover of X has a finite subcover;
- (v) fuzzy countably compact [6] if every countable fuzzy open covering of X contains a finite subcollection that covers X.

Theorem 3.27. Let $f : X \to Y$ be a fuzzy totally e-continuous surjective function. Then the following statements hold:

- (i) If X is a fuzzy mildly e-compact, then Y is fuzzy compact.
- (ii) If X is a fuzzy mildly e-Lindelöf, then Y is fuzzy Lindelöf.
- (iii) If X is a fuzzy mildly countably e-compact, then Y is fuzzy countably compact.

Proof. (i) Let $\{\lambda_{\alpha} : \alpha \in I\}$ be any fuzzy open cover of Y. Since f is fuzzy totally e-continuous, then $\{f^{-1}(\lambda_{\alpha}) : \alpha \in I\}$ is fuzzy e-Clopen cover of X. Since X is fuzzy mildly e-compact, there exists a finite subset I_0 of I such that $\bigvee\{f^{-1}(\lambda_{\alpha}) : \alpha \in I_0\} = 1$. Thus, we have $\bigvee\{\lambda_{\alpha} : \alpha \in I_0\} = 1$ and Y is fuzzy compact.

The other proofs are similarly.

Definition 3.28. A fuzzy space X is said to be fuzzy T_1 [12] (resp. fuzzy *e*-co- T_1) if for each pair of distinct fuzzy points x_{α} and y_{β} of X there exist fuzzy open (resp. fuzzy *e*-Clopen) sets λ and μ containing x_{α} and y_{β} , respectively such that $y_{\beta} \notin \lambda$ and $x_{\alpha} \notin \mu$.

Theorem 3.29. If $f : X \to Y$ is a fuzzy totally e-continuous injective function and Y is fuzzy T_1 , then X is fuzzy e-co- T_1 .

Proof. Suppose that Y is fuzzy T_1 . For any two distinct fuzzy points x_{α} and y_{β} in X, there exist fuzzy open sets λ and μ in Y such that $f(x_{\alpha}) \in \lambda$, $f(y_{\beta}) \notin \lambda$, $f(x_{\alpha}) \notin \mu$ and $f(y_{\beta}) \in \mu$. Then $x_{\alpha} \in f^{-1}(\lambda)$, $y_{\beta} \notin f^{-1}(\lambda)$, $x_{\alpha} \notin f^{-1}(\mu)$ and $y_{\beta} \in f^{-1}(\mu)$. This shows that X is fuzzy e-co- T_1 .

Definition 3.30. A fuzzy space X is said to be fuzzy e-co- T_2 (= fuzzy e-co-Hausdorff) if for each pair of fuzzy points x_{α} and y_{β} such that $x_{\alpha} \neq y_{\beta}$ in X, there exist disjoint fuzzy e-Clopen sets λ and μ in X such that $x_{\alpha} \in \lambda$ and $y_{\beta} \in \mu$.

Theorem 3.31. If $f : X \to Y$ is a fuzzy totally e-continuous injective function and Y is fuzzy T_2 , then X is fuzzy e-co- T_2 .

Proof. Suppose that Y is fuzzy T_2 space. For any pair of distinct fuzzy points x_{α} and y_{β} in X, there exists disjoint fuzzy open sets λ and μ in Y such that $f(x_{\alpha}) \in \lambda$ and $f(y_{\beta}) \in \mu$. Since f is fuzzy totally e-continuous function, we have $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are fuzzy e-Clopen sets in X containing x_{α} and y_{β} , respectively. By definition $f^{-1}(\lambda) \wedge f^{-1}(\mu) = f^{-1}(\lambda \wedge \mu) = f^{-1}(0) = 0$, and hence X is fuzzy e-co- T_2 .

Definition 3.32. A fuzzy space X is called fuzzy regular (resp. fuzzy *e*-co-regular) if for each fuzzy open (resp. fuzzy *e*-Clopen) set λ and each fuzzy point $x_{\alpha} \notin \lambda$, there exist disjoint fuzzy open sets μ and ρ such that $\lambda \leq \mu$ and $x_{\alpha} \in \rho$.

Definition 3.33. A fuzzy space X is called fuzzy normal (resp. fuzzy *e*-co-normal) if for every pair of disjoint fuzzy open (resp. fuzzy *e*-Clopen) set λ_1 and λ_2 in X, there exist disjoint fuzzy open sets μ and η such that $\lambda_1 \leq \mu$ and $\lambda_2 \leq \eta$.

Theorem 3.34. If $f : X \to Y$ is a fuzzy totally e-continuous injective fuzzy open function and X is a fuzzy e-co-regular space, then Y is fuzzy regular.

Proof. Let λ be a fuzzy open set of Y and a fuzzy point $y_{\beta} \notin \lambda$. Take $y_{\beta} = f(x_{\alpha})$. Since f is fuzzy totally e-continuous, $f^{-1}(\lambda)$ is a fuzzy e-Clopen set of X. Take $\mu = f^{-1}(\lambda)$. We have $x_{\alpha} \notin \mu$. Since X is fuzzy e-co-regular, there exist disjoint fuzzy open sets η and ρ in X such that $\mu \leq \eta$ and $x_{\alpha} \in \rho$. We obtain that $\lambda = f(\mu) \leq f(\eta)$ and $y_{\beta} = f(x_{\alpha}) \in f(\rho)$ such that $f(\eta)$ and $f(\rho)$ are disjoint fuzzy open sets of Y. This shows that Y is fuzzy regular.

Theorem 3.35. If $f : X \to Y$ is a fuzzy totally e-continuous injective fuzzy open function and X is fuzzy e-co-normal space, then Y is fuzzy normal.

