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1. Introduction

The concept of soft set theory has been initiated by Molodtsov [22] in 1999 as
a general mathematical tool for modeling uncertainties. He also pointed out several
applications of this theory in solving many practical problems in economics, engi-
neering, social sciences, medical sciences etc. After that, in 2003, Maji et al. [19, 20]
introduced several operations on soft sets and made a theoretical study of soft set
theory in more detail and applied soft sets to decision making problems. In 2007,
Aktas and Cagman [1] introduced a basic version of soft group theory, which extends
the notion of a group to include the algebraic structures of soft sets. Jun [12, 13]
investigated soft BCK/BCI- algebras and its application in ideal theory. Feng [9]
in 2008, dealt with the concept of soft semirings; Shabir and Ali [29] (2009) studied
soft semigroups and soft ideals; Kharal and Ahmed [17] as well as Majumdar and
Samanta [21] defined soft mappings. In 2011, Shabir and Naz [30] came up with an
idea of soft topological spaces. Later Aygun et al. [2], Zorlutuna et al. [31], Cagman
et al. [4], Hussain et al. [11], Hazra et al. [10], studied on soft topological spaces.
As a continuation of this, it is natural to investigate the behaviour of a combination
of algebraic and topological structures in soft set theoretic form. Sk. Nazmul and
S. K. Samanta studied topological group structures in soft setting approaching from
different perspectives in [23, 24, 25, 26, 27]. In 2012 Sujoy Das and S. K. Samanta
introduced soft real sets, soft real nos [5]. Later they introduced soft complex nos,
soft complex sets, soft metrics etc [6, 7]. In 2013, Sujoy Das, Pinaki Majumdar
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and S. K. Samanta [8] introduced the concept of soft linear spaces and soft normed
linear spaces. In view of this and also considering the importance of topological
vector space in developing the theory of functional analysis, we have introduced in
this paper a notion of vector soft topology. In this connection it is worth mentioning
that in fuzzy setting some significant works have been done on fuzzy topological
vector space structure by A. K. Katsaras [14, 15, 16] and D. B. Liu [14].

The organization of the paper is as follows:
Section 2 is the preliminary part where definitions and some properties of soft

sets, soft topological spaces and soft product topological spaces are given. In section
3, we introduced the notion of convex and balanced soft sets in a vector space and
studied some properties of them. In section 4, for the first time, we introduced a
notion of vector soft topologies and studied some of its basic properties. In section
5, some facets of the system of neighbourhoods of the zero soft elements of vector
soft topology are established. Section 6, concludes the paper. The straightforward
proofs of the propositions have been omitted.

2. Preliminaries

Definition 2.1 ([22]). Let X be a universal set and E be a set of parameters. Let
P (X) denote the power set of X and A be a subset of E. A pair (F,A) is called a
soft set over X, where F is a mapping given by F : A → P (X). In other words, a
soft set over X is a parametrized family of subsets of the universe X. For α ∈ A,
F (α) may be considered as the set of α - approximate elements of the soft set (F,A).

In [18] the soft sets are redefined as follows:
Let E be the set of parameters and A ⊆ E. Then for each soft set (F,A) over X

a soft set (H,E) is constructed over X, where ∀α ∈ E,

H(α) =

{
F (α) if α ∈ A
φ if α ∈ E \A,

Thus the soft sets (F,A) and (H,E) are equivalent to each other and the usual
set operations of the soft sets (Fi, Ai), i ∈ ∆ is the same as those of the soft sets
(Hi, E), i ∈ ∆. For this reason, in this paper, we have considered our soft sets over
the same parameter set A.

Following Molodtsov and Maji et al. [19, 20, 22] definitions of soft subset, absolute
soft set, null soft set, arbitrary union of soft sets etc. are presented in [25] consid-
ering the same parameter set. For arbitrary intersection of soft sets we follow [9]
considering the same parameter set. For image and inverse image of a soft set we
follow definitions in [24].
Unless otherwise stated, X will be assumed to be an initial universal set, A will be
taken to be a set of parameters and S(X,A) denote the set of all soft sets over X.

Definition 2.2 ([26]). A soft set (E,A) over X is said to be a soft element if ∃α ∈ A
such that E(α) is a singleton, say, {x} and E(β) = φ , ∀β(6= α) ∈ A. Such a soft
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element is denoted by Exα. Let = be the set of all soft elements of the universal set
X.

Definition 2.3 ([26]). The soft element Exα is said to be in the soft set (F,A),
denoted by Exα∈̃(F,A), if x ∈ F (α).

