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Abstract. The aim of this paper is to construct the basic concepts
related to compactness in double (intuitionistic) topological spaces. Here
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pactness modulo double ideal (I-D-compactness), double quasi-H-closed
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1. Introduction

After Atanassov [1, 2, 3, 4] introduced the concept of intuitionistic fuzzy sets as
a generalization of fuzzy sets, Çoker [6] generalized topological structures in fuzzy
topological spaces to intuitionistic fuzzy topological spaces using intuitionistic fuzzy
sets. The concept of intuitionistic sets which are under the classical intuitionistic
fuzzy sets was first given by Çoker in [5]. He studied topology on intuitionistic sets
in [7]. In 2007, Kandil et. al [17] introduced the concept of Flou set. This is a
discrete form of intuitionistic fuzzy sets, where all the ordinary sets are entirely the
crisp sets. In this paper, we follow the terminology of Rodabaugh [9] that double
set is more appropriate name than intuitionistic (Flou) set, and therefore, adopted
the term double set for the intuitionistic(Flou) set and double topology for the
intuitionistic (Flou) topology. Kandil [17] also introduced the concept of double
topological spaces with double sets and investigated basic properties of continuous
functions. He also examined separation axioms in double topological spaces. In
2010, Kandil [14] obtained a new double topology form the old (X, η), constructed
by use of a double ideal (D-ideal, for short) on X, and described as follows.
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Let I ∈ DI(X) and let (X, η) be a double topological space. Consider the local
function of A with respect to I and η, denoted by A∗(η, I), given by xt ∈ A∗ ⇔
(Oxt

∩Hc)qA ∀ H ∈ I ∀ Oxt
∈ Nq

η (xt). Then the operator cl∗ : D(X)→ D(X),
defined by cl∗(A) = A∪A∗, is a D-closure operator and hence it generates a double
topology η∗(I) = {A ∈ D(X) : cl∗(Ac) = Ac}, which is finer than η. A double open
base β for the double topology η∗(I) on X is given by β(η, I) = {G\A : G ∈ η, A ∈
I}. In 2009, Kandil and et. al.[16] introduced the notion of CD-compact topological
spaces(Flou-compact topological space), and studied some fundamental properties
of this notion.

2. Preliminaries

The purpose of this section is merely to recall some known results concerning
ideal, compactness, double sets, double ideals and double compact spaces.
For more information see [11, 12, 13, 14, 16, 17, 19, 22].

Definition 2.1 ([11]). A nonempty collection I of subsets of a nonempty set X is
said to be an ideal on X, if it satisfies the following two conditions:
(i) A ∈ I and B ⊆ A ⇒ B ∈ I (hereditary),
(ii) A ∈ I and B ∈ I ⇒ A ∪B ∈ I (finite additivity).

Definition 2.2 ([8]). A topological space (X, τ) is said to be compact or τ -compact
iff every open cover of X has a finite sub-cover.

Definition 2.3 ([19]). Let I be an ideal on a topological space (X, τ). A cover
{Gα : α ∈ Ω} of X is said to be an I-cover if there exists a finite subset Ω0 of Ω
such that {Gα : α ∈ Ω0} covers X except, perhaps, for some subset which belongs
to the ideal I, i.e. X\

⋃
α∈Ω0

Gα ∈ I.

Definition 2.4 ([19]). A topological space (X, τ) with an ideal I is said to be
I-compact or compact modulo I, if every open covering of X is an I-cover.

Definition 2.5 ([18]). A topological space (X, τ) is said to be a quasi H - closed
(QHC, for short) if for every open cover γ(= {Gα : α ∈ Λ} ⊆ τ) of X, there exists a
finite sub-collection γ∗(= {Gi : i = 1, 2, 3, ..., n}) of γ such that X = ∪ni=1clτGi. A
Hausdorff quasi H - closed space is called H - closed (HC, for short).

Definition 2.6 ([21]). A topological space (X, τ) is said to be C-compact if for
every closed set F and every τ -open cover γ of F , there exists a finite sub-collection
{G1, G2, G3, ..., Gn} of γ such that F ⊆ ∪ni=1clτ (Gi).

Definition 2.7 ([10]). Let I be an ideal on a topological space (X, τ). A topological
space (X, τ) is said to be I-C-compact if for every closed set F and every τ -open
cover γ of F , there exists a finite sub-collection {G1, G2, G3, ..., Gn} of γ such that
F\ ∪ni=1 clτ (Gi) ∈ I.

Definition 2.8 ([17]). Let X be a nonempty set:
(1) A double set A is an ordered pair A = (A1, A2) ∈ P (X) × P (X) such that
A1 ⊆ A2.
(2) D(X) = {(A1, A2) : (A1, A2) ∈ P (X) × P (X), A1 ⊆ A2} is the family of all
double sets on X.
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(3) Let x ∈ X . Then, the double sets x0.5 = (φ, {x}) and x1 = ({x}, {x}) are said
to be double points in X.
Xp = {xt : x ∈ X, t ∈ {0.5, 1}} is the set of all double points of X.
(4) x1 ∈ A iff x ∈ A1, and x0.5 ∈ A iff x ∈ A2, i.e. A = (∪{x1 : x1 ∈ A}) ∪ (∪{x0.5 :
x0.5 ∈ A})
(5) Let η1, η2 ⊆ P (X). Then the double product of η1 and η2, denoted by η1×̂η2, is
defined by η1×̂η2 = {(A1, A2) : (A1, A2) ∈ η1 × η2, A1 ⊆ A2}.
(6) The double set X = (X,X) is called the universal double set.
(7) The double set φ = (φ, φ) is called the empty double set.
(8) The double set A = (A1, A2) is said to be a finite double set if A2 is finite set.
(9) The double set A = (A1, A2) is said to be a countable if and only if A2 is
countable.
(10) The double set A = (A1, A2) is said to be a crisp double set if and only if
A1 = A2.

Note that a double set in the sense of Çoker [5] is the form A = (A1, A2) ∈ P (X),
where A1 ∩A2 = φ. But A = (A1, A2) ∈ P (X) is a double set in the sense of Kandil
et. al [17], where A1 ∩ A2. then A = (A1, A2) is a double set in the sense of Çoker
if and only if A = (A1, A

c
2) is a double set in the sense of Kandil. And one can see

that a one to one correspondence mapping between the two types. On the other
hand, Kandil’s notion simplify the concepts, specially in the case of intuitionistic
fuzzy points or double fuzzy point see [20].

