Annals of Fuzzy Mathematics and Informatics Volume 10, No. 1, (July 2015), pp. 77–85 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On intuitionistic fuzzy ψ closed sets

M. PARIMALA, C. INDIRANI, A. SELVAKUMAR

Received 8 August 2014; Revised 21 September 2014; Accepted 21 October 2014

ABSTRACT. This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper we discuss the notion of intuitionistic fuzzy ψ closed sets and derive some of its properties.

2010 AMS Classification: 03F55, 54A40, 54A10, 54A20

Keywords: Intuitionistic fuzzy topology, Intuitionistic fuzzy ψ -closed sets, Intuitionistic fuzzy ψ - $T_{1/2}$ space and Intuitionistic fuzzy ψ - T_R space.

Corresponding Author: A.Selvakumar (selvam_mphil@yahoo.com)

1. INTRODUCTION

L'uzzy set as proposed by Zadeh [12] in 1965, is a framework to encounter uncertainty, vagueness and partial truth and it represents a degree of membership for each member of the universe of discourse to a subset of it. By adding the degree of non-membership to fuzzy set, Atanassov [1] proposed intuitionistic fuzzy set in 1986 which appeals more accurate to uncertainty quantification and provides the opportunity to precisely model the problem, based on the existing knowledge and observations. Coker [2] introduced the concept of intuitionistic fuzzy topological space in 1997. In 2008, Thakur and Chaturvedi [9] extended the concepts of fuzzy g-closed sets and fuzzy g-continuity in intuitionistic fuzzy topological spaces. In this paper, we discuss the notion of intuitionistic fuzzy ψ -transfer fuzzy

2. Preliminaries

Let X be a nonempty fixed set. An intuitionistic fuzzy set [1] A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$, where the functions μ_A : $A \to [0,1]$ and $\nu_A : A \to [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of nonmembership $\nu_A(x)$ of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. The intuitionistic fuzzy sets $0_{\sim} = \{\langle x, 0, 1 \rangle :$ $x \in X$ and $1_{\sim} = \{\langle x, 1, 0 \rangle : x \in X\}$ are respectively called empty and whole intuitionistic fuzzy set on X. An intuitionistic fuzzy set $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle$: $x \in X$ is called a subset of an intuitionistic fuzzy set $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle$: $x \in X$ (for short $A \subseteq B$) if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for each $x \in X$. The complement of an intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ is the intuitionistic fuzzy set $A^c = \{\langle x, \nu_A(x), \mu_A(x) \rangle : x \in X\}$. The intersection (respectively union) of any arbitrary family of intuitionistic fuzzy sets of X are the intuitionistic fuzzy set $A_i = \{ \langle x, \mu_{A_i}(x), \nu_{A_i}(x) \rangle : x \in X, i \in \Lambda \}$ of X are the intuitionistic fuzzy set $\cap A_i = \{ \langle x, \wedge \mu_{A_i}(x), \vee \nu_{A_i}(x) \rangle : x \in X, i \in \Lambda \}$ (resp. $\cup A_i = \{ \langle x, \lor \mu_{A_i}(x), \land \nu_{A_i}(x) \rangle : x \in X, i \in \Lambda \}$. Two intuitionistic fuzzy sets A = $\{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle : x \in X\}$ are said to be q-coincident (AqB for short) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$. A family τ of intuitionistic fuzzy sets on a nonempty set X is called an intuitionistic fuzzy topology [2] on X if the intuitionistic fuzzy sets 0_{\sim} and $1_{\sim} \in \tau$ and τ is closed under arbitrary union and finite intersection. The ordered pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and each intuitionistic fuzzy set in τ is called an intuitionistic fuzzy open set. The complement of an intuitionistic fuzzy open set in X is known as intuitionistic fuzzy closed set. The intersection of all intuitionistic fuzzy closed sets containing A is called the closure of A, which is denoted by cl(A). The union of all intuitionistic fuzzy open subsets of A is called the interior of A. It is denoted by int(A) [2].

