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1. Introduction

The concept of fuzzy has invaded almost all branches of mathematics with the
introduction of fuzzy sets by Zadeh [14] of 1965. The theory of fuzzy topological
spaces was introduced and developed by Chang [5]. Since then many fuzzy topolo-
gists have extended various notions in classical topology to fuzzy topological spaces.
In classical topology the class of totally continuous functions was introduced in [9]
and as a consequence of this e-open sets and e-continuous was introduced and stud-
ied in [7]. The fuzzyfied concept of the totally continuous function is introduced
as perfectly fuzzy continuous functions and studied along with other functions in
[3]. In 2014 Seenivasan [13] introduced the concept of fuzzy e-continuity and fuzzy
e-open sets in fuzzy topological space. The purpose of this paper is to introduce the
concept of fuzzy totally e-continuous functions and investigated its basic properties.

2. Preliminaries

Throughout this paper X, Y and Z are always mean fuzzy topological spaces.
The class of all fuzzy sets on a universe X will be denoted by IX . A fuzzy topology
on a nonempty set X is a family δ of fuzzy subsets of X which satisfies the following
three conditions:

(i) 0, 1 ∈ δ,
(ii) If g, h ∈ δ, their g ∧ h ∈ δ,
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(iii) fi ∈ δ for each i ∈ I, then
∨
i∈I

fi ∈ δ.

The pair (X, δ) is called a fuzzy topological space [5]. Let λ be a fuzzy subset of a
space X. The fuzzy closure of λ, fuzzy interior of λ, fuzzy δ-closure of λ and the
fuzzy δ-interior of λ are denoted by Cl(λ), Int(λ), Clδ(λ) and Intδ(λ) respectively.
A fuzzy subset λ of space X is called fuzzy regular open [2] (resp. fuzzy regular
closed) if λ = Int(Cl(λ)) (resp. λ = Cl(Int(λ)). Now Cl(λ) and Int(λ) are defined
as follows Cl(λ) = ∧{µ : µ ≥ λ, µ is fuzzy closed in X} and Int(λ) = ∨{µ : µ ≤ λ,
µ is fuzzy open in X}. The fuzzy δ-interior of a fuzzy subset λ of X is the union of
all fuzzy regular open sets contained in λ. A fuzzy subset λ is called fuzzy δ-open
[10] if λ = Intδ(λ). The complement of fuzzy δ-open set is called fuzzy δ-closed (i.e,
λ = Clδ(λ)).

Definition 2.1 ([11]). A fuzzy set in X is called a fuzzy point iff it takes the value
0 for all y ∈ X except one, say, x ∈ X. If its value at x is λ(0 < λ ≤ 1) we denote
this fuzzy point by xλ, where the point x is called its support.

Definition 2.2 ([11]). The fuzzy point xλ is said to be contained in a fuzzy set A,
or to belong to A, denoted by xλ ∈ A, iff λ ≤ A(x). Evidently, every fuzzy set A
can be expressed as the union of all the fuzzy points which belong to A.

Definition 2.3 ([13]). A fuzzy set λ of a fuzzy topological space X is said to be
fuzzy e-open if λ ≤ Cl(Intδλ) ∨ Int(Clδλ), where Cl(λ) = ∧{µ : µ ≥ λ, µ is fuzzy
closed in X} and Int(λ) = ∨{µ : µ ≤ λ, µ is fuzzy open in X}. If λ is fuzzy e-open,
then 1− λ is fuzzy e-closed.

Definition 2.4 ([13]). Let X be a fuzzy topological space and λ be any fuzzy
set in X. The fuzzy e-closure of λ in X is denoted by eCl(λ) defined as follows:
eCl(µ) = ∧{λ : λ ≥ µ, λ is a fuzzy e-closed set of X}. Similarly we can define
eInt(λ).

Remark 2.5. For a fuzzy set λ of X, 1− eInt(λ) = eCl(1− λ).