Definition 2.9 ([17]). Let A = (A1, A2), B = (B1, B2) ∈ D(X). Then:
(1) A = B ⇔ Ai = Bi, i = 1, 2.
(2) A ⊆ B ⇔ Ai ⊆ Bi, i = 1, 2.
(3) A ∩B = (A1 ∩B1, A2 ∩B2) and A ∪B = (A1 ∪B1, A2 ∪B2).
(4) If {Aα : α ∈ Λ} ⊆ D(X) such that Aα = (A1α, A2α), then⋃
α∈ΛAα = (

⋃
α∈ΛA1α,

⋃
α∈ΛA2α) and

⋂
α∈ΛAα = (

⋂
α∈ΛA1α,

⋂
α∈ΛA2α).

(5) Ac = (Ac2, A
c
1), where Ac is the complement of A.

(6) A\B = A ∩Bc.

Proposition 2.10 ([17]). (D(X),∪,∩,c ) is a Morgan Algebra.

Definition 2.11 ([17]). Two double sets A and B are said to be quasi-coincident,
denoted by AqB , if and only if A1∩B2 6= φ or A2∩B1 6= φ. A is not quasi-coincident
with B, denoted by Aq̄B , if and only if A1 ∩B2 = φ and A2 ∩B1 = φ.

Theorem 2.12 ([17]). Let A,B,C ∈ D(X) and xt, yr ∈ Xp. Then:

(1) AqB ⇒ A ∩B 6= φ,
(2) AqB ⇔ ∃xt ∈ A such that xtqB,
(3) Aq̄B ⇔ A ⊆ Bc,
(4) xtq̄A⇔ xt ∈ Ac,
(5) A ⊆ B ⇔ xt ∈ A implies xt ∈ B ⇔ xtqA implies xtqB,
(6) Aq̄Ac,
(7) A =

⋃
{xt : xt ∈ A} =

⋃
{xt : xtq̄A

c}.

Definition 2.13 ([17]). Let X be a nonempty set. Then:
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(1) η ⊆ D(X) is called a double topology on X if the following axioms are
satisfied:
(i) φ, X ∈ η,
(ii) If A, B ∈ η, then A ∩B ∈ η and
(iii) If {Aα : α ∈ Λ} ⊆ η, then ∪α∈ΛAα ∈ η.

(2) If G ∈ η, then G is called an open double set and Gc is called a closed double
set.

(3) The family of all closed double sets is denoted by ηc = {F : F c ∈ η}.
(4) A double set Oxt

is called a neighborhood (nbd, for short) of the double
point xt if and only if xt ∈ Oxt

∈ η. The family of all nbd of xt denoted
by Nη(xt). Also, Oxt

is called a quasi neighborhood (q-nbd, for short) of
the double point xt if and only if xtqOxt

∈ η. The family of all q-nbd of xt
denoted by Nq

η (xt).
(5) If A ∈ D(X). Then

(i) The closure of A, denoted by clη(A), is defined by clη(A) = ∩{F : A ⊆
F ∈ ηc}.
(ii)The interior of A, denoted by intη(A), is defined by intη(A) = ∪{G :
G ∈ η,G ⊆ A}.

(6) A double set A is called a double dense in X iff clη(A) = X.

Theorem 2.14 ([17]). Let (X, η) be a double topological space and A ∈ D(X). Then
intη(A) = (clη(Ac))c.

Theorem 2.15 ([17]). Let (X, τ) be a topological space, and let A ∈ D(X). Then
τ×̂τ is a double topology on X and clτ×̂τ (A) = (clτ (A1), clτ (A2)).

Theorem 2.16 ([17]). Let (X, η) be a double topological space. Then

(1) π1 = {A1 : (A1, A2) ∈ η},
(2) π2 = {A2 : (A1, A2) ∈ η} and
(3) π3 = {A : (A,X) ∈ η} are topologies on X.

Definition 2.17 ([15]). A double topological space (X, η) is said to be a double
Hausdorff(DT2, for short) if ∀xt, yr ∈ Xp, xtq̄yr there exists Oxt

, Oyr ∈ η such that
Oxt

q̄Oyr .

Definition 2.18 ([16]). Let(X, η) be a double topological space and let A ∈ D(X).
A collection γ = {Gα : α ∈ Λ} ⊆ D(X) is said to be a double cover(D-cover, for
short) of A if A ⊆ ∪α∈ΛGα. If γ ⊆ η, then γ is called double open cover(D-open
cover, for short).

Definition 2.19 ([16]). A double topological space (X, η) is said to be a CD-
compact space if for every double closed set F and for every D-open cover γ of
F has a finite sub-cover.

Definition 2.20 ([14]). Let X be a nonempty set. A nonempty collection I ⊆ D(X)
is said to be a double ideal(D-ideal) on X, if it satisfies the following two conditions:

(i): A ∈ I and B ⊆ A ⇒ B ∈ I (hereditary),
(ii): A ∈ I and B ∈ I ⇒ A ∪B ∈ I (finite additivity).

Example 2.21 ([14]). Let X be a nonempty set:
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(1) {φ} and D(X) are trivial examples of double ideals on X.
(2) If , the double ideal of all finite double subsets in X,
(3) Ic, the double ideal of all countable double subsets in X,
(4) In, the double ideal of all nowhere dense double subsets in X,
(5) Iqxt

= {A : A ∈ D(X), xtq̄A} is a quasi excluded point double ideal on X,

(6) I+ = {(φ,A) : A ∈ P (X)}.
The set of all double ideals on X is denoted by DI(X).

Proposition 2.22 ([13]). Let I and J be two ideals on X. Then the double product
I×̂J (= {(A,B) : (A,B) ∈ I × J , A ⊆ B} is a D-ideal on X.

Proposition 2.23 ([14]). Let X be a nonempty set and I ∈ DI(X). Then

(1) I1 = {A1 : (A1, A2) ∈ I}, and
(2) I2 = {A2 : (A1, A2) ∈ I} are ideals on X.

Definition 2.24 ([13]). Let (X, η) be a double topological space and let I be a D-
ideal on X. Then η is said to be compatible with I, denoted by η ∼ I if A∩A∗ = φ,
then A ∈ I.

Theorem 2.25 ([13]). Let (X, η) be a double topological space and let I be a D-ideal
on X. If η ∼ I, then β(η, I) = η∗(I).
For more information see [13, 14].