Lemma 2.1 ([2]). Let A and B be any two intuitionistic fuzzy sets of an intuitionistic fuzzy topological space (X, τ) . Then

- (1) $\neg(AqB) \Rightarrow A \subseteq B^c$.
- (2) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl(A) = A$.
- (3) A is an intuitionistic fuzzy open set in $X \Leftrightarrow int(A) = A$.
- (4) $cl(A^c) = (int(A))^c$.
- (5) $int(A^c) = (cl(A))^c$.
- (6) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$.
- (7) $A \subseteq B \Rightarrow cl(A) \subseteq cl(B).$
- (8) $cl(A \cup B) = cl(A) \cup cl(B).$
- (9) $int(A \cap B) = int(A) \cap int(B)$.

Definition 2.2 ([3]). Let X be a nonempty set and $c \in X$ is a fixed element. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $\alpha + \beta \leq 1$, then $c(\alpha, \beta) = \langle x, \alpha, 1 - \beta \rangle$ is called an intuitionistic fuzzy point in X, where α denotes the degree of membership of $c(\alpha, \beta)$ and β denotes the degree of nonmembership of $c(\alpha, \beta)$.

Definition 2.3. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is called an

- (a) intuitionistic fuzzy pre open set [5] (IFPOS in short) if $A \subseteq int(cl(A))$.
- (b) intuitionistic fuzzy regular open set [5] (IFROS in short) if A = int(cl(A)).
- (c) intuitionistic fuzzy α -open set [5] (IF α OS in short) if $A \subseteq int(cl(int(A)))$.
- (d) intuitionistic fuzzy semi open set [5] (IFSOS in short) if $A \subseteq cl(int(A))$.
- (e) intuitionistic fuzzy semi-preopen set [11] (IFSPOS in short) if there exists an intuitionistic fuzzy preopen set B such that $B \subseteq A \subseteq cl(B)$.

An IFS A is called an intuitionistic fuzzy semi closed set, intuitionistic fuzzy α closed set, intuitionistic fuzzy pre-closed set, intuitionistic fuzzy regular closed set, intuitionistic fuzzy semi pre-closed set (IFSCS, IF α CS, IFPCS, IFRCS and IFSPCS resp.), if the complement A^c is an IFSOS, IF α OS, IFPOS, IFROS and IFSPOS respectively.

Definition 2.4. If A is an intuitionistic fuzzy set in intuitionistic fuzzy topological space (X, τ) , then

- (a) $\operatorname{scl}(A) = \bigcap \{F : A \subseteq F, F \text{ is intuitionistic fuzzy semi-closed set} \}$ [5].
- (b) $\operatorname{sint}(A) = \bigcup \{F : A \supseteq F, F \text{ is intuitionistic fuzzy semi-open set} \}$ [5].
- (c) $\alpha cl(A) = \cap \{F : A \subseteq F, F \text{ is intuitionistic fuzzy } \alpha \text{-closed set} \}$ [5].
- (d) $pcl(A) = \cap \{F : A \subseteq F, F \text{ is intuitionistic fuzzy pre-closed set} \}$ [5].
- (e) $\operatorname{spcl}(A) = \bigcap \{F : A \subseteq F, F \text{ is intuitionistic fuzzy semi pre-closed set} \}$ [11].

Definition 2.5. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is called an

- (a) intuitionistic fuzzy sg-closed (IFSGCS in short) [6] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy semi open in X.
- (b) intuitionistic fuzzy gs-closed (IFGSCS in short) [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy semi open in X.
- (c) intuitionistic fuzzy gsp-closed (IFGSPCS in short) [7] if $\operatorname{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy open in X.

An IFS A is called an intuitionistic fuzzy sg-open set, intuitionistic fuzzy gs-open set and intuitionistic fuzzy gsp-open set (IFSGOS, IFGSOS and IFGSPOS resp.), if the complement A^c is an IFSGCS, IFGSCS and IFGSPCS respectively.