Theorem 2.6 ([13]). In a fuzzy topological space X, λ is a fuzzy e-closed (resp.
fuzzy e-open) if and only if λ = eCl(λ) (resp. λ = eInt(λ)).

Definition 2.7. Let X and Y be two fuzzy topological spaces. Let λ ∈ IX , µ ∈ IY .
Then f(λ) is a fuzzy subset of Y , defined by f(λ) : Y → [0, 1]

f(λ)(y) =

 sup
x∈f−1({y})

λ(x) if f−1({y}) ̸= ϕ

0 if f−1({y}) = ϕ.

and f−1(µ) is a fuzzy subset of X, defined by f−1(µ)(x) = µ(f(x)).

Definition 2.8. A function f : X → Y is said to be fuzzy totally continuous [4]
(resp. fuzzy e-continuous [13]) if the inverse image of every fuzzy open set in Y is a
fuzzy Clopen (resp. fuzzy e-open) set in X.

Definition 2.9 ([12]). A fuzzy topological space X is called fuzzy T0-space if for
any pair of distinct fuzzy points xt and xs, there exist a fuzzy open set λ such that
xt ∈ λ and xs /∈ λ or xt /∈ λ and xs ∈ λ.
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Definition 2.10 ([12]). A fuzzy space X is said to be fuzzy T2 (= fuzzy Hausdorff)
if for each pair of fuzzy points xα and yβ such that xα ̸= yβ in X, there exist disjoint
fuzzy open sets λ and µ in X such that xα ∈ λ and yβ ∈ µ.

Definition 2.11 ([8]). A collection µ of fuzzy sets in a fuzzy space X is said to be
cover of a fuzzy set η of X if (

∨
A∈µ A)(x) = 1, for every x ∈ s(η). A fuzzy cover µ

of a fuzzy set η in a fuzzy space X is said to be have a finite subcover if there exists
a finite subcollection ρ = {A1, A2, . . . , An} of µ such that (

∨n
j=1 Aj)(x) ≥ η(x), for

every x ∈ s(η), where s(η) denotes the support of a fuzzy set η.

Definition 2.12 ([1]). A fuzzy topological space (X, τ) is said to be fuzzy Lindelöf,
if for each family B ⊂ τ and for each α ∈ I such that

∨
λ∈B

λ ≥ α, there exist for

each ϵ ∈ (0, α] a countable subset B0 of B such that
∨

λ∈B0

λ ≥ α− ϵ.

Definition 2.13 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy e-T1 if
for each pair of distinct points x and y of X, there exists fuzzy e-open sets U1 and
U2 such that x ∈ U1 and y ∈ U2, x /∈ U2 and y /∈ U1.

Definition 2.14 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy e-T2

(i.e., fuzzy e-Hausdorff) if for each pair of distinct points x and y of X, there exists
disjoint fuzzy e-open sets U and V such that x ∈ U and y ∈ V .

Definition 2.15 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy e-regular
if for each closed set F of X and each x ∈ X − F , there exists disjoint fuzzy e-open
sets U and V such that x ∈ U and F ≤ V .

Definition 2.16 ([13]). A fuzzy topological space (X, τ) is said to be fuzzy e-normal
if for every two disjoint fuzzy closed sets A and B of X, there exist two disjoint fuzzy
e-open sets U and V such that A ≤ U and B ≤ V and U ∧ V = 0.

3. Fuzzy Totally e-continuous Function

We have introduced the following definition

Definition 3.1. A function f : X → Y is said to be fuzzy totally e-continuous if
the inverse image of every fuzzy open set in Y is a fuzzy e-Clopen (that is, fuzzy
e-open and fuzzy e-closed) set in X.

It is clear that every fuzzy totally continuous function is fuzzy totally e-continuous
and every fuzzy totally e-continuous function is fuzzy e-continuous.

However, none of the above implications are reversible as shown in the following
examples.