Proof. Let λ_1 and λ_2 be disjoint fuzzy open sets in Y. Since f is fuzzy totally econtinuous, $f^{-1}(\lambda_1)$ and $f^{-1}(\lambda_2)$ are fuzzy e-Clopen sets in X. Let $\beta = f^{-1}(\lambda_1)$ and $\mu = f^{-1}(\lambda_2)$. We have $\beta \wedge \mu = 0$. Since X is fuzzy e-co-normal, there exist disjoint fuzzy open sets λ and ρ such that $\beta \leq \lambda$ and $\mu \leq \rho$. We obtain that $\lambda_1 = f(\beta) \leq f(\lambda)$ and $\lambda_2 = f(\mu) \leq f(\rho)$ such that $f(\lambda)$ and $f(\rho)$ are disjoint fuzzy open sets. Thus, Y is fuzzy normal.

Definition 3.36. A graph G(f) of a function $f : X \to Y$ is said to be fuzzy coclosed if for each $(x_{\alpha}, y_{\beta}) \in (X \times Y) \setminus G(f)$, there exist a fuzzy *e*-Clopen set λ in Xcontaining x_{α} and a fuzzy open set μ in Y containing y_{β} such that $f(\lambda) \wedge \mu = 0$.

Theorem 3.37. If $f : X \to Y$ is fuzzy totally e-continuous and Y is fuzzy Hausdorff, then G(f) is fuzzy co-e-closed in $X \times Y$.

Proof. Let $(x_{\alpha}, y_{\beta}) \in (X \times Y) \setminus G(f)$, then $f(x_{\alpha}) \neq y_{\beta}$. Since Y is fuzzy Hausdorff, there exist fuzzy open sets λ and μ in Y with $f(x_{\alpha}) \in \lambda$ and $y_{\beta} \in \mu$ such that $\lambda \wedge \mu = 0$. Since f is fuzzy totally e-continuous, there exists a fuzzy e-Clopen set η in X containing x_{α} such that $f(\eta) \leq \lambda$. Therefore, we obtain $y_{\beta} \in \mu$ and $f(\eta) \wedge \mu = 0$. This shows that G(f) is fuzzy co-e-closed.

Theorem 3.38. Let $f : X \to Y$ has a fuzzy co-e-closed graph G(f). If f is injective, then X is fuzzy $e-T_1$.

Proof. Let x_{α} and y_{β} be any two distinct points of X. Then, we have $(x_{\alpha}, f(y_{\beta})) \in (X \times Y) \setminus G(f)$. By definition of fuzzy co-*e*-closed graph, there exist a fuzzy *e*-Clopen set λ in X and a fuzzy open set μ in Y such that $x_{\alpha} \in \lambda$, $f(y_{\beta}) \in \mu$ and $f(\lambda) \wedge \mu = 0$; hence $\lambda \wedge f^{-1}(\mu) = 0$. Therefore, we have $y_{\beta} \notin \lambda$. This implies that X is fuzzy *e*- T_1 .

Theorem 3.39. Let $f : X \to Y$ has a fuzzy co-e-closed graph G(f). If f is injective fuzzy e-continuous, then X is fuzzy e- T_2 .

Proof. Let x_{α} and y_{β} be any two distinct points of X. Then, we have $(x_{\alpha}, f(y_{\beta})) \in (X \times Y) \setminus G(f)$. By definition of fuzzy co-e-closed graph, there exist a fuzzy e-Clopen set λ in X and a fuzzy open set μ in Y such that $x_{\alpha} \in \lambda$, $f(y_{\beta}) \in \mu$ and $f(\lambda) \wedge \mu = 0$; since f is fuzzy e-continuous then $f^{-1}(\mu)$ is fuzzy e-open set in X such that $f^{-1}(\mu)(y_{\beta}) = \mu(f(y_{\beta}))$ and $\lambda \wedge f^{-1}(\mu) = 0$. Hence X is fuzzy e- T_2 .

References

- M. E. Abd El-Monsef, F. M. Zeyada and S. N. El-Deeb and I. M. Hanafy, Good extensions of paracompactness, Math. Japonica 37(1) (1992), 195–200.
- K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [3] G. Balasubramanian, On some generalization of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1993) 93–100.

- [4] G. Balasubramanian and V. Chandrasekar, Fuzzy totally semi-continuous functions, Bull. Cal. Math. Soc. 92 (4) (2000) 305–312.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [6] E. Ekici, On fuzzy functions, Commun. Korean. Math. Soc. 20(4) (2005) 781-789.
- [7] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continity, Arab. J. Math. Sci. 33 (2) (2008) 269–282.
- [8] S. Ganguly and S. Saha, A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34 (1990) 117–124.
- [9] R. C. Jain, The role of regularly open sets in general topology [Ph. D. Thesis], Meerut University, Meerut, India 1980.
- [10] A. Mukherjee and S.Debnath, δ -semi-open sets in fuzzy setting, J. Tri. Math. Soc. 8 (2006) 51-54.
- [11] P. Pao-Ming and L. Ying-Ming, Fuzzy topology I Neighbourhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.
- [12] Z. Petricevic, R_0 and R_1 axioms in fuzzy topology, Mat. Vesnik 41 (1989) 21–28.
- [13] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Ann. Fuzzy Math. Inform. 8(1)(2014) 141–148.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.

A. VADIVEL (avmaths@gmail.com)

Assistant Professor, Mathematics Section (FEAT), Annamalai University, Annamalainagar, Tamil Nadu-608 002

M. PALANISAMY (palaniva26@gmail.com)

Research Scholar, Department of Mathematics, Annamalai University, Annamalainagar-608 002