Definition 2.6 ([6]). An intuitionistic fuzzy topological space (X, τ) is said to be an intuitionistic fuzzy semi- $T_{1/2}$ space if every IFSGCS in X is an IFSCS in X.

Definition 2.7 ([8]). An intuitionistic fuzzy topological space (X, τ) is said to be an intuitionistic fuzzy $_{c}T_{1/2}$ space if every IFGSCS in X is an IFCS in X.

Definition 2.8 ([10]). Two intuitionistic fuzzy sets A and B in an intuitionistic fuzzy topological space (X, τ) are called q-separated if $cl(A) \cap B = 0_{\sim} = A \cap cl(B)$.

3. Properties of Intuitionistic Fuzzy ψ closed sets

In this section, we derive some properties of intuitionistic fuzzy ψ closed sets.

Definition 3.1. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is said to be an

(a) intuitionistic fuzzy ψ closed set (IF ψ CS in short) [4] if scl(A) $\subseteq U$ whenever $A \subseteq U$ and U is IFSGOS in X.

(b) intuitionistic fuzzy $\alpha \psi$ closed set (IF $\alpha \psi$ CS in short) [4] if ψ cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is IF α OS in X.

An IFS A is called an intuitionistic fuzzy ψ -open set and intuitionistic fuzzy $\alpha\psi$ -open set (IF ψ OS and IF $\alpha\psi$ OS resp.), if the complement A^c is an IF ψ CS and IF $\alpha\psi$ CS respectively.

Example 3.2. Let $X = \{a, b\}$ and $V = \langle x, (0.3, 0.4), (0.2, 0.5) \rangle$. Then $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X is and the IFS $A = \langle x, (0.1, 0.4), (0.6, 0.5) \rangle$ is an IF ψ CS in (X, τ) .

Theorem 3.3. Let (X, τ) be an intuitionistic fuzzy topological space. Then the following are hold:

- (a) Every IFCS in X is an $IF\psi CS$ in X.
- (b) Every IFRCS in X is an $IF\psi CS$ in X.
- (c) Every $IF\alpha CS$ and hence IFSCS in X is an $IF\psi CS$ in X.
- (d) Every $IF\psi CS$ in X is an IFSPCSin X.
- (e) Every $IF\psi CS$ in X is an IFGSPCS in X.
- (f) Every $IF\psi CS$ in X is an IFGSCS and hence IFSGCS in X.
- (g) Every $IF\psi CS$ in X is an $IF\alpha\psi CS$ in X.

Proof. Let (X, τ) be an intuitionistic fuzzy topological space.

- (a) It is obvious.
- (b) It follows from the fact that every IFRCS is an IFCS in X.
- (c) Let A be an IF α CS and hence IFSCS in X. Let $A \subseteq U$ and U is an IFSGOS in X. By hypothesis scl(A) = A, hence scl $(A) \subseteq U$. Therefore A is an IF ψ CS in X.
- (d) It is obvious.
- (e) Let A be an IF ψ CS in X. Let $A \subseteq U$ and U is an IFOS in X and hence U is an IFSOS in X. Since A is an IF ψ CS, scl $(A) \subseteq U$ which implies spcl $(A) \subseteq U$. Therefore A is an IFGSPCS in X.
- (f) Let A be an IF ψ CS in X. Let $A \subseteq U$ and U is an IFOS in X and hence U is an IFSOS in X. Since A is an IF ψ CS, scl $(A) \subseteq U$. Therefore A is an IFGSCS and hence IFSGCS in X.
- (g) Let A be an IF ψ CS in X. Let $A \subseteq U$ and U is an IF α OS in X and hence U is an IFSOS in X. Since A is an IF ψ CS, scl $(A) \subseteq U$ which implies ψ cl $(A) \subseteq U$. Therefore A is an IF $\alpha\psi$ CS in X.

The converse of the above theorem need not be true as shown by the following examples. $\hfill \Box$

Example 3.4. Let (X, τ) be an intuitionistic fuzzy topological space.

