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1. INTRODUCTION

The concept of fuzzy has invaded almost all branches of mathematics with the
introduction of fuzzy sets by Zadeh [14] of 1965. The theory of fuzzy topological
spaces was introduced and developed by Chang [5]. Since then many fuzzy topolo-
gists have extended various notions in classical topology to fuzzy topological spaces.
In classical topology the class of totally continuous functions was introduced in [9]
and as a consequence of this e-open sets and e-continuous was introduced and stud-
ied in [7]. The fuzzyfied concept of the totally continuous function is introduced
as perfectly fuzzy continuous functions and studied along with other functions in
[3]. In 2014 Seenivasan [13] introduced the concept of fuzzy e-continuity and fuzzy
e-open sets in fuzzy topological space. The purpose of this paper is to introduce the
concept of fuzzy totally e-continuous functions and investigated its basic properties.

2. PRELIMINARIES

Throughout this paper X, Y and Z are always mean fuzzy topological spaces.
The class of all fuzzy sets on a universe X will be denoted by IX. A fuzzy topology
on a nonempty set X is a family § of fuzzy subsets of X which satisfies the following
three conditions:

(i) 0,1 €4,
(ii) If g, h € 4, their g A h €6,
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(iii) f; € ¢ for each ¢ € I, then \/ f; € 0.
iel

The pair (X, 0) is called a fuzzy topological space [5]. Let A be a fuzzy subset of a
space X. The fuzzy closure of A, fuzzy interior of A, fuzzy d-closure of \ and the
fuzzy o-interior of A are denoted by Cl(\), Int()), Cls(\) and Ints(\) respectively.
A fuzzy subset A of space X is called fuzzy regular open [2] (resp. fuzzy regular
closed) if A = Int(CIl(X)) (resp. A = Cl(Int(N)). Now Cl(A\) and Int(\) are defined
as follows CI(A) = A{p: p > A, p is fuzzy closed in X} and Int(A\) = V{p: p < A,
w is fuzzy open in X }. The fuzzy d-interior of a fuzzy subset A of X is the union of
all fuzzy regular open sets contained in A. A fuzzy subset A is called fuzzy d-open
[10] if XA = Ints(A). The complement of fuzzy d-open set is called fuzzy d-closed (i.e,
A= Cls(N)).

Definition 2.1 ([11]). A fuzzy set in X is called a fuzzy point iff it takes the value
0 for all y € X except one, say, € X. If its value at x is A\(0 < A < 1) we denote
this fuzzy point by x), where the point x is called its support.

Definition 2.2 ([11]). The fuzzy point x is said to be contained in a fuzzy set A,
or to belong to A, denoted by z) € A, iff A\ < A(z). Evidently, every fuzzy set A
can be expressed as the union of all the fuzzy points which belong to A.

Definition 2.3 ([13]). A fuzzy set A of a fuzzy topological space X is said to be
fuzzy e-open if A < Cl(IntsA) V Int(ClsA), where CI(A) = A{p: p > A, p is fuzzy
closed in X} and Int(\) = V{u : p < A, p is fuzzy open in X}. If X is fuzzy e-open,
then 1 — X is fuzzy e-closed.

Definition 2.4 ([13]). Let X be a fuzzy topological space and A be any fuzzy
set in X. The fuzzy e-closure of A in X is denoted by eCl()) defined as follows:
eCl(p) = N{A : XA > p, Ais a fuzzy e-closed set of X}. Similarly we can define
eInt(N).

Remark 2.5. For a fuzzy set A of X, 1 — eInt(\) = eCl(1 — \).

Theorem 2.6 ([13]). In a fuzzy topological space X, X is a fuzzy e-closed (resp.
fuzzy e-open) if and only if X = eCIl(A) (resp. X\ = elnt(X)).

Definition 2.7. Let X and Y be two fuzzy topological spaces. Let A € IX, € IY.
Then f(A) is a fuzzy subset of Y, defined by f(A): Y — [0,1]

sup  Az) if T ({y}) # ¢
FO () = L wer{wh)

0 it f7'({y}) = ¢.
and f~1(u) is a fuzzy subset of X, defined by f~1(u)(z) = u(f(x)).