Example 3.2. Let X = {a, b, c}, Y = {p, q} τ = {0, 1, α, β, γ} and σ = {0, 1, δ}
where α = 0.5

a + 0
b + 0

c , β = 0
a + 0.5

b + 0
c , γ = 0.5

a + 0.5
b + 0

c and δ = 0.5
p + 0

q . Define

f : (X, τ) → (Y, σ) as follows: f(a) = p, f(b) = f(c) = q. Then f is fuzzy totally
e-continuous. However, it is not fuzzy totally continuous, since for the fuzzy open
set δ of (Y, σ), f−1(δ) = α, which is not fuzzy closed in (X, τ).
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Example 3.3. Let I = [0, 1] and µ1, µ2 and µ3 be fuzzy sets of I defined as

µ1(x) =

{
0 if 0 ≤ x ≤ 1

2

2x− 1 if 1
2 ≤ x ≤ 1

µ2(x) = µ3(x) =


1 if 0 ≤ x ≤ 1

4

−4x+ 2 if 1
4 ≤ x ≤ 1

2

0 if 1
2 ≤ x ≤ 1

Clearly, τ1 = {0, 1, µ1, µ2, µ1 ∨ µ2} and τ2 = {0, 1, µ3} are fuzzy topologies on I.
Let f : (I, τ1) → (I, τ2) be defined by f(x) = x for each x ∈ I. Then f is fuzzy
totally e-continuous but not fuzzy totally continuous, since for the fuzzy open set
µ3 of (I, τ2), f

−1(µ3) = µ3, is fuzzy open in (I, τ1) but not fuzzy closed in (I, τ1).

Example 3.4. Let X = Y = {a, b, c}, τ = {0, 1, α, β, γ, δ} and σ = {0, 1, λ}
whereα = 0.3

a + 0.4
b + 0.5

c , β = 0.6
a + 0.5

b + 0.5
c , γ = 0.6

a + 0.5
b + 0.4

c , δ = 0.3
a + 0.4

b + 0.4
c

and λ = 0.6
a + 0.9

b + 0.5
c . Define f : (X, τ) → (Y, σ) be the identity function. Clearly

f is fuzzy e-continuous but not fuzzy totally e-continuous, since for the fuzzy open
set λ of (Y, σ), f−1(λ) = λ is fuzzy e-open in (X, τ) but not fuzzy e-closed in (X, τ).

Example 3.5. Let I = [0, 1] and µ1,µ2 and µ3 be fuzzy sets of I in Example 3.3
Consider fuzzy topologies τ1 = {0, 1, µ1, µ2, µ1 ∨ µ2} and τ2 = {0, 1, µ1 ∨ µ2} are
fuzzy topologies on I. Let f : (I, τ1) → (I, τ2) be defined by f(x) = x for each
x ∈ I. Then f is fuzzy e-continuous but not fuzzy totally e-continuous, since for the
fuzzy open set µ1 ∨ µ2 of (I, τ2), f

−1(µ1 ∨ µ2) = µ1 ∨ µ2 is fuzzy e-open in (X, τ1)
but not fuzzy e-closed in (X, τ1).

Definition 3.6. A function f : (X, τ) → (Y, σ) is said to be strongly fuzzy e-
continuous if and only if f−1(λ) is fuzzy e-Clopen whenever λ ∈ IY .

It is evident that every strongly fuzzy e-continuous function is fuzzy totally e-
continuous. However, the converse is not true as shown in the following example.

Example 3.7. Let X = Y = {a, b, c}, τ = {0, 1, α, β, γ, δ} and σ = {0, 1, λ} where
α = 0.4

a + 0.6
b + 0.5

c , β = 0.6
a + 0.4

b + 0.4
c , γ = 0.6

a + 0.6
b + 0.5

c , δ = 0.4
a + 0.4

b + 0.4
c

and λ = 0.4
a + 0.5

b + 0.5
c . Then the identity function f : (X, τ) → (Y, σ) is fuzzy

totally e-continuous but not strongly fuzzy e-continuous, since for the fuzzy set
µ = 0.6

a + 0.4
b + 0.4

c ∈ IY , f−1(µ) = µ is fuzzy e-open in (X, τ) but not fuzzy e-closed
in (X, τ).