Definition 2.4 ([3]). Let (F,A) and (G,A) be two soft sets over X. The par-
allel product of (F,A) and (G,A) is defined as (F,A)×̃(G,A) = (F ×̃G,A) where
[F ×̃G](α) = F (α)×G(α),∀α ∈ A. It is clear that (F ×̃G,A) is a soft set over X×X.

Definition 2.5 ([27]). Let S(X,A) denote the set of all soft sets over X under the
parameter set A. A soft set (F,A) ∈ S(X,A) is said to be pseudo constant soft set
if F (α) = X or φ, ∀α ∈ A. Let CS(X,A) denote the set of all pseudo constant soft
sets over X under the parameter set A.

Definition 2.6 ([30]). Let τ be the collection of soft sets over X. Then τ is said to
be a soft topology on X if

(i) (Φ̃, A), (X̃, A) ∈ τ , where Φ̃(α) = φ and X̃(α) = X, ∀α ∈ A.
(ii) the intersection of any two soft sets in τ belongs to τ .
(iii) the union of any number of soft sets in τ belongs to τ .

The triplet (X,A, τ) is called a soft topological space over X.

Definition 2.7 ([30]). A crisp element x ∈ X is said to be in the soft set (F,A)
over X, denoted by x∈̃(F,A) iff x ∈ F (α), ∀α ∈ A.

Definition 2.8 ([30]). A soft set (F,A) is said to be τ soft nbd of an element x ∈ X
if ∃ (G,A) ∈ τ such that x∈̃ (G,A) ⊆̃(F,A).

Definition 2.9 ([27]). A soft topology τ on X is said to be an enriched soft topology
if (i) of Definition 2.6 is replaced by (i)′ (F,A) ∈ τ, ∀(F,A) ∈ CS(X,A).
The triplet (X,A, τ) is called an enriched soft topological space over X.

Definition 2.10 ([30]). Let (X,A, τ) be a soft topological space over X. Then the
collection τα = {F (α) : (F,A) ∈ τ} for each α ∈ A, defines a topology on X.

Proposition 2.11. Let X be a non-empty set, A be the set of parameters and for
each α ∈ A, τα is a crisp topology on X. Then τ∗ = {(G,A) ∈ S(X,A) : G(α) ∈
τα,∀α ∈ A} is an enriched soft topology on X.

Proposition 2.12 ([26]). If (X,A, τ) be a soft topological space and if τ∗ = {(G,A) ∈
S(X,A) : G(α) ∈ τα,∀α ∈ A}, then τ∗ is an enriched soft topology on X such that
τ ⊆ τ∗and [τ∗]α = τα,∀α ∈ A.

Definition 2.13 ([26]). Let X and Y be two non-empty sets and f : X → Y be a
mapping. Then
(i) the image of a soft set (F,A) ∈ (X,A) under the mapping f is denoted by
f [(F,A)] and is defined by f [(F,A)] = (f(F ), A), where [f(F )] (α) = f [F (α)] ,∀α ∈
A.
(ii) the inverse image of a soft set (G,A) ∈ (Y,A) under the mapping f is denoted
by f−1 [(G,A)] and is defined by f−1 [(G,A)] = (f−1(G), A), where

[
f−1(G)

]
(α) =

f−1 [G(α)] ,∀α ∈ A.
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Note : For simplicity of notation we use f (F,A) instead of any different symbol

like f̃ [(F,A)] etc., assuming the meaning is contextually clear.

Definition 2.14 ([26]). Let (X,A, τ) and (Y,A, ν) be soft topological spaces. The
mapping f : (X,A, τ)→ (Y,A, ν) is said to be
(i) soft continuous if f−1[(F,A)] ∈ τ,∀(F,A) ∈ ν.
(ii) soft homeomorphism if f is bijective and f, f−1 are soft continuous.
(iii) soft open if (F,A) ∈ τ ⇒ f [(F,A)] ∈ ν.
(iv) soft closed if (F,A) is soft closed in (X,A, τ) ⇒ f [(F,A)] is soft closed in
(Y,A, ν).

Proposition 2.15 ([25]). Let (X,A, τ), (Y,A, ν) and (Z,A, ω) be soft topological
spaces. If f : (X,A, τ) → (Y,A, ν) and g : (Y,A, ν) → (Z,A, ω) are soft continuous
and f(X) ⊆ Y , then the mapping gf : (X,A, τ)→ (Z,A, ω) is soft continuous.

Definition 2.16 ([26]). Let τ be a soft topology on X. Then a soft set (F,A) is
said to be a τ− soft neighbourhood (shortly soft nbd) of the soft element Exα if there
exists a soft set (G,A) ∈ τ such that Exα∈̃(G,A)⊆̃(F,A).