Definition 2.8. A function f : X — Y is said to be fuzzy totally continuous [4]
(resp. fuzzy e-continuous [13]) if the inverse image of every fuzzy open set in Y is a
fuzzy Clopen (resp. fuzzy e-open) set in X.

Definition 2.9 ([12]). A fuzzy topological space X is called fuzzy Tp-space if for
any pair of distinct fuzzy points x; and x4, there exist a fuzzy open set A such that
xr€AXand x5 ¢ Aor z; € X and 5 € A
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Definition 2.10 ([12]). A fuzzy space X is said to be fuzzy Ty (= fuzzy Hausdorfl)
if for each pair of fuzzy points z, and yg such that x, # yg in X, there exist disjoint
fuzzy open sets A and g in X such that x, € A and yg € p.

Definition 2.11 ([8]). A collection p of fuzzy sets in a fuzzy space X is said to be
cover of a fuzzy set n of X if (\/ 4, A)(z) =1, for every x € 5(n). A fuzzy cover p
of a fuzzy set n in a fuzzy space X is said to be have a finite subcover if there exists
a finite subcollection p = {A1, As,..., A, } of u such that (\/;.L=1 Aj)(x) > n(x), for
every = € s(n), where s(n) denotes the support of a fuzzy set 7.

Definition 2.12 ([1]). A fuzzy topological space (X, 7) is said to be fuzzy Lindeldf,

if for each family # C 7 and for each o € I such that \/ A > «, there exist for
AEA
each € € (0,a] a countable subset %, of & such that \/ A > o —e.
AERBo

Definition 2.13 ([13]). A fuzzy topological space (X, 1) is said to be fuzzy e-T} if
for each pair of distinct points z and y of X, there exists fuzzy e-open sets U; and
Us such that 2 € Uy and y € Uy, x ¢ Uy and y ¢ Uy.

Definition 2.14 ([13]). A fuzzy topological space (X, 7) is said to be fuzzy e-Th
(i.e., fuzzy e-Hausdorfl) if for each pair of distinct points = and y of X, there exists
disjoint fuzzy e-open sets U and V such that € U and y € V.

Definition 2.15 ([13]). A fuzzy topological space (X, 7) is said to be fuzzy e-regular
if for each closed set F' of X and each v € X — F', there exists disjoint fuzzy e-open
sets U and V such that x € U and F < V.

Definition 2.16 ([13]). A fuzzy topological space (X, 7) is said to be fuzzy e-normal
if for every two disjoint fuzzy closed sets A and B of X, there exist two disjoint fuzzy
e-open sets U and V such that A< U and B<V and UAV =0.

3. Fuzzy TOTALLY e-CONTINUOUS FUNCTION

We have introduced the following definition

Definition 3.1. A function f : X — Y is said to be fuzzy totally e-continuous if
the inverse image of every fuzzy open set in Y is a fuzzy e-Clopen (that is, fuzzy
e-open and fuzzy e-closed) set in X.

It is clear that every fuzzy totally continuous function is fuzzy totally e-continuous
and every fuzzy totally e-continuous function is fuzzy e-continuous.

However, none of the above implications are reversible as shown in the following
examples.

Example 3.2. Let X = {a,b,c}, Y = {p,q} 7 = {0,1,,8,7} and o = {0,1,6}
Wherea:%—l—%—i—%,ﬁz%—&—%—i—%,v:%—i—%—i—%andéz%—&—%. Define
f:(X,7) = (Y,0) as follows: f(a) = p, f(b) = f(c) = q. Then f is fuzzy totally
e-continuous. However, it is not fuzzy totally continuous, since for the fuzzy open
set & of (Y,0), f~1(6) = a, which is not fuzzy closed in (X, 7).
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Example 3.3. Let I = [0,1] and 1, p2 and pg3 be fuzzy sets of I defined as

(@) 0 fo<z<i
xTr) =
& 2r—1 ifl<w<1
1 ifo<az<i
po(x) = p3(z) =< —do+2 if ; <z <3
0 ifl<z<i

Clearly, 71 = {0, 1, p1, po, 1 V po} and 7 = {0,1, us} are fuzzy topologies on I.
Let f: (I,71) — (I,72) be defined by f(x) = x for each € I. Then f is fuzzy
totally e-continuous but not fuzzy totally continuous, since for the fuzzy open set
ps of (I, 72), f~1(us) = ps, is fuzzy open in (I,71) but not fuzzy closed in (I,77).