3. D-Compactness modulo D-ideal

In this section, we introduce and study the idea of a new type of D-compactness,
defined in terms of a D-ideal in a double topological space (X, η). Calling it I-D-
compactness, we investigate its relation with compactness, among other things.

Definition 3.1. A double topological space (X, η) is said to be D-compact space if
every D-open cover γ of X has a finite sub-cover.

Theorem 3.2. Let (X, η) be a D-compact space. Then every crisp double closed set
is a C-set.

Proof. Let (X, η) be a D-compact space, A be a crisp double closed set and let the
collection γ = {Gα : α ∈ Λ} ⊆ η be a D-open cover of A, i.e. A ⊆ ∪α∈ΛGα. Then
A ∪ Ac ⊆ ∪α∈ΛGα ∪ A

c ⇒ X = ∪α∈ΛGα ∪ A
c. Hence the collection γ∗ = γ ∪ {Ac}

is a D-open cover of X. Since (X, η) is D-compact, there exists a finite sub cover
γ

0
= {Gαi

: i = 1, 2, 3, ..., n} ∪ Ac of X, i.e. X = ∪ni=1Gαi
∪ Ac ⇒ A = (∪ni=1Gαi

∪
Ac) ∩A⇒ A ⊆ ∪ni=1Gαi

. Hence A is a C-set. �

The converse of the above Theorem may not be true in general as shown by the
following example.

Example 3.3. Let X = {a, b} and η = {φ,X}. Then (X, η) is a D-compact. Now,
let A = ({a}, {a}). Then A is a C-set, but its not D-closed as Ac = ({b}, {b}) 6∈ η.

Theorem 3.4. Let (X, η) be a double topological space. Then (X, η) is D-compact
⇔ (X,π1) is compact , where π1 = {A1 : (A1, A2) ∈ η}.

91



A. Kandil et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 87–102

Proof. Let (X, η) be a D-compact space and let γ1 = {G1α : α ∈ Λ} ⊆ π1 be an open
cover of X, i.e. X = ∪α∈ΛG1α. Then the family γ = {(G1α, G2α) : G2α ∈ π2, α ∈ Λ}
is a D-open cover of X. Since (X, η) is a D-compact, then there exists a finite
subcover γ∗ = {(G1αi , G2αi) : i = 1, 2, 3, ..., n} ⊆ γ of X, i.e. (X,X) = X =
∪ni=1(G1αi , G2αi). So X = ∪ni=1G1αi , and hence γ∗1 = {G1αi : i = 1, 2, 3..., n} ⊆ γ1

is a finite subcover of X. Therefore (X,π1) is a π1-compact.
Conversely, let (X,π1) be a π1-compact and let γ = {Gα : α ∈ Λ} ⊆ η be a D-open
cover of X, i.e. (X,X) = X = ∪α∈ΛGα. Since for each Gα in γ there exists G1α,
G2α ∈ P (X), G1α ⊆ G2α such that Gα = (G1α, G2α). Then X = ∪α∈ΛG1α, i.e. the
collection γ1 = {G1α : (G1α, G2α) ∈ γ} ⊆ π1 is a π1-open cover of X, but (X,π1) is
π1-compact, then there exists a finite subcover γ∗1 = {G1αi : i = 1, 2, 3, ..., n} ⊆ γ1

such that X = ∪ni=1G1αi . Now, since G1αi ⊆ G2αi , then ∪ni=1G1αi ⊆ ∪ni=1G2αi ,
therefore, X = (∪ni=1G1αi

,∪ni=1G2αi
) = ∪ni=1Gαi

. Hence (X, η) is a D-compact. �

Theorem 3.5. Let (X, η) be a double topological space. Then
(X, η) is D-compact ⇒ (X,π3) is compact, where π3 = {A : (A,X) ∈ η}.

Proof. Let (X, η) be a D-compact and let γ = {Gα : α ∈ Λ, (Gα, X) ∈ η} ⊆ π3 be an
open cover of X, i.e. X = ∪α∈ΛGα. Then X = ∪α∈Λ(Gα, X). Hence the collection
γ = {(Gα, X) : Gα ∈ γ} is a D-open cover of X. But, (X, η) is a D-compact,
then, there exists a finite subcover γ∗ = {(Gαi

, X) : i = 1, 2, 3, ..., n} ⊆ γ of X,i.e.
X = ∪ni=1(Gαi , X)⇒ X = ∪ni=1Gαi . Hence (X,π3) is compact. �

Theorem 3.6. Let (X, η) be a double topological space. Then

(1): ηl = {(A1, A1) : (A1, A2) ∈ η}
(2): ηr = {(A2, A2) : (A1, A2) ∈ η}

are double topologies on X.

Proof. (1): Since (X,X), (φ, φ) ∈ η, then (X,X), (φ, φ) ∈ ηl. Let (A1, A1), (B1, B1) ∈
ηl. Then, there exists A2, B2 ∈ P (X) such that (A1, A2), (B1, B2) ∈ η ⇒ (A1 ∩
B1, A2 ∩ B2) ∈ η ⇒ (A1 ∩ B1, A1 ∩ B1) ∈ ηl. Hence (A1, A1) ∩ (B1, B1) ∈ ηl. Now,
let {(A1α, A1α) : α ∈ Λ} ⊆ ηl. Then, for each A1α, there exists A2α ∈ P (X) such
that (A1α, A2α) ∈ η ⇒ {(A1α, A2α) : α ∈ Λ} ⊆ η ⇒ ∪α∈Λ(A1α, A2α) ∈ η. There-
fore, ∪α∈Λ(A1α, A1α) ∈ ηl. Consequently, ηl is a double topology on X.
(2): Similarly to the proof of part (1). �

Theorem 3.7. Let (X, η) be a double topological space. Then (X, η) is an η-D-
compact ⇔ (X, ηl) is an ηl-D-compact.

Proof. Let (X, η) be an η-D-compact and let γ = {(G1α, G1α) : α ∈ Λ} ⊆ ηl be
an ηl-D-open cover of X, i.e. X = ∪α∈Λ(G1α, G1α). For each G1α there exists
G2α ∈ P (X) such that (Gα1

, Gα1
) ⊆ (Gα1

, Gα2
) ∈ η ⇒ X = ∪α∈Λ(G1α, G2α).