- (a) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.4, 0.3), (0.5, 0.3) \rangle$. Let $A = \langle x, (0.5, 0.3), (0.5, 0.7) \rangle$ be any IFS in X. Here $\operatorname{scl}(A) \subseteq V$, whenever $A \subseteq V$ for all IFSGOS V in X. Therefore A is IF ψ CS in X, since $\operatorname{cl}(A) = V^c \neq A$.
- (b) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.2, 0.2), (0.4, 0.5) \rangle$. Take $A = \langle x, (0.1, 0.1), (0.5, 0.5) \rangle$ be any IFS in X. Clearly scl $(A) \subseteq V$ whenever $A \subseteq V$ for all IFSGOS V in X. Therefore A is an IF ψ CS, but not an IFRCS in X.

- (c) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.2, 0.2), (0.4, 0.5) \rangle$. Take $A = \langle x, (0.1, 0.1), (0.5, 0.5) \rangle$ be any IFS in X. Here $\operatorname{scl}(A) = V$, clearly $\operatorname{scl}(A) \subseteq V$ whenever $A \subseteq V$ for all IFSGOS V in X. Therefore A is an IF ψ CS, but not IFSCS and hence IF α CS in X, since $\operatorname{scl}(A) \not\subseteq A$.
- (d) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.5, 0.5), (0.3, 0.2) \rangle$. Let $A = \langle x, (0.5, 0.5), (0.3, 0.3) \rangle$ be any IFS in X. Clearly $\operatorname{scl}(A) \subseteq V$ whenever $A \subseteq V$ for all IFSGOS V in X. Therefore A is an IF ψ CS, but not IFSPCS in X, since $\operatorname{spcl}(A) \not\subseteq A$.
- (e) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Take $A = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$ be any IFS in X. Here IFOS $V_1 = \langle x, (0.7, 0.6), (0.3, 0.2) \rangle$, clearly $A \subseteq V_1$. Therefore A is an IFGSPCS in X, but not IF ψ CS in X, since scl $(A) \notin V_1$.
- (f) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Take $A = \langle x, (0.6, 0.6), (0.2, 0.2) \rangle$ be any IFS in X. Here IFOS $V_1 = \langle x, (0.7, 0.6), (0.2, 0.2) \rangle$, clearly $A \subseteq V_1$. Therefore A is an IFGSCS and hence IFSGCS in X, but not IF ψ CS in X, since scl $(A) \notin V_1$.
- (g) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Take $A = \langle x, (0.6, 0.6), (0.2, 0.2) \rangle$ be any IFS in X. Here IF α OS $V_1 = \langle x, (0.7, 0.6), (0.2, 0.2) \rangle$, clearly ψ cl $(A) \subseteq V_1$. Therefore A is an IF $\alpha\psi$ CS in X, but not IF ψ CS in X, since scl $(A) \notin V_1$.

Remark 3.5. The concepts of IFP closedness and $IF\psi$ closedness are independent of each other as seen from the following two examples.

Example 3.6. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Take $A = \langle x, (0.5, 0.4), (0.3, 0.4) \rangle$ be any IFS in X. Here the only IFSOS are $V_1 = \{0_{\sim}, 1_{\sim}, V\}$. Therefore A is an IFPCS in X, but not IF ψ CS in X, since scl $(A) \notin V_1$.

Example 3.7. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.6, 0.5), (0.3, 0.4) \rangle$. Take $A = \langle x, (0.6, 0.6), (0.2, 0.2) \rangle$ be any IFS in X.Clearly $\operatorname{scl}(A) \subseteq V$ whenever $A \subseteq V$ for all IFSGOS V in X. Therefore A is an IF ψ CS, but not IFPCS in X, since $\operatorname{pcl}(A) \not\subseteq A$.

Remark 3.8. The union of any two IF ψ CS's need not be an IF ψ CS in general as seen from the following example.

Example 3.9. Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.5, 0.7), (0.4, 0.3) \rangle$. Here $A = \langle x, (0.2, 0.7), (0.8, 0.3) \rangle$ and $B = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$ are IF ψ CS's in X, but $A \cup B$ is not an IF ψ CS in X.