Example 3.4. Let X =Y = {a,b,c}, 7 = {0,1,,8,7,0} and o = {0,1, )}

_ 03,04 05 p_06_, 05 05 . _ 06,05, 04 s¢_ 03 04 04
wherea = "5 4+ 55 + 78, f= "5+ R+ T2, v =T+ PS5, 0= T4 5 458
and A = &6 4 89 4 05 Define f: (X,7) — (Y, 0) be the identity function. Clearly
f is fuzzy e-continuous but not fuzzy totally e-continuous, since for the fuzzy open
set A of (Y, o), f~1(\) = X is fuzzy e-open in (X, 7) but not fuzzy e-closed in (X, 7).

Example 3.5. Let I = [0,1] and u1,u2 and ps be fuzzy sets of I in Example 3.3
Consider fuzzy topologies 71 = {0, 1, u1, po, pu1 V po} and 7o = {0,1, 1 V pe} are
fuzzy topologies on I. Let f : (I,71) — (I,72) be defined by f(z) = z for each
x € I. Then f is fuzzy e-continuous but not fuzzy totally e-continuous, since for the
fuzzy open set 1 V po of (I,72), f~1 (1 V p2) = p1 V po is fuzzy e-open in (X, 1)
but not fuzzy e-closed in (X, 7).

Definition 3.6. A function f : (X,7) — (Y,0) is said to be strongly fuzzy e-
continuous if and only if f~1()\) is fuzzy e-Clopen whenever \ € IY.

It is evident that every strongly fuzzy e-continuous function is fuzzy totally e-
continuous. However, the converse is not true as shown in the following example.

Example 3.7. Let X =Y = {a,b,¢}, 7 ={0,1,,5,7,0} and 0 = {0,1, A} where
N R SR L S R
and A = %4 4 85 4 05 Then the identity function f : (X,7) — (Y,0) is fuzzy
totally e-continuous but not strongly fuzzy e-continuous, since for the fuzzy set
B= 0('76 + 07'74 + % eIV, f~Y(pu) = p is fuzzy e-open in (X, 7) but not fuzzy e-closed
in (X,7).

Recall that a fuzzy topological space (X, 7) is called a discrete fuzzy topological
space if 7 = IX.

Example 3.8. Let I = [0,1] and pq and po and pg be fuzzy sets of I in Example 3.3
Consider fuzzy topologies 71 = {0, 1, u1, o, 1 V o} 72 = {0,1, us} are topologies
on I. Let f: (I,71) = (I,72) be defined by f(z) = z for each x € I. Then f is
fuzzy totally e-continuous but not strongly fuzzy e-continuous, since for the fuzzy
set 1 Vg in (I, 72), f1 (11 V p2) = p1 V pg is fuzzy e-open in (X, 71) but not fuzzy
e-closed in (X, 7).

242



A. Vadivel et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 2, 239-247

Theorem 3.9. FEvery fuzzy totally e-continuous function onto a discrete fuzzy topo-
logical space is strongly fuzzy e-continuous.

Proof. Obvious. 0

Definition 3.10. A fuzzy topological space (X, 7) is said to be fuzzy e-connected
if there does not exist fuzzy e-open sets A and p such that A +pu = 1, A # 0 and

p# 0.

Theorem 3.11. If f is fuzzy totally e-continuous function from a fuzzy e-connected
space X into any fuzzy topological space Y, then Y is indiscrete fuzzy topological
space.

Proof. Suppose Y is not indiscrete. Then Y has a proper (# 0 and # 1) fuzzy open
set A (say). Then by hypothesis on f, f~!()\) is a proper fuzzy e-Clopen subset of
X, which is a contradiction to the assumption that X is fuzzy e-connected. O

Definition 3.12. A fuzzy topological space X is fuzzy e-T5 if for any pair of distinct
fuzzy points x; and g, there exist fuzzy e-open sets A and p such that z; € A\, s € p
and eCl(\) <1 —eCl(p).