Hence the collection ζ = {(G1α, G2α) : α ∈ Λ} ⊆ η is an η-D-open cover of X, then

, by given, there exists a finite subcover ζ∗ = {(G1αi , G2αi) : i = 1, 2, 3, ..., n} ⊆ ζ
of X, i.e. X = ∪ni=1(G1αi , G2αi)⇒ X = ∪ni=1G1αi ⇒ X = ∪ni=1(G1αi , G1αi). Hence
(X, ηl) is an ηl-D-compact.
Conversely, let (X, ηl) be an ηl-D-compact and let γ = {(G1α, G2α) : α ∈ Λ} ⊆ η
be an η-D-compact, i.e. X = ∪α∈Λ(G1α, G2α). Then X = ∪α∈ΛG1α ⇒ X =
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∪α∈Λ(G1α, G1α). Hence the collection ζ = {(G1α, G1α) : α ∈ Λ} ⊆ ηl is an ηl-D-

open cover of X, then , by given, there exists a finite subcover ζ∗ = {(G1αi , G1αi) :
i = 1, 2, 3, ..., n} ⊆ ζ of X, i.e. X = ∪ni=1(G1αi , G1αi) ⇒ X = ∪ni=1(G1αi , G2αi).
Hence (X, η) is an η-D-compact. �

Corollary 3.8. Let (X, η) be a double topological space. Then (X, ηl) is an ηl-D-
compact ⇔ (X,π1) is a π1- compact.

Proof. It follows from Theorem 3.4 and Theorem 3.7. �

Theorem 3.9. Let (X, η) be a double topological space. Then (X, ηr) is an ηr-D-
compact ⇔ (X,π2) is a π2-compact.

Proof. Let (X, ηr) be an ηr-D-compact and let γ = {G2α : α ∈ Λ} ⊆ π2 be a π2-
open cover of X, i.e. X = ∪α∈ΛG2α. Then X = ∪α∈Λ(G2α, G2α). Therefore, the
collection γ = {(G2α, G2α) : G2α ∈ γ} ⊆ ηr is an ηr-D-open cover of X. Hence, by
given, there exists a finite subcover γ∗ = {(G2αi

, G2αi
) : i = 1, 2, 3, ..., n} ⊆ ηr of X,

i.e. X = ∪ni=1(G2αi , G2αi)⇒ X = ∪ni=1G2αi . Hence (X,π2) is a π2-compact.
Conversely, let (X,π2) be a π2-compact and let γ = {(G2α, G2α) : α ∈ Λ} ⊆ ηr
be an ηr-D-open cover of X, i.e. X = ∪α∈Λ(G2α, G2α). Then X = ∪α∈ΛG2α.
Therefore, the collection γ = {G2α : (G2α, G2α) ∈ γ} ⊆ π2 is a π2-open cover of X.
Hence, by given, there exists a finite subcover γ∗ = {G2αi : i = 1, 2, 3, ..., n} ⊆ γ
of X, i.e. X = ∪ni=1G2αi

⇒ X = ∪ni=1(G2αi
, G2αi

). it follows that (X, ηr) is an
ηr-D-compact. �

Theorem 3.10. Let (X, η) be a double topological space. Then (X, η) is a D-compact
⇒ (X,π∆) is a π∆- compact.

Proof. Straightforward. �

Theorem 3.11. Let (X, τ) be an ordinary topological space. Then (X, τ) is compact
⇔ (X, τ×̂τ) is D-compact.

Proof. Suppose that (X, τ) be a compact and let γ={Gα : α ∈ Λ} be a D-open cover
of X, i.e. X = ∪α∈ΛGα. Then, for each Gα in γ there exists G1α, G2α ∈ τ , G1α ⊆
G2α such that Gα = (G1α, G2α). So, the collection γ1(= {G1α : α ∈ Λ} ⊆ τ) is open
cover of X, i.e. X = ∪α∈ΛG1α. Since (X, τ) is compact, then there exists a finite
sub-collection γ∗1 (= {G1αi

: i = 1, 2, 3, ..., n}) of γ1 such that X = ∪ni=1G1αi
. Now,

G1αi
⊆ G2αi

⇒ ∪ni=1G1αi
⊆ ∪ni=1G2αi

. Therefore, X = (∪ni=1G1αi
,∪ni=1G2αi

) =
∪ni=1Gαi

. Hence (X, τ×̂τ) is D-compact.

Conversely, let (X, τ×̂τ) be a D-compact and let γ(= {Gα : α ∈ Λ} ⊆ τ) be an open
cover of X. Then the collection γ = {(Gα, Gα) : α ∈ Λ} ⊆ τ×̂τ is a D-open cover of
X. Therefore, there exists a finite sub-collection γ∗(= {(Gαi , Gαi) : i = 1, 2, 3, ..., n})
of γ such that X = ∪ni=1(Gαi , Gαi) which implies that X = ∪ni=1Gαi . Thus (X, τ)
is compact. �

Theorem 3.12. Every CD-compact space is a D-compact.

Proof. Straightforward. �
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Theorem 3.13. Let (X, η1), (X, η2) be two double topological spaces such that η2

is finer than η1. If (X, η2) is a D-compact, then (X, η1) is a D-compact.

Proof. Straightforward. �

Theorem 3.14. The D-continuous image of a D-compact space is a C-set.

Proof. Let (X, η1), (Y, η2) be two double topological spaces and let f be a D-
continuous function from X into Y . Let γ = {Dα : α ∈ Λ} ⊆ η2 be an arbi-

trary η2-D-open cover of f(X), i.e. f(X) ⊆ ∪α∈ΛDα. Then X ⊆ f−1(f(X)) ⊆
f−1(∪α∈ΛDα) ⊆ X, i.e. X = ∪α∈Λf

−1(Dα). Since Dα ∈ η2 and f is a D-continuous
function, then f−1(Dα) ∈ η1 ∀α ∈ Λ. Thus, the collection γ = {f−1(Dα) : α ∈
Λ} is an η1-D-open cover of X. But, (X, η1) is a D-compact, then, there exists
α1, α2, α3, ..., αn such that X = ∪ni=1f

−1(Dαi
)⇒ f(X) ⊆ ff−1(Dα1

)∪ff−1(Dα2
)∪

...∪ ff−1(Dαn
) ⊆ Dα1 ∪Dα2 ∪ ...∪Dαn . Consequently, f(X) is a C-set. More-over,

if f is onto, then (Y, η2) is a D-compact space. �

Definition 3.15. Let (X, η) be a double topological space . The collection A =
{Hα : α ∈ Λ} ⊆ D(X) is said to have the finite intersection property (FIP, for short)
if for every finite sub-collection {Hαi

: i = 1, 2, 3, ..., n} of A, we have ∩ni=1Hαi
6= φ.