Remark 3.10. From the Theorem 3.3 and Example 3.4, we have the following diagram of implication.

$$\begin{array}{rrrr} \mathbf{IF}\alpha CS & \rightarrow & \mathbf{IFSCS} \rightarrow \mathbf{IFGSCS} \\ & \uparrow & \searrow & \downarrow & \nearrow & \downarrow \\ \mathbf{IFRCS} & \rightarrow & \mathbf{IF}\psi \mathbf{CS} \rightarrow \mathbf{IFSGCS} \\ & \downarrow & \swarrow & \downarrow & \downarrow \\ \mathbf{IF}\alpha\psi \mathbf{CS} & & \mathbf{IFGSPCS} \leftarrow \mathbf{IFSPCS} \end{array}$$

Theorem 3.11. An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, τ) is IF ψ -open if and only if $B \subseteq sint(A)$ whenever B is an IFSGCS and $B \subseteq A$.

Proof. Necessity: Let A be IF ψ -open in X. Let B be an IFSGCS in X such that $B \subseteq A$. Then B^c is an IFSGOS in X such that $A^c \subseteq B^c$. Now by hypothesis A^c is an IF ψ CS, we have $\operatorname{scl}(A^c) \subseteq B^c$. But $\operatorname{scl}(A^c) = (\operatorname{sint}(A))^c$. Hence $(\operatorname{sint}(A))^c \subseteq B^c$, which implies $B \subseteq \operatorname{sint}(A)$.

Sufficiency: Let F be an IFSGOS in X such that $A^c \subseteq F$. Then F^c is an IFSGCS in X and $F^c \subseteq A$. Therefore by hypothesis $F^c \subseteq \operatorname{sint}(A)$. This implies that $\operatorname{scl}(A^c) = (\operatorname{sint}(A))^c \subseteq F$. Hence A^c is an IF ψ CS and A is an IF ψ OS in X. \Box

Theorem 3.12. If the concepts of IFSCS and IFSGOS are coincide, then every intuitionistic fuzzy subset of X is an $IF\psi CS$.

Proof. Let A be an intuitionistic fuzzy subset of X, such that $A \subseteq U$, where U is an IFSGOS. Then U is IFSCS such that $\operatorname{sc1}(A) \subseteq \operatorname{scl}(U) = U$. Hence $\operatorname{sc1}(A) \subseteq U$. Therefore A is an IF ψ CS.

Theorem 3.13. Let A be an $IF\psi CS$ subset of (X, τ) . Then scl(A) - A does not contain any non-empty IFSGCS.

Proof. Assume that *A* is IFψCS. Let *F* be an non-empty IFSGCS, such that *F* ⊆ scl(*A*) − *A* = scl(*A*) ∩ *A^c*. (i.e) *F* ⊆ scl(*A*) and *F* ⊆ *A^c*. Therefore *A* ⊆ *F^c*. Since *F^c* is an IFSGOS, scl(*A*) ⊆ *F^c* implies *F* ⊆ (scl(*A*))^{*c*}. But we have, *F* ⊆ scl(*A*) − *A*. So *F* ⊆ (scl(*A*) − *A*) ∩ (scl(*A*))^{*c*} ⊆ scl(*A*) ∩ (scl(*A*))^{*c*}. (i.e) *F* ⊆ φ. Therefore *F* is empty.

Theorem 3.14. Let A be an $IF\psi CS$ in an intuitionistic fuzzy topological space (X, τ) and $A \subseteq B \subseteq scl(A)$. Then B is an $IF\psi CS$ in X.

Proof. Let A be an IF ψ CS in an intuitionistic fuzzy topological space (X, τ) such that $A \subseteq B \subseteq \operatorname{scl}(A)$. Let U be an IFSGOS such that $B \subseteq U$. Then $A \subseteq U$ and since A is an IF ψ CS, we have $\operatorname{scl}(A) \subseteq U$. Now $B \subseteq \operatorname{scl}(A) \Rightarrow \operatorname{scl}(B) \subseteq \operatorname{scl}(\operatorname{scl}(A)) \subseteq \operatorname{scl}(A) \subseteq U$. Therefore, B is an IF ψ CS in X.