The soft nbd system of a soft element Exα in (X,A, τ) is denoted by Nτ (Exα).

Proposition 2.17 ([26]). If {Nτ (Exα) : Exα ∈ =} be the system of soft nbds then
(i) Nτ (Exα) 6= φ, ∀Exα ∈ =
(ii) Exα∈̃(F,A),∀(F,A) ∈ Nτ (Exα)
(iii) (F,A) ∈ Nτ (Exα), (F,A)⊆̃(G,A)⇒ (G,A) ∈ Nτ (Exα)
(iv) (F,A), (G,A) ∈ Nτ (Exα)⇒ (F,A)∩̃(G,A) ∈ Nτ (Exα)
(v) (F,A) ∈ Nτ (Exα) ⇒ ∃(G,A) ∈ Nτ (Exα) such that (F,A)⊆̃(G,A) and (G,A) ∈
Nτ (Exα),∀Exα ∈ (G,A).

Definition 2.18 ([27]). Let (X,A, τ) be a soft topological space. A soft element
Exα ∈ = is said to be a limiting soft element of a soft set (F,A) over X if every open
soft set containing Exα contains at least one soft element Eyα of (F,A) other than Exα,
i.e. if (G,A) ∈ τ with Exα∈̃(G,A), F (α) ∩ [G(α)− {x}] 6= φ.
The union of all limiting soft elements of (F,A) is a soft set over X, called the
derived soft set of (F,A) and is denoted by (F,A)′ or (F ′, A).

The closure of a soft set (F,A) denoted by (F,A) = (F ,A) is defined by (F,A) =
(F,A)∪̃[(F ′, A).

Proposition 2.19 ([27]). Let τ be a soft topology over X. A soft set (F,A) over X
is a τ−open soft set iff for Exα∈̃(F,A), ∃(G,A)∈ τ such that Exα∈̃(G,A)⊆̃(F,A).

Proposition 2.20 ([27]). Let (X,A, τ) be a soft topological space. If (F,A) be a

closed soft set then (F,A) = (F,A). But if (X,A, τ) is an enriched soft topological

space and (F,A) = (F,A), then (F,A) is a closed soft set.

Proposition 2.21 ([27]). For any soft set (F,A), F (α) = F (α)
α

, ∀α ∈ A, where

F (α)
α

is the closure of F (α) with respect to the topology τα.

Proposition 2.22 ([25]). Let (X,A, τ) and (Y,A, ν) be two soft topological spaces.
A mapping f : (X,A, τ) → (Y,A, ν) is soft continuous iff ∀x ∈ X and ∀(V,A) ∈ ν
such that E

f(x)
α ∈̃(V,A), ∃(U,A) ∈ τ such that Exα∈̃(U,A) and f [(U,A)]⊆̃(V,A).
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Proposition 2.23 ([26]). Let (X,A, τ) and (Y,A, ν) be two soft topological spaces.
For a bijective mapping f : (X,A, τ)→ (Y,A, ν), the following statements are equiv-
alent:
(i) f : (X,A, τ)→ (Y,A, ν) is soft homeomorphism;
(ii) f : (X,A, τ)→ (Y,A, ν) and f−1 : (Y,A, ν)→ (X,A, τ) are soft continuous;
(iii) f : (X,A, τ)→ (Y,A, ν) is both soft continuous and soft open;
(iv) f : (X,A, τ)→ (Y,A, ν) is both soft continuous and soft closed;
If further, τ and ν are enriched soft topology, then f : (X,A, τ) → (Y,A, ν) is soft

homeomorphism ⇔ f [(F,A)] = f [(F,A)],∀(F,A) ∈ S(X,A).

Definition 2.24 ([27]). Let (X,A, τ) be a soft topological space. If for Exα, E
y
β ∈ =

with Exα 6= Eyβ , there exists

(i) (F,A) ∈ τ such that [Exα∈̃(F,A) and Eyβ /̃∈(F,A)] or [Eyβ∈̃(F,A) and Exα /̃∈(F,A)],

then (X,A, τ) is called a soft T0−space.

(ii) (F,A), (G,A) ∈ τ such that [Exα∈̃(F,A) and Eyβ /̃∈(F,A)] and [Eyβ∈̃(G,A) and

Exα /̃∈(G,A)], then (X,A, τ) is called a soft T1−space.

(iii) (F,A), (G,A) ∈ τ such that Exα∈̃(F,A), Eyβ∈̃(G,A) and (F,A)∩̃(G,A) = (Φ̃, A),

then (X,A, τ) is called a soft T2−space.