Theorem 3.16. Let (X, η) be a double topological space. Then (X, η) is a D-compact
iff every collection {Fα : α ∈ Λ} of double closed sets with FIP , we have ∩α∈ΛFα 6=
φ.

Proof. Straightforward. �

Theorem 3.17. Let (X, η) be a double topological space. Then (X, η) is a D-compact
iff every collection A = {Fα : α ∈ Λ} of double closed sets such that ∩α∈ΛFα = φ,
there exists a finite sub-collection {Fαi

: i = 1, 2, 3, ..., n} of A such that ∩ni=1Fαi
=

φ.

Proof. Straightforward. �

Definition 3.18. Let I be a D-ideal on a double topological space (X, η). A D-open
cover γ(= {Gα : α ∈ Λ} ⊆ η) of X is said to be an I - cover of X if there exists a
finite sub-collection γ∗(= {Gαi

: i = 1, 2, 3, ..., n}) of γ such that X\ ∪ni=1 Gαi
∈ I.

Definition 3.19. Let I be a D-ideal on X. A double topological space (X, η) is
said to be an I-D-compact space if every D-open cover of X is an I - cover.

Theorem 3.20. Every D-compact space (X, η) is an I-D-compact for any D-ideal
I on X.

Proof. Straightforward. �

Corollary 3.21. Let (X, η) be a double topological space and let I ∈ DI(X). Then

(X, η∗(I)) is a D-compact ⇒ (X, η∗(I)) is an I - D-compact.

The converse of Theorem 3.20 may not be true in general as shown by the following
example.
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Example 3.22. Let X = R and let τN be the usual topology on R. Then, by
Theorem 3.11, (R, τN ×̂τN ) is not D-compact. Let xt ∈ Rp and let the collection
γ = {Gα : α ∈ Λ} ⊆ τN ×̂τN be a D-open cover of R, i.e. R = ∪α∈ΛGα. Since
xt ∈ Rp, then xt ∈ R = ∪α∈ΛGα. So there exist Gαo

∈ γ such that xt ∈ Gαo
⇒

xtqG
c
αo
⇒ R\Gαo

= Gcαo
∈ Iqxt

. Hence (R, τN ×̂τN ) is an Iqxt
-D-compact.

Theorem 3.23. Let X be uncountable set, τ∞ be the co-finite topology on X and
let Ic be the countable D-ideal on X. Then (τ∞×̂τ∞)∗(Ic) = τco×̂τco, where τco is
the co-countable topology on X.

Proof. Let G ∈ τco×̂τco. Then Gc is countable double set, so Gc ∈ Ic. Since
G = X\Gc, X ∈ τ∞×̂τ∞ and Gc ∈ Ic, then G ∈ β(τ∞×̂τ∞, Ic). It follows that G ∈
(τ∞×̂τ∞)∗. Hence τco×̂τco ⊆ (τ∞×̂τ∞)∗ Also, let G ∈ (τ∞×̂τ∞)∗. Since τ∞×̂τ∞
compatible with Ic[13], then (τ∞×̂τ∞)∗ = β(τ∞×̂τ∞, Ic), then there exists H ∈
τ∞×̂τ∞, A ∈ Ic such that G = H\A, and so Gc is countable double set. It follows
that G ∈ τco×̂τco. Hence (τ∞×̂τ∞)∗ ⊆ τco×̂τco. Consequently, (τ∞×̂τ∞)∗(Ic) =
τco×̂τco. �

The converse of Corollary 3.21 may not be true in general as shown by the fol-
lowing example.

Example 3.24. Let X be uncountable set, τ∞ be the co-finite topology on X
and let Ic be the countable double ideal. Then, by Theorem 3.11, (X, τ∞×̂τ∞)
is a D-compact. By Theorem 3.23, (X, (τ∞×̂τ∞)∗(Ic)) = (X, τco×̂τco) which is
not D-compact. On the other hand, let γ = {Gα : α ∈ Λ} ⊆ (τ∞×̂τ∞)∗(Ic) =

β(τ∞×̂τ∞, Ic) such that X = ∪α∈ΛGα. Then X = ∪α∈Λ(Hα\Aα) where Hα ∈
τ∞×̂τ∞ and Aα ∈ Ic, and so the collection ζ = {Hα : α ∈ Λ} ⊆ τ∞×̂τ∞ is a D-open
cover of X, but (X, τ∞×̂τ∞) is Ic-D-compact, then there exists a finite sub-collection
ζ∗ = {Hαi

: i = 1, 2, 3, ..., n} ⊆ ζ such that X\∪ni=1Hαi
∈ Ic. Now, ∀Hαi

∃Aαi
∈ Ic

such that Gαi
= Hαi

\Aαi
⇒ X\∪ni=1Gαi

= (X\∪ni=1Hαi
)∪(∩ni=1Aαi

) ∈ Ic. Hence

X\∪ni=1Gαi
∈ Ic. Therefore, (X, τ∞×̂τ∞)∗(Ic)) = (X, τco×̂τco) is an Ic-D-compact.

Theorem 3.25. A double topological space (X, η) is D-compact if and only if it’s
{φ}-D-compact.

Proof. Straightforward. �

Theorem 3.26. Let (X, η1), (X, η2) be two double topological spaces such that η2

is finer than η1. If (X, η2) is an I-D-compact, then (X, η1) is an I - D-compact.

Proof. Straightforward. �

The converse of The above Theorem may not be true in general as shown by the
following example.

Example 3.27. Let X be uncountable set. Then the co-finite double topology
τ∞×̂τ∞ induced by τ∞ on X is finer than the co-countable double topology τco×̂τco
induced by τco on X, however, (X, τ∞×̂τ∞) is {φ}-D-compact, but (X, τco×̂τco) is
not {φ}-D-compact.

Theorem 3.28. Let (X, η) be a double topological space and let I ∈ DI(X). If
(X, η∗(I)) is a D-compact, then (X, η) is I-D-compact.
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Proof. It follows from Theorem 3.20 and Theorem 3.26. �

Theorem 3.29. Let (X, η) be a double topological space and let I ∈ DI(X). Then
(X, η) is an I - D-compact if and only if (X, η∗(I)) is an I - D-compact.