Recall that a fuzzy topological space (X, τ) is called a discrete fuzzy topological
space if τ = IX .

Example 3.8. Let I = [0, 1] and µ1 and µ2 and µ3 be fuzzy sets of I in Example 3.3
Consider fuzzy topologies τ1 = {0, 1, µ1, µ2, µ1 ∨ µ2} τ2 = {0, 1, µ3} are topologies
on I. Let f : (I, τ1) → (I, τ2) be defined by f(x) = x for each x ∈ I. Then f is
fuzzy totally e-continuous but not strongly fuzzy e-continuous, since for the fuzzy
set µ1 ∨µ2 in (I, τ2), f

−1(µ1 ∨µ2) = µ1 ∨µ2 is fuzzy e-open in (X, τ1) but not fuzzy
e-closed in (X, τ1).
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Theorem 3.9. Every fuzzy totally e-continuous function onto a discrete fuzzy topo-
logical space is strongly fuzzy e-continuous.

Proof. Obvious. □

Definition 3.10. A fuzzy topological space (X, τ) is said to be fuzzy e-connected
if there does not exist fuzzy e-open sets λ and µ such that λ + µ = 1, λ ̸= 0 and
µ ̸= 0.

Theorem 3.11. If f is fuzzy totally e-continuous function from a fuzzy e-connected
space X into any fuzzy topological space Y, then Y is indiscrete fuzzy topological
space.

Proof. Suppose Y is not indiscrete. Then Y has a proper ( ̸= 0 and ̸= 1) fuzzy open
set λ (say). Then by hypothesis on f , f−1(λ) is a proper fuzzy e-Clopen subset of
X, which is a contradiction to the assumption that X is fuzzy e-connected. □

Definition 3.12. A fuzzy topological space X is fuzzy e-T2 if for any pair of distinct
fuzzy points xt and xs, there exist fuzzy e-open sets λ and µ such that xt ∈ λ, xs ∈ µ
and eCl(λ) ≤ 1− eCl(µ).

Theorem 3.13. Let f : (X, τ) → (Y, σ) be an injective fuzzy totally e-continuous
function. If Y is fuzzy T0, then X is fuzzy e-T2.

Proof. Let xt and ys be any two distinct fuzzy points of X. Then f(xt) ̸= f(ys).
Since Y is fuzzy T0, there exists a fuzzy open set say λ in Y such that f(xt) ∈ λ
and f(ys) /∈ λ. This mean xt ∈ f−1(λ) and ys ̸∈ f−1(λ). Since f is fuzzy totally e-
continuous, f−1(λ) is fuzzy e-Clopen set ofX. Also xt ∈ f−1(λ) and ys ∈ 1−f−1(λ).
Now put µ = 1 − f−1(λ). Then f−1(λ) = eCl(f−1(λ)) and eCl(1 − f−1(λ)) =
eCl(µ) = 1 − f−1(λ) (since f−1(λ) is fuzzy e-closed) and eCl(f−1(λ)) = f−1(λ) =
1− eCl(1− f−1(λ)) = 1− eCl(µ) ≤ 1− eCl(µ). □

Theorem 3.14. If f : X → Y is fuzzy totally e-continuous and g : Y → Z is fuzzy
continuous, g ◦ f : X → Z is a fuzzy totally e-continuous function.

Proof. Obvious. □

Theorem 3.15. Let pi : X1 ×X2 → Xi(i = 1, 2) be the projection of X1 ×X2 on
Xi. If f : X → X1×X2 is fuzzy totally e-continuous, then pi ◦f is also fuzzy totally
e-continuous.