Theorem 3.15. If A is an IFSGOS and $IF\psi CS$ in intuitionistic fuzzy topological space (X, τ) , then A is an IFSCS and hence IFSP clopen.

Proof. Suppose that A is an IFSGOS and $IF\psi CS$ in X. Since $A \subseteq A$, we have $scl(A) \subseteq A$. Also $A \subseteq scl(A)$. Therefore scl(A) = A. Hence A is an IFSCS in X.

Now A is an IFSGOS, then A is an IFSPOS and A is an IF ψ CS. Therefore A is an IFSPCS and hence A is an IFSP clopen.

Theorem 3.16. Let (X, τ) be an intuitionistic fuzzy topological space. Then A is an $IF\psi CS$ if and only if $\neg(AqF) \Rightarrow \neg(scl(A)qF)$ for every IFSGCS F of X.

Proof. Necessity: Let A be an IF ψ CS and F be an IFSGCS of X such that $\neg(AqF)$. Then by Lemma 2.1(1), $A \subseteq F^c$ and F^c is an IFSGOS in X. Therefore, $scl(A) \subseteq F^c$ because A is an IF ψ CS. Hence by Lemma 2.1(1), $\neg(scl(A)qF)$.

Sufficiency: Let U be an IFSGOS of X such that $A \subseteq U$. (i.e.) $A \subseteq (U^c)^c$. Then by Lemma 2.1(1), $\neg(AqU^c)$ and U^c is an IFSGCS in X. Hence by hypothesis $\neg(\operatorname{scl}(A)qU^c)$. Therefore by Lemma 2.1(1), $\operatorname{scl}(A) \subseteq (U^c)^c$. (i.e.) $\operatorname{scl}(A) \subseteq U$. Hence A is an IF ψ CS in X.

Theorem 3.17. Let A be an IF ψ CS in an intuitionistic topological space (X, τ) and $c(\alpha, \beta)$ be an IF point of X, such that $c(\alpha, \beta)q$ cl(int(A)) then $cl(int(c(\alpha, \beta))qA)$.

Proof. If $\neg cl(int(c(\alpha, \beta)))qA$ then by Lemma 2.1(a), $cl(int(c(\alpha, \beta))) \subseteq A^c$ which implies that $A \subseteq (cl(int(c(\alpha, \beta))))^c$ and so $cl(A) \subseteq (cl(int(c(\alpha, \beta))))^c \subseteq (c(\alpha, \beta))^c$, because A is an IF ψ CS in X. Hence by Lemma 2.1(a), $\neg(c(\alpha, \beta)q \ cl(int(A)))$, a contradiction

4. Application of Intuitionistic Fuzzy ψ closed sets

In this section, we introduce $IF\psi T_{1/2}$ space and $IF\psi T_R$ space, which utilizes $IF\psi CS$ and its characterizations are proved.

Definition 4.1. An intuitionistic fuzzy topological space (X, τ) is called an

- (a) IF ψ - $T_{1/2}$ space if every IF ψ CS is an IFSCS.
- (b) IF ψ - T_R space if every IF ψ CS is an IFRCS.

Theorem 4.2. For an intuitionistic fuzzy topological space (X, τ) , the following statements are hold:

- (a) Every $IF\psi$ - T_R space is an $IF\psi$ - $T_{1/2}$ space.
- (b) Every IF Semi- $T_{1/2}$ space is an $IF\psi$ - $T_{1/2}$ space.
- (c) Every IF $_{c}T_{1/2}$ space is an IF ψ - $T_{1/2}$ space.