Theorem 3.13. Let f : (X,7) — (Y,0) be an injective fuzzy totally e-continuous
function. If Y is fuzzy Ty, then X is fuzzy e-T5.

Proof. Let z; and y, be any two distinct fuzzy points of X. Then f(x:¢) # f(ys).

Since Y is fuzzy Ty, there exists a fuzzy open set say Ain Y such that f(z;) € A
and f(ys) ¢ A\. This mean z; € f~1(\) and y, & f~1()\). Since f is fuzzy totally e-
continuous, f~1(A) is fuzzy e-Clopen set of X. Alsoz; € f~1(\) and ys € 1 f LN).
Now put g = 1 — f=Y(A). Then f~1(\) = eCl(f~1()\)) and eCI(1 — ( ) =
eCl(p) =1 — f1()) (since f=1()) is fuzzy e-closed) and eCl(f_l()\)) =f7t(\) =

1—eCl(1— f71(N) =1—eCl(n) <1 —eCl(p). O

Theorem 3.14. If f : X — Y 1is fuzzy totally e-continuous and g : Y — Z is fuzzy
continuous, go f: X — Z is a fuzzy totally e-continuous function.

Proof. Obvious. O

Theorem 3.15. Let p; : X1 X Xo — X, (i = 1,2) be the projection of X1 x Xa on
X;. If f: X — X7 x X5 is fuzzy totally e-continuous, then p; o f is also fuzzy totally
e-continuous.

Proof. This follows directly from Theorem 3.14 g

Theorem 3.16. Let f: X1 — Xo be a function. If the graph g : X1 — X3 x X2 of
[ is fuzzy totally e-continuous, then f is also fuzzy totally e-continuous.

Proof. This follows directly from Theorem 3.15 O

Definition 3.17 ([13]). A mapping f: X — Y is said to be a fuzzy e-irresolute if
f7Y(N) is fuzzy e-open in X for every fuzzy e-open set \ in Y.

Theorem 3.18. If f : X — Y is fuzzy e-irresolute and g : Y — Z is fuzzy totally

e-continuous function, then go f : X — Z is a fuzzy e-continuous function.
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Proof. Straightforward. O

Definition 3.19. A function f : X — Y is said to be fuzzy totally e-open if the
image of every fuzzy open subset of X is fuzzy e-Clopen of Y.

Theorem 3.20. If f : X = Y is fuzzy open and g : Y — Z is fuzzy totally e-open,
then g o f is fuzzy totally e-open.

Proof. Straightforward. O

Definition 3.21. A function f : X — Y is said to be fuzzy almost e-open if the
image of every fuzzy e-Clopen subset of X is fuzzy open subset of Y.

Theorem 3.22. If f : X — Y is an onto fuzzy almost e-open and fuzzy totally
e-continuous function and g :' Y — Z is a function such that g o f is fuzzy totally
e-continuous, then g is fuzzy continuous.

Proof. Let X be a fuzzy open subset of Z. Then (go f)~!(\) is a fuzzy e-Clopen
subset of X. But f(go f)~*(\) = g~1()\) is a fuzzy open subset of Y. Hence, g is
fuzzy continuous. O

Theorem 3.23. If f : X — Y is fuzzy totally e-continuous function and A is fuzzy
open crisp subset of X, then fa: A —Y is also fuzzy totally e-continuous.

Proof. Let X be a fuzzy open subset of Y, then f~1()) is fuzzy e-Clopen in X. Now,
F71()) is fuzzy e-Clopen in X and A is a fuzzy open crisp subset of a fuzzy topological
space X, then f~1(\) N A is fuzzy e-Clopen set in A. But, f~'(A\)NA = f;'(\) is
fuzzy e-Clopen set in A. Hence f, is fuzzy totally e-continuous. 0

Definition 3.24. A function f : X — Y is called slightly fuzzy e-continuous if
f71()\) is fuzzy e-closed in X for every fuzzy Clopen set A of Y.