Proof. This follows directly from Theorem 3.14 □

Theorem 3.16. Let f : X1 → X2 be a function. If the graph g : X1 → X1 ×X2 of
f is fuzzy totally e-continuous, then f is also fuzzy totally e-continuous.

Proof. This follows directly from Theorem 3.15 □

Definition 3.17 ([13]). A mapping f : X → Y is said to be a fuzzy e-irresolute if
f−1(λ) is fuzzy e-open in X for every fuzzy e-open set λ in Y .

Theorem 3.18. If f : X → Y is fuzzy e-irresolute and g : Y → Z is fuzzy totally
e-continuous function, then g ◦ f : X → Z is a fuzzy e-continuous function.
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Proof. Straightforward. □

Definition 3.19. A function f : X → Y is said to be fuzzy totally e-open if the
image of every fuzzy open subset of X is fuzzy e-Clopen of Y .

Theorem 3.20. If f : X → Y is fuzzy open and g : Y → Z is fuzzy totally e-open,
then g ◦ f is fuzzy totally e-open.

Proof. Straightforward. □

Definition 3.21. A function f : X → Y is said to be fuzzy almost e-open if the
image of every fuzzy e-Clopen subset of X is fuzzy open subset of Y .

Theorem 3.22. If f : X → Y is an onto fuzzy almost e-open and fuzzy totally
e-continuous function and g : Y → Z is a function such that g ◦ f is fuzzy totally
e-continuous, then g is fuzzy continuous.

Proof. Let λ be a fuzzy open subset of Z. Then (g ◦ f)−1(λ) is a fuzzy e-Clopen
subset of X. But f(g ◦ f)−1(λ) = g−1(λ) is a fuzzy open subset of Y . Hence, g is
fuzzy continuous. □

Theorem 3.23. If f : X → Y is fuzzy totally e-continuous function and A is fuzzy
open crisp subset of X, then fA : A → Y is also fuzzy totally e-continuous.

Proof. Let λ be a fuzzy open subset of Y , then f−1(λ) is fuzzy e-Clopen in X. Now,
f−1(λ) is fuzzy e-Clopen inX andA is a fuzzy open crisp subset of a fuzzy topological
space X, then f−1(λ) ∩ A is fuzzy e-Clopen set in A. But, f−1(λ) ∩ A = f−1

A (λ) is
fuzzy e-Clopen set in A. Hence fA is fuzzy totally e-continuous. □

Definition 3.24. A function f : X → Y is called slightly fuzzy e-continuous if
f−1(λ) is fuzzy e-closed in X for every fuzzy Clopen set λ of Y .

Theorem 3.25. If f : X → Y is a fuzzy e-irresolute and g : Y → Z is slightly fuzzy
e-continuous, then g ◦ f : X → Z is slightly fuzzy e-continuous.

Proof. Let λ be any fuzzy clopen set of Z. Then by hypothesis on g, g−1(λ) is fuzzy
e-closed in Y . Now (g ◦ f)−1(λ) = f−1(g−1(λ)) and therefore by hypothesis on f ,
(g◦f)−1(λ) is fuzzy e-closed. This proves that g◦f is slightly fuzzy e-continuous. □

Definition 3.26. A fuzzy space X is said to be:

(i) fuzzy mildly e-compact if every fuzzy e-Clopen cover of X has a finite sub-
cover;

(ii) fuzzy mildly countably e-compact if every fuzzy e-Clopen countably cover
of X has a finite subcover;

(iii) fuzzy mildly e-Lindelöf if every cover of X by fuzzy e-Clopen sets has a
countable subcover;

(iv) fuzzy compact [6] if every fuzzy open cover of X has a finite subcover;
(v) fuzzy countably compact [6] if every countable fuzzy open covering of X

contains a finite subcollection that covers X.