Proof. For an intuitionistic fuzzy topological space (X, τ)

- (a) Let A be an IF ψ CS in (X, τ) . Since X is an IF ψ - T_R space, then A is an IFRCS in X which implies A is an IFSCS in X. Hence (X, τ) be an IF ψ - $T_{1/2}$ space.
- (b) Let A be an IF ψ CS in (X, τ) , then A is an IFSGCS in X. Since X is an IF Semi- $T_{1/2}$ space which implies A is an IFSCS in X. Hence (X, τ) be an IF ψ - $T_{1/2}$ space.
- (c) Let A be an IF ψ CS in (X, τ) , then A is an IFGSCS in X. Since X is an IF $_{c}T_{1/2}$ space, then A is an IFCS in X which implies A is an IFSCS. Hence (X, τ) be an IF ψ - $T_{1/2}$ space.

The converse of the above theorem need not be true as shown by the following examples. $\hfill \Box$

Example 4.3. For an intuitionistic fuzzy topological space (X, τ)

- (a) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.3, 0.4), (0.3, 0.4) \rangle$. Let $A = \langle x, (0.3, 0.4), (0.3, 0.4) \rangle$ be any IFS in X.
- (b) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.3, 0.4), (0.2, 0.5) \rangle$. Let $A = \langle x, (0.1, 0.4), (0.6, 0.5) \rangle$ be any IFS in X.
- (c) Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, V, 1_{\sim}\}$ is an IFT on X, where $V = \langle x, (0.3, 0.4), (0.2, 0.5) \rangle$. Let $A = \langle x, (0.1, 0.4), (0.6, 0.5) \rangle$ be any IFS in X.

Theorem 4.4. An intuitionistic fuzzy topological space (X, τ) is an $IF\psi$ - $T_{1/2}$ space if and only if $IFSOS(X) = IF\psi OS(X)$.

Proof. Necessity. Let A be an IF ψ OS in X, then A^c is an IF ψ CS in X. By hypothesis A^c is an IFSCS of X and therefore A is an IFSOS of X. Hence IFSOS(X) = IF ψ OS(X).

Sufficiency. Let A be an IF ψ CS in X, then A^c is an IF ψ OS of X. By hypothesis A^c is an IFSOS in X which implies A is an IFSCS in X. Hence (X, τ) is an IF ψ - $T_{1/2}$ space.

Theorem 4.5. An intuitionistic fuzzy topological space (X, τ) is an $IF\psi$ - T_R space if and only if $IFROS(X) = IF\psi OS(X)$.

Proof. Necessity. Let A be an IF ψ OS in X, then A^c is an IF ψ CS in X. By hypothesis A^c is an IFRCS of X and therefore A is an IFROS of X. Hence IFROS(X) = IF ψ OS(X).

Sufficiency. Let A be an IF ψ CS in X, then A^c is an IF ψ OS of X. By hypothesis A^c is an IFROS in X which implies A is an IFRCS in X. Hence (X, τ) is an IF ψ - T_R space.

Theorem 4.6. Let (X, τ) be an intuitionistic fuzzy topological space and X is an $IF\psi$ - $T_{1/2}$ space, then the following conditions are equivalent:

(a) $A \in IF\psi OS(X)$ (b) $A \subseteq cl(int(A))$ (c) $A \in IFRCS(X)$

Proof. (a) \Rightarrow (b) Let A be an IF ψ OS in X. Since X is an IF ψ - $T_{1/2}$ space, A is an IFSOS in X. Hence by definition of IFSOS, $A \subseteq cl(int(A))$.

(b) \Rightarrow (c) Assume that $A \subseteq cl(int(A))$, then A = cl(int(A)). Hence A is an IFRCS and $A \in IFRCS(X)$. (c) \Rightarrow (a) Assume that $A \in IFRCS(X)$, then A = cl(int(A)). Since $A \subseteq cl(int(A))$, A is an IFSOS and hence A is an IF ψ OS, therefore $A \in$ IF ψ OS(X).

Theorem 4.7. Let (X, τ) be an $IF\psi$ - T_R space. Then every singleton set of X is either an IFSGCS or IFSGOS.