Proof. Let γ={Gα : α ∈ Λ} be a basic η∗-D-open cover of X. Then for each
α ∈ Λ, Gα = Hα\Aα where Hα ∈ η and Aα ∈ I. Therefore, the collection Ω =
{Hα : α ∈ Λ} is a η-D-open cover of X. Hence there exist a finite sub-collection
Ω0 = {Hαi

: i = 1, 2, 3, ..., n} of Ω such that X\∪ni=1Hαi
∈ I. Now, X\∪ni=1Gαi

=
X\∪ni=1(Hαi

\Aαi
) = (X\∪ni=1Hαi

)∪(∩ni=1Aαi
) ∈ I (for Aαi

∈ I). Thus, (X, η∗(I))
is an I-D-compact.
Conversely, the sufficiency of the Theorem follows from Theorem 3.26. �

Theorem 3.30. Let (X, η) be a double topological space and I ∈ DI(X). Then

(X, η) is I-D-compact ⇒ (X,π1) is an I2-compact.

Proof. Let (X, η) be an I-D-compact and let γ1(= {G1α : α ∈ Λ} ⊆ π1) be a π1-
open cover of X i.e. X = ∪α∈ΛG1α. Then the family γ = {(G1α, G2α) : G2α ∈
π2, α ∈ Λ} ⊆ η is D-open cover of X. Hence there exists a finite sub-collection
γ∗ = {(G1αi , G2αi) : i = 1, 2, 3, ..., n} ⊆ γ such that X\ ∪ni=1 (G1αi , G2αi) ∈ I, and

so X\ ∪ni=1 G1αi
∈ I2. Thus (X,π1) is I2-compact. �

Theorem 3.31. Let (X, η) be a double topological space and I ∈ DI(X). If
(X, η∗(I)) is I-D-compact, then (X,π∗1) is an I2 - compact. Where π∗1 = {A1 :
(A1, A2) ∈ η∗}.

Proof. Similarly to the proof of Theorem 3.30. �

Corollary 3.32. Let (X, η) double topological space and I ∈ DI(X). The following
implication diagram holds :

(X, η∗(I)) is D-compact⇒ (X, η) is D-compact⇔ it’s {φ} -D-compact

⇓ ⇓
(X, η∗(I)) is I-D-compact ⇔ (X, η) is I - D-compact

⇓ ⇓
(X,π∗1) is an I2 - compact ⇒ (X,π1) is an I2-compact

Theorem 3.33. Let (X, τ) be an ordinary topological space and let I be an ideal on
X. Then

(X, τ) is an I-compact ⇔ (X, τ×̂τ) is an I×̂I-D-compact.

Proof. Suppose that (X, τ) be an I - compact and let γ={Gα : α ∈ Λ} be an τ×̂τ -D-
open cover of X, i.e. X = ∪α∈ΛGα. Then for each Gα in γ there exists G1α, G2α ∈ τ ,
G1α ⊆ G2α such that Gα = (G1α, G2α). So, the collection γ1 = {G1α : α ∈ Λ} ⊆ τ
is a τ - open cover of X, i.e. X = ∪α∈ΛG1α. Since (X, τ) is an I - compact,
then there exists a finite sub-collection γ∗1 = {G1αi : i = 1, 2, 3, ..., n} of γ1 such
that X\ ∪ni=1 G1αi ∈ I. Now, G1αi ⊆ G2αi ⇒ X\ ∪ni=1 G2αi ⊆ X\ ∪ni=1 G1αi ∈
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I ⇒ X\ ∪ni=1 G2αi ∈ I. Therefore, (X\ ∪ni=1 G2αi , X\ ∪ni=1 G1αi) ∈ I×̂I. Hence
X\ ∪ni=1 Gαi

∈ I×̂I. Consequently, (X, τ×̂τ) is an I×̂I - D-compact.

Conversely, let (X, τ×̂τ) be an I×̂I-D-compact and let γ = {Gα : α ∈ Λ} ⊆ τ be
an open cover of X. Then the collection γ = {(Gα, Gα) : α ∈ Λ} ⊆ τ×̂τ is D-
open cover of X, therefore there exists a finite sub-collection γ∗(= {(Gαi

, Gαi
) : i =

1, 2, 3, ..., n}) of γ such that X\∪ni=1Gαi
∈ I×̂I which implies that X\∪ni=1Gαi ∈ I.

Thus (X, τ) is an I - compact. �

Definition 3.34. Let I be a D-ideal on a double topological space (X, η). The
collection A = {Hα : α ∈ Λ} ⊆ D(X) is said to have the finite intersection property
modulo D-ideal I, denoted by I − FIP , if for every finite sub-collection {Hαi

: i =
1, 2, 3, ..., n} of A, we have ∩ni=1Hαi

6∈ I.

Theorem 3.35. Let (X, η) be a double topological space and I ∈ DI(X). Then
(X, η) is an I-D-compact iff every collection {Fα : α ∈ Λ} of double closed sets with
I − FIP , we have ∩α∈ΛFα 6= φ.

Proof. Let (X, η) be an I-D-compact, and let A = {Fα : α ∈ Λ} ⊆ ηc having
I − FIP i.e. ∩ni=1Fαi

6∈ I ∀n ∈ N . Assume that ∩α∈ΛFα = φ. Then X =
∪α∈ΛF

c
α ⇒ the collection A∗ = {F cα : Fα ∈ A} is D-open cover of X. But, (X, η) is

an I-D-compact, then there exists a finite sub-collection {F cαi
: i = 1, 2, 3, ..., n} of

A∗ such that X\ ∪ni=1 F
c
αi
∈ I which implies that ∩ni=1Fαi

∈ I a contradiction.
Conversely, suppose that for every collection {Fα : α ∈ Λ} of double closed sets
with I − FIP , we have ∩α∈ΛFα 6= φ. Assume that (X, η) is not I-D-compact.
Then there exists a D-open cover γ = {Gα : α ∈ Λ} of X such that for any finite
sub-collection {Gαi

: i = 1, 2, 3, ..., n} of γ, X\ ∪ni=1 Gαi
6∈ I which implies that

∩ni=1G
c
αi
6∈ I. Thus, the collection {Gcα : α ∈ Λ} ⊆ ηc and has I − FIP , and so

∩α∈ΛG
c
α 6= φ contradicts with X = ∪α∈ΛGα. Hence (X, η) is an I-D-compact. �

Theorem 3.36. Let (X, η) be a double topological space and I ∈ DI(X). Then
(X, η) is an I-D-compact iff every collection A = {Fα : α ∈ Λ} of double closed sets
such that ∩α∈ΛFα = φ, there exists a finite sub-collection {Fαi

: i = 1, 2, 3, ..., n} of
A such that ∩ni=1Fαi

∈ I.