Proposition 2.25 ([27]). A soft topological space (X,A, τ) is soft T1− space iff
∀Exα ∈ =, {Exα} is soft closed.

Definition 2.26 ([27]). A soft topological space (X,A, τ) is said to be soft reg-
ular space if for any soft closed set (F,A) and any soft element Exα such that

Exα /̃∈(F,A) open soft sets (U,A), (W,A) such that Exα∈̃(U,A), (F,A)⊆̃(W,A) and

(U,A)∩̃(W,A) = (Φ̃, A).

Proposition 2.27 ([27]). If a soft topological space (X,A, τ) is soft regular then
∀Exα ∈ = and ∀(U.A) ∈ τ such that Exα ∈ (U,A), ∃(V,A) ∈ τ such that Exα ∈ (V,A)

and (V,A)⊆̃(U,A). The converse is true if τ is enriched.

Definition 2.28 ([26]). Let (X,A, τ) be a soft topological space. A sub-collection
B of τ is said to be an open base of τ if every member of τ can be expressed as the
union of some members of B.

Definition 2.29 ([25]). The soft topology in X × Y induced by the open base
F = {(F,A)×̃(G,A) : (F,A) ∈ τ, (G,A) ∈ ν} is said to be the product soft topology
of the soft topologies τ and ν. It is denoted by τ×̃ν. The soft topological space
[X × Y,A, τ×̃ν] is said to be the soft topological product of the soft topological
spaces (X,A, τ) and (Y,A, ν).

Proposition 2.30 ([25]). Let (X,A, τ) be the product space of two soft topological
spaces (X1, A, τ1) and (X2, A, τ2) respectively. Then the projection mappings πi :
(X,A, τ)→ (Xi, A, τi), i = 1, 2 are soft continuous and soft open. Also τ1×̃τ2 is the
smallest soft topology in X×Y for which the projection mappings are soft continuous.
If further, (Y,A, ν) be any soft topological space then the mapping f : (Y,A, ν) →
(X,A, τ) is soft continuous iff the mappings πif : (Y,A, ν) → (Xi, A, τi), i = 1, 2
are soft continuous.
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Proposition 2.31 ([25]). Let (X,A, τ) and (Y,A, ν) be two soft topological spaces.
Then the mapping f : (X,A, τ)→ (Y,A, ν) defined by f(x) = y0, ∀x ∈ X, where y0
is a fixed element of Y , called a constant mapping, is soft continuous if τ contains
all those soft sets (F,A) where F (α) = X or F (α) = φ, ∀α ∈ A.

Proposition 2.32 ([25]). Let (X,A, τ) be the product space of two soft topological
spaces (X1, A, τ1) and (X2, A, τ2) respectively, where τ2 (or τ1) is an enriched soft
topology. Let a ∈ X1 (or X2). Then the mapping f : (X2, A, τ2) → (X,A, τ) (or
f : (X1, A, τ2) → (X,A, τ)) defined by f(x2) = (a, x2) (or f(x1) = (x1, a)) is soft
continuous ∀x2 ∈ X2 (or ∀x1 ∈ X1).

Proposition 2.33 ([25]). Let (X,A, τ) be a soft topological space. Then for each
α ∈ A, (τ×̃τ)α = τα × τα.

Proposition 2.34 ([25]). Let (X,A, τ) be a soft topological space and define T ∗ =
{(F,A) ∈ S(X × X)} such that F (α) ∈ τα × τα. Then T ∗ is a soft topology over
X ×X and T ∗ = τ∗×̃τ∗, where τ∗ is as in Proposition 2.12.

We now state and prove the following results which will be useful in this paper.

Proposition 2.35. Let (X,A, τ) and (Y,A, ν) be two soft topological spaces. Then
for each α ∈ A, (τ×̃ν)α = τα × να.

Proof. The proof is same as of Proposition 2.33. �

Proposition 2.36. Let (X,A, τ) and (Y,A, ν) be two soft topological spaces and
define T ∗ = {(F,A) ∈ S(X × Y ) : F (α) ∈ τα × να,∀α ∈ A}. Then T ∗ is a soft
topology over X × Y. and T ∗ = τ∗×̃ν∗ where τ∗ = {(G,A) ∈ S(X) : G(α) ∈
τα,∀α ∈ A} and ν∗ = {(H,A) ∈ S(Y ) : H(α) ∈ να,∀α ∈ A}.

Proof. Since φ and X × Y ∈ τα × να,∀α ∈ A we have (φ̃, A), (X̃ × Y