Theorem 3.25. If f: X — Y is a fuzzy e-irresolute and g : Y — Z is slightly fuzzy
e-continuous, then go f : X — Z is slightly fuzzy e-continuous.

Proof. Let A be any fuzzy clopen set of Z. Then by hypothesis on g, g~ () is fuzzy
e-closed in Y. Now (go f)~1(\) = f~1(g71()\)) and therefore by hypothesis on f,
(gof)~1(N) is fuzzy e-closed. This proves that go f is slightly fuzzy e-continuous. [

Definition 3.26. A fuzzy space X is said to be:

(i) fuzzy mildly e-compact if every fuzzy e-Clopen cover of X has a finite sub-
cover;

(ii) fuzzy mildly countably e-compact if every fuzzy e-Clopen countably cover
of X has a finite subcover;

(iii) fuzzy mildly e-Lindeldf if every cover of X by fuzzy e-Clopen sets has a
countable subcover;

(iv) fuzzy compact [0] if every fuzzy open cover of X has a finite subcover;

(v) fuzzy countably compact [6] if every countable fuzzy open covering of X
contains a finite subcollection that covers X.

Theorem 3.27. Let f: X =Y be a fuzzy totally e-continuous surjective function.
Then the following statements hold:
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(i) If X is a fuzzy mildly e-compact, then Y is fuzzy compact.
(ii) If X is a fuzzy maldly e-Lindelof, then Y is fuzzy Lindelof.
(i) If X is a fuzzy mildly countably e-compact, then'Y is fuzzy countably com-
pact.

Proof. (i) Let {\y : @ € I} be any fuzzy open cover of Y. Since f is fuzzy totally
e-continuous, then {f~*(\,) : a € I} is fuzzy e-Clopen cover of X. Since X is fuzzy
mildly e-compact, there exists a finite subset Iy of I such that \/{f '(\s) : @ €
Iy} = 1. Thus, we have \/{\, : « € I} =1 and Y is fuzzy compact.

The other proofs are similarly. g

Definition 3.28. A fuzzy space X is said to be fuzzy Ty [12] (resp. fuzzy e-co-T1)
if for each pair of distinct fuzzy points z, and yz of X there exist fuzzy open (resp.
fuzzy e-Clopen) sets A and p containing xz, and yg, respectively such that yg ¢ A
and zo ¢ p.

Theorem 3.29. If f : X — Y is a fuzzy totally e-continuous injective function and
Y is fuzzy Ty, then X is fuzzy e-co-T;.

Proof. Suppose that Y is fuzzy T;. For any two distinct fuzzy points z, and ys in X,
there exist fuzzy open sets A and p in Y such that f(zo) € A, f(yg) & A, f(za) ¢ p

and f(yg) € p. Then zo € f7H(N), yp & f7H(N), o & 7' (1) and ys € f ().
This shows that X is fuzzy e-co-T7. O

Definition 3.30. A fuzzy space X is said to be fuzzy e-co-Tp (= fuzzy e-co-
Hausdorft) if for each pair of fuzzy points z, and yg such that z, # yg in X,
there exist disjoint fuzzy e-Clopen sets A and p in X such that z, € A and y3 € p.

Theorem 3.31. If f : X — Y is a fuzzy totally e-continuous injective function and
Y is fuzzy Ts, then X is fuzzy e-co-Ts.

Proof. Suppose that Y is fuzzy T5 space. For any pair of distinct fuzzy points z,,
and yg in X, there exists disjoint fuzzy open sets A and p in Y such that f(zy) € A
and f(yg) € p. Since f is fuzzy totally e-continuous function, we have f~*(\) and
/7 (p) are fuzzy e-Clopen sets in X containing x,, and yg, respectively. By definition
FTEAF ) = f7Y(AAp) = f710) =0, and hence X is fuzzy e-co-Ts. O

Definition 3.32. A fuzzy space X is called fuzzy regular (resp. fuzzy e-co-regular)
if for each fuzzy open (resp. fuzzy e-Clopen) set A and each fuzzy point z, ¢ A,
there exist disjoint fuzzy open sets p and p such that A < p and z,, € p.