Proof. Straightforward. �

4. Double Quasi H-Closed (DQHC) modulo double ideal

In this section, we introduce and study the idea of double quasi H-closed, defined
in terms of a D-ideal in a double topological space (X, η). Calling it I-DQHC, we
investigate its relation with compactness, among other things.

Definition 4.1. A double topological space (X, η) is said to be a double quasi H
- closed (DQHC, for short) if every D-open cover γ(= {Gα : α ∈ Λ} ⊆ η) of X
there exists a finite sub-collection γ∗(= {Gαi

: i = 1, 2, 3, ..., n}) of γ such that
X = ∪ni=1clηGαi

. In this case the collection γ∗(= {Gαi
: i = 1, 2, 3, ..., n}) is called a

D-proximate cover of X. A double Hausdorff quasi H - closed space is called double
H - closed (DHC, for short).
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Theorem 4.2. Let (X, τ) be an ordinary topological space. Then (X, τ) is QHC if
and only if (X, τ×̂τ) is DQHC.

Proof. Let (X, τ) be a QHC and let γ={Gα : α ∈ Λ} be an τ×̂τ - double open
cover of X, i.e. X = ∪α∈ΛGα. Then, for each Gα in γ there exists G1α, G2α ∈ τ ,
G1α ⊆ G2α such that Gα = (G1α, G2α). So, the collection γ1(= {G1α : α ∈ Λ} ⊆ τ)
is a τ - open cover of X, i.e. X = ∪α∈ΛG1α. Since (X, τ) is QHC, there ex-
ists a finite sub-collection γ∗1 (= {G1i : i = 1, 2, 3, ..., n}) of γ1 such that X =
∪ni=1clτG1αi

. Now, since G1αi
⊆ G2αi

, then ∪ni=1clτG1αi
⊆ ∪ni=1clτG2αi

. There-
fore, X = ∪ni=1(clτG1αi

, clτG2αi
) = ∪ni=1clτ×̂τGαi

(by Theorem ??). Consequently,

(X, τ×̂τ) is DQHC.
Conversely, let (X, τ×̂τ) be a DQHC and let γ(= {Gα : α ∈ Λ} ⊆ τ) be an open
cover of X. Then the collection γ = {(Gα, Gα) : α ∈ Λ} ⊆ τ×̂τ is a D-open cove
of X. So, there exists a finite sub-collection γ∗(= {(Gαi

, Gαi
) : i = 1, 2, 3, ..., n})

of γ such that X = ∪ni=1clτ×̂τ (Gαi
, Gαi

) = ∪ni=1(clτGαi
, clτGαi

) which implies that
X = ∪ni=1clτGαi

. Thus (X, τ) is QHC. �

Theorem 4.3. Every D-compact space (X, η) is DQHC.

Proof. Straightforward. �

Theorem 4.4. Let (X, η1), (X, η2) be two double topological spaces such that η2 is
finer than η1. If (X, η2) is a DQHC, then (X, η1) is a DQHC.

Proof. Straightforward. �

Definition 4.5. Let (X, η) be a double topological space and I ∈ DI(X). A D-open
cover γ(= {Gα : α ∈ Λ} ⊆ η) of X is said to be an I - proximate cover of X (I -
pcover, for short) if there exists a finite sub-collection γ∗(= {Gαi

: i = 1, 2, 3, ..., n})
of γ such that X\ ∪ni=1 clη(Gαi

) ∈ I.

Definition 4.6. Let I be a D-ideal on X. A double topological space (X, η) is said
to be an I - DQHC if every D-open cover of X is an I - pcover.

Theorem 4.7. Every DQHC space (X, η) is an I - DQHC for any D-ideal I on X.

Proof. Straightforward. �

Corollary 4.8. Let (X, η) be a double topological space and let I ∈ DI(X). Then

(X, η∗(I)) is a DQHC ⇒ (X, η∗(I)) is an I-DQHC.

Theorem 4.9. Every I-D-compact space (X, η) is I-DQHC.

Proof. Straightforward. �

Theorem 4.10. A double topological space (X, η) is DQHC if and only if it’s {φ}
- DQHC.

Proof. Straightforward. �

Theorem 4.11. Let (X, η1), (X, η2) be two double topological spaces such that η2

is finer than η1. If (X, η2) is an I-DQHC, then (X, η1) is an I-DQHC.

Proof. Straightforward. �
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Theorem 4.12. Let (X, η) be a double topological space and let I ∈ DI(X). If
(X, η∗(I)) is a DQHC, then (X, η) is I - DQHC.

Proof. It follows from Theorem 4.7 and Theorem 4.11. �

On account to Theorems 4.4, 4.7, 4.10, 4.11 and Theorem 4.12 we have the
following corollary.

Corollary 4.13. Let (X, η) double topological space and I ∈ DI(X). The following
implication diagram holds :

(X, η∗(I)) is DQHC⇒ (X, η) is DQHC⇔ it is{φ} it is-DQHC

⇓ ⇓
(X, η∗(I)) is I-DQHC ⇒ (X, η) is I-DQHC

Theorem 4.14. Let (X, η) be a double topological space and I ∈ DI(X). The
following statements are equivalent:

(1) (X, η) is an I-DQHC.
(2) For every collection A = {Fα : α ∈ Λ} of double closed sets such that
∩α∈ΛFα = φ, there exists a finite sub-collection {Fαi

: i = 1, 2, 3, ..., n} of
A such that ∩ni=1intη(Fαi

) ∈ I.
(3) every collection A = {Fα : α ∈ Λ} of double closed sets such that {intη(Fα) :

Fα ∈ A} with I − FIP , we have ∩α∈ΛFα 6= φ.