Proof. Assume that (X, τ) is an IF ψ - T_R space. Suppose that $\{x\}$ is not an IFSGCS for some $x \in X$. Then $X - \{x\}$ is not IFSGOS and hence X is the only IFSGOS containing $X - \{x\}$. Therefore, $X - \{x\}$ is an IF ψ CS in X. Since (X, τ) is an IF ψ - T_R space, then $X - \{x\}$ is an IFRCS and hence $X - \{x\}$ is an IFSGCS or equivalently $\{x\}$ is an IFSGOS.

Theorem 4.8. Let A and B be q-separated $IF\psi O$ sets in an intuitionistic fuzzy topological space (X, τ) , then $A \cup B$ is also an $IF\psi OS$ if X is an $IF\psi -T_{1/2}$ space.

Proof. Let F be an IFSGCS such that $F \subseteq A \cup B$. Then $F \cap cl(A) \subseteq A$, since $B \cap cl(A) = 0_{\sim}$. Since A is an IFSOS in $X, F \cap cl(A) \subseteq sint(A)$. Similarly $F \cap cl(B) \subseteq sint(B)$. Now $F = F \cap (A \cup B) \subseteq F \cap cl(A) \cup F \cap cl(B) \subseteq sint(A) \cup sint(B) \subseteq sint(A \cup B)$. Therefore $F \subseteq sint(A \cup B)$ implies $A \cup B$ is an IF ψ OS in X. \Box

Theorem 4.9. Let A and B be two $IF\psi CS$ of an intuitionistic fuzzy topological space (X, τ) and suppose that A^c and B^c are q-separated. Then $A \cap B$ is an $IF\psi CS$ if X is an $IF\psi$ - $T_{1/2}$ space.

Proof. Assume that A and B are IF ψ CS, then A^c and B^c are q-separated IF ψ OS. By theorem 4.8, $A^c \cup B^c$ is an IF ψ OS. Hence $(A \cap B)^c$ is an IF ψ OS which implies that $A \cap B$ is an IF ψ CS in X.

References

- [1] K. T. Atanassov, Intuitionstic fuzzy sets, Fuzzy Sets and Systems 20(1986) 87-96.
- [2] D. Coker, An introduction to intuitionstic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997) 81-89.
- [3] D. Coker and M. Demirci, On intuitionistic fuzzy point, Notes on Intuitionistic Fuzzy Sets 1(1995) 79–84.
- [4] R. Devi and M. Parimala, Intuitionistic fuzzy $\alpha\psi$ -closed sets in intuitionistic fuzzy topological spaces, (accepted).
- [5] H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, The Journal of fuzzy mathematics 5 (1997) 365–378.
- [6] R. Santhi and K. Arun Prakash, On Intuitionistic Fuzzy Semi-Generalized Closed Sets and its Applications, Int. J. Contemp. Math. Sci. 5 (2010) 1677–1688.
- [7] R. Santhi and D. Jayanthi, On intuitionistic fuzzy generalised semi pre closed mappings, Notes on Intuitionistic Fuzzy Sets 16 (2010) 3, 28–39.
- [8] R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semicontinuous mappings, Advances in Theoretical and Applied Mathematics 5 (2009) 73–82.
- [9] S. S. Thakur and Rekha Chaturvedi, Regular generalised closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Matematica 16 (2006) 257–272.
- [10] N. Turanli and D. Coker, Fuzzy connectedness in Intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 116 (2000) 369–375.
- [11] Young Bae Jun and Seok- Zun Song, Intuitionistic fuzzy semi-pre open sets and intuitionistic semi-pre continuous mappings, J. Appl. Math. Comput. 19 (2005) 467-474.
- [12] L. A. Zadesh, Fuzzy sets, Information and control 8 (1965) 338–353.

<u>M.PARIMALA</u> (riswanthpari@gmail.com)

Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu. India

C.INDIRANI (indirani2012@gmail.com)

Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India

A.SELVAKUMAR (selvam_mphil@yahoo.com)

Department of Mathematics, Info Institute of Engineering, Coimbatore, Tamilnadu, India