Theorem 3.27. Let f : X → Y be a fuzzy totally e-continuous surjective function.
Then the following statements hold:
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(i) If X is a fuzzy mildly e-compact, then Y is fuzzy compact.
(ii) If X is a fuzzy mildly e-Lindelöf, then Y is fuzzy Lindelöf.
(iii) If X is a fuzzy mildly countably e-compact, then Y is fuzzy countably com-

pact.

Proof. (i) Let {λα : α ∈ I} be any fuzzy open cover of Y . Since f is fuzzy totally
e-continuous, then {f−1(λα) : α ∈ I} is fuzzy e-Clopen cover of X. Since X is fuzzy
mildly e-compact, there exists a finite subset I0 of I such that

∨
{f−1(λα) : α ∈

I0} = 1. Thus, we have
∨
{λα : α ∈ I0} = 1 and Y is fuzzy compact.

The other proofs are similarly. □
Definition 3.28. A fuzzy space X is said to be fuzzy T1 [12] (resp. fuzzy e-co-T1)
if for each pair of distinct fuzzy points xα and yβ of X there exist fuzzy open (resp.
fuzzy e-Clopen) sets λ and µ containing xα and yβ , respectively such that yβ /∈ λ
and xα /∈ µ.

Theorem 3.29. If f : X → Y is a fuzzy totally e-continuous injective function and
Y is fuzzy T1, then X is fuzzy e-co-T1.

Proof. Suppose that Y is fuzzy T1. For any two distinct fuzzy points xα and yβ in X,
there exist fuzzy open sets λ and µ in Y such that f(xα) ∈ λ, f(yβ) /∈ λ, f(xα) /∈ µ
and f(yβ) ∈ µ. Then xα ∈ f−1(λ), yβ /∈ f−1(λ), xα /∈ f−1(µ) and yβ ∈ f−1(µ).
This shows that X is fuzzy e-co-T1. □
Definition 3.30. A fuzzy space X is said to be fuzzy e-co-T2 (= fuzzy e-co-
Hausdorff) if for each pair of fuzzy points xα and yβ such that xα ̸= yβ in X,
there exist disjoint fuzzy e-Clopen sets λ and µ in X such that xα ∈ λ and yβ ∈ µ.

Theorem 3.31. If f : X → Y is a fuzzy totally e-continuous injective function and
Y is fuzzy T2, then X is fuzzy e-co-T2.

Proof. Suppose that Y is fuzzy T2 space. For any pair of distinct fuzzy points xα

and yβ in X, there exists disjoint fuzzy open sets λ and µ in Y such that f(xα) ∈ λ
and f(yβ) ∈ µ. Since f is fuzzy totally e-continuous function, we have f−1(λ) and
f−1(µ) are fuzzy e-Clopen sets inX containing xα and yβ , respectively. By definition
f−1(λ) ∧ f−1(µ) = f−1(λ ∧ µ) = f−1(0) = 0, and hence X is fuzzy e-co-T2. □
Definition 3.32. A fuzzy space X is called fuzzy regular (resp. fuzzy e-co-regular)
if for each fuzzy open (resp. fuzzy e-Clopen) set λ and each fuzzy point xα /∈ λ,
there exist disjoint fuzzy open sets µ and ρ such that λ ≤ µ and xα ∈ ρ.

Definition 3.33. A fuzzy space X is called fuzzy normal (resp. fuzzy e-co-normal)
if for every pair of disjoint fuzzy open (resp. fuzzy e-Clopen) set λ1 and λ2 in X,
there exist disjoint fuzzy open sets µ and η such that λ1 ≤ µ and λ2 ≤ η.

Theorem 3.34. If f : X → Y is a fuzzy totally e-continuous injective fuzzy open
function and X is a fuzzy e-co-regular space, then Y is fuzzy regular.