Proof. (1)⇒ (2): Let (X, η) be an I-DQHC and letA be a collection of double closed
sets with ∩α∈Λ{Fα : Fα ∈ A} = φ. Then the collection {F cα : Fα ∈ A} is a D-open
cover of X, and hence there exists a finite sub-collection {F ci : i = 1, 2, 3, ..., n} of A
such that X\ ∪ni=1 clη(F ci ) ∈ I which implies that ∩ni=1intη(F i) ∈ I.
(2)⇔ (3): It is obvious.
(2) ⇒ (1): Let γ = {Gα : α ∈ Λ} be a D-open cover of X i.e. X = ∪α∈ΛGα. Then
the collection A = {Gcα : α ∈ Λ} ⊆ ηc with ∩α∈ΛG

c
α = φ, and hence there exist a

finite sub-collection {Gcαi
: i = 1, 2, 3, ..., n} of A such that ∩ni=1intη(Gcαi

) ∈ I which
implies that X\ ∪ni=1 clη(Gαi

) ∈ I. Hence (X, η) is an I-DQHC. �

5. The relation between the compactness modulo double ideal and
the DQHC

In this section, we try to associate the notion of double quasi H - closedness with
that of I - double compactness.

Definition 5.1. A double ideal I on a double topological space (X, η) is said to
be a codense with respect to η if the complement of each of its member is a double
dense.

Theorem 5.2. Let I be a D-ideal on a double topological space (X, η). Then
I is a codense ⇔ η ∩ I = {φ}.
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Proof. Let I be a codence with respect to η. Let A ∈ η ∩ I. Then Ac ∈ ηc

and clη(Ac) = X. But, clη(Ac) = Ac, hence Ac = X which implies that A = φ.
Consequently, η ∩ I = {φ}.
Conversely, let η ∩ I = {φ} and assume that there exists A ∈ I such that Ac is not
dense. Then clη(Ac) 6= X. So, (clηA

c)c 6= φ⇒ intη(A) 6= φ. Since, intηA ⊆ A ∈ I,
then intη(A) ∈ I, intη(A) ∈ η ⇒ intη(A) = φ which is a contradiction. �

Theorem 5.3. Let (X, η) be a double topological space. Then η ∩ In = {φ}, where
In is the double ideal of all nowhere dense double sets in (X, η).

Proof. Let G ∈ η ∩ In. Then, intη(G) = G and intηclη(G) = φ. Since, intη(G) ⊆
intηclη(G), then intη(G) = φ, and so G = φ. Hence η ∩ In = {φ}. �

Theorem 5.4. Let I be a D-ideal on a double topological space (X, η). If (X, η) is
an I - D-compact and η ∩ I = {φ}, then (X, η) is DQHC.

Proof. Let (X, η) be an I - D-compact and let γ(= {Gα : α ∈ Λ} ⊆ η) be a D-open
cover of X i.e. X = ∪α∈ΛGα. Then there exists Gα1

, Gα2
, ..., Gαn

∈ γ such that
X\ ∪ni=1 Gαi

∈ I. Thus, intη(X\ ∪ni=1 Gαi
) ∈ I ∩ η = {φ} ⇒ intη(X\ ∪ni=1 Gαi

) =
φ⇒ (intη(X\ ∪ni=1 Gαi

))c = X ⇒ X = ∪ni=1clηGαi
. Hence (X, η) is a DQHC. �

Theorem 5.5. Let I be a D-ideal on a double topological space (X, η). If (X, η) is
a DQHC, In ⊆ I, then (X, η) is an I - D-compact.

Proof. Let (X, η) be a DQHC, In ⊆ I and let γ(= {Gα : α ∈ Λ} ⊆ η) be a D-open
cover of X i.e. X = ∪α∈ΛGα. Then, there exists Gα1

, Gα2
, ..., Gαn

∈ γ such that
X\∪ni=1 clηGαi

= φ. We claim that X\∪ni=1Gαi
∈ In. In fact, X\∪ni=1Gαi

6∈ In ⇒
intηclη(X\∪ni=1Gαi

) 6= φ. But, X\∪ni=1Gαi
∈ ηc, then clη(X\∪ni=1Gαi

) = X\∪ni=1

Gαi
and so intη(X\ ∪ni=1 Gαi

) 6= φ. Hence X\ ∪ni=1 clηGαi
6= φ, a contradiction.

Therefore X\ ∪ni=1 Gαi
∈ In ⊆ I. Consequently, (X, η) is an I - D-compact. �

Corollary 5.6. Let (X, η) be any double topological space. Then
(1) (X, η) is an In - D-compact ⇔ it’s DQHC.
(2) If (X, η) is a double Hausdorff space, then (X, η) is an In - D-compact ⇔ it’s
DHC.

Proof. It follows from Theorem 5.3 and Theorem 5.5. �

Definition 5.7. Let (X, η) be a double topological space. A double set A is said to
be a DC-set if for every D-open cover γ(= {Gα : α ∈ Λ} ⊆ η) of A, there exists a
finite sub-collection {Gα1

, Gα2
, Gα3

, ..., Gαn
} of γ such that A ⊆ ∪ni=1clη(Gαi

).

Definition 5.8. A double topological space (X, η) is said to be a DC-compact if
every double closed set is a DC-set.

Theorem 5.9. Every DC-compact space is a DQHC.

Proof. Straightforward. �

Theorem 5.10. Every CD-compact space is a DC-compact.

Proof. Straightforward. �
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Theorem 5.11. Let (X, τ) be an ordinary topological space. Then
(X, τ) is a C-compact ⇔ (X, τ×̂τ) is a DC-compact.

Proof. Straightforward. �

Definition 5.12. Let I be a D-ideal on a double topological space (X, η). A double
topological space (X, η) is said to be I-DC-compact if for every crisp double closed
set F and every D-open cover γ(= {Gα : α ∈ Λ} ⊆ η) of F , there exists a finite
sub-collection {Gα1

, Gα2
, Gα3

, ..., Gαn
} of γ such that F\ ∪ni=1 clη(Gαi

) ∈ I.

Theorem 5.13. Every DC-compact space is an I+-DC-compact.

Proof. Straightforward. �

On account of Theorems 3.12, 3.20, 4.3, 4.9, 4.7, 5.10, 5.9 and Theorem 5.13 , we
have the following Corollary.

Corollary 5.14. Let (X, η) be a double topological space and let I ∈ DI(X). Then
the following diagram is hold:

CD-compact ⇒ D-compact ⇒ I - D-compact

⇓ ⇓ ⇓
DC-compact ⇒ DQHC ⇒ I-DQHC

⇓
I+-DC-compact
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