Definition 3.33. A fuzzy space X is called fuzzy normal (resp. fuzzy e-co-normal)
if for every pair of disjoint fuzzy open (resp. fuzzy e-Clopen) set A\; and A9 in X,
there exist disjoint fuzzy open sets p and 7 such that \; < p and Ay <.

Theorem 3.34. If f : X — Y is a fuzzy totally e-continuous injective fuzzy open
function and X is a fuzzy e-co-reqular space, then'Y is fuzzy regular.

Proof. Let X be a fuzzy open set of Y and a fuzzy point yz ¢ . Take yg = f(zq).

Since f is fuzzy totally e-continuous, f~1()) is a fuzzy e-Clopen set of X. Take

w= f1(\). We have x, ¢ p. Since X is fuzzy e-co-regular, there exist disjoint

fuzzy open sets 1 and p in X such that y < n and =z, € p. We obtain that
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A= f(p) < f(n) and yg = f(za) € f(p) such that f(n) and f(p) are disjoint fuzzy
open sets of Y. This shows that Y is fuzzy regular. d

Theorem 3.35. If f : X — Y is a fuzzy totally e-continuous injective fuzzy open
function and X is fuzzy e-co-normal space, then Y is fuzzy normal.

Proof. Let A1 and Ay be disjoint fuzzy open sets in Y. Since f is fuzzy totally e-
continuous, f~1(A;) and f~1()\q) are fuzzy e-Clopen sets in X. Let 8 = f~1()\;)
and = f~'(A\2). We have 8 A u = 0. Since X is fuzzy e-co-normal, there exist
disjoint fuzzy open sets A and p such that 3 < XA and p < p. We obtain that
A= f(8) < f(N) and As = f(u) < f(p) such that f(A) and f(p) are disjoint fuzzy
open sets. Thus, Y is fuzzy normal. O

Definition 3.36. A graph G(f) of a function f : X — Y is said to be fuzzy co-e-
closed if for each (z4,ys) € (X X Y)\G(f), there exist a fuzzy e-Clopen set A in X
containing z, and a fuzzy open set p in Y containing yg such that f(A) A p=0.

Theorem 3.37. If f : X — Y is fuzzy totally e-continuous and Y is fuzzy Hausdorff,
then G(f) is fuzzy co-e-closed in X x Y.

Proof. Let (zq4,y5) € (X x Y)\G(f), then f(z,) # ys. Since Y is fuzzy Hausdorff,
there exist fuzzy open sets A\ and p in Y with f(z,) € A and yg € p such that
AAp = 0. Since f is fuzzy totally e-continuous, there exists a fuzzy e-Clopen
set n in X containing z, such that f(n) < A. Therefore, we obtain ys € p and
f(n) A p=0. This shows that G(f) is fuzzy co-e-closed. O

Theorem 3.38. Let f: X — Y has a fuzzy co-e-closed graph G(f). If f is injective,
then X is fuzzy e-T;.

Proof. Let z, and yg be any two distinct points of X. Then, we have (z4, f(yg)) €
(X xY)\G(f). By definition of fuzzy co-e-closed graph, there exist a fuzzy e-Clopen
set A in X and a fuzzy open set 11 in Y such that x, € A, f(ys) € pand f(A\)Ap = 0;
hence A A f~1(u) = 0. Therefore, we have yg ¢ A. This implies that X is fuzzy
€-T1. Il

Theorem 3.39. Let f : X — Y has a fuzzy co-e-closed graph G(f). If f is injective
fuzzy e-continuous, then X is fuzzy e-Ts.

Proof. Let z, and yg be any two distinct points of X. Then, we have (z,, f(yg)) €
(X x Y)\G(f). By definition of fuzzy co-e-closed graph, there exist a fuzzy e-
Clopen set A in X and a fuzzy open set 4 in Y such that z, € X, f(ys) € p and
FN) A= 0; since f is fuzzy e-continuous then f~(u) is fuzzy e-open set in X such
that f=1(u)(ys) = u(f(ys)) and A A f=(u) = 0. Hence X is fuzzy e-T. O
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