Proof. Let λ be a fuzzy open set of Y and a fuzzy point yβ /∈ λ. Take yβ = f(xα).
Since f is fuzzy totally e-continuous, f−1(λ) is a fuzzy e-Clopen set of X. Take
µ = f−1(λ). We have xα /∈ µ. Since X is fuzzy e-co-regular, there exist disjoint
fuzzy open sets η and ρ in X such that µ ≤ η and xα ∈ ρ. We obtain that
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λ = f(µ) ≤ f(η) and yβ = f(xα) ∈ f(ρ) such that f(η) and f(ρ) are disjoint fuzzy
open sets of Y . This shows that Y is fuzzy regular. □

Theorem 3.35. If f : X → Y is a fuzzy totally e-continuous injective fuzzy open
function and X is fuzzy e-co-normal space, then Y is fuzzy normal.

Proof. Let λ1 and λ2 be disjoint fuzzy open sets in Y . Since f is fuzzy totally e-
continuous, f−1(λ1) and f−1(λ2) are fuzzy e-Clopen sets in X. Let β = f−1(λ1)
and µ = f−1(λ2). We have β ∧ µ = 0. Since X is fuzzy e-co-normal, there exist
disjoint fuzzy open sets λ and ρ such that β ≤ λ and µ ≤ ρ. We obtain that
λ1 = f(β) ≤ f(λ) and λ2 = f(µ) ≤ f(ρ) such that f(λ) and f(ρ) are disjoint fuzzy
open sets. Thus, Y is fuzzy normal. □

Definition 3.36. A graph G(f) of a function f : X → Y is said to be fuzzy co-e-
closed if for each (xα, yβ) ∈ (X × Y )\G(f), there exist a fuzzy e-Clopen set λ in X
containing xα and a fuzzy open set µ in Y containing yβ such that f(λ) ∧ µ = 0.

Theorem 3.37. If f : X → Y is fuzzy totally e-continuous and Y is fuzzy Hausdorff,
then G(f) is fuzzy co-e-closed in X × Y .

Proof. Let (xα, yβ) ∈ (X × Y )\G(f), then f(xα) ̸= yβ . Since Y is fuzzy Hausdorff,
there exist fuzzy open sets λ and µ in Y with f(xα) ∈ λ and yβ ∈ µ such that
λ ∧ µ = 0. Since f is fuzzy totally e-continuous, there exists a fuzzy e-Clopen
set η in X containing xα such that f(η) ≤ λ. Therefore, we obtain yβ ∈ µ and
f(η) ∧ µ = 0. This shows that G(f) is fuzzy co-e-closed. □

Theorem 3.38. Let f : X → Y has a fuzzy co-e-closed graph G(f). If f is injective,
then X is fuzzy e-T1.

Proof. Let xα and yβ be any two distinct points of X. Then, we have (xα, f(yβ)) ∈
(X×Y )\G(f). By definition of fuzzy co-e-closed graph, there exist a fuzzy e-Clopen
set λ in X and a fuzzy open set µ in Y such that xα ∈ λ, f(yβ) ∈ µ and f(λ)∧µ = 0;
hence λ ∧ f−1(µ) = 0. Therefore, we have yβ /∈ λ. This implies that X is fuzzy
e-T1. □

Theorem 3.39. Let f : X → Y has a fuzzy co-e-closed graph G(f). If f is injective
fuzzy e-continuous, then X is fuzzy e-T2.

Proof. Let xα and yβ be any two distinct points of X. Then, we have (xα, f(yβ)) ∈
(X × Y )\G(f). By definition of fuzzy co-e-closed graph, there exist a fuzzy e-
Clopen set λ in X and a fuzzy open set µ in Y such that xα ∈ λ, f(yβ) ∈ µ and
f(λ)∧µ = 0; since f is fuzzy e-continuous then f−1(µ) is fuzzy e-open set in X such
that f−1(µ)(yβ) = µ(f(yβ)) and λ ∧ f−1(µ) = 0. Hence X is fuzzy e-T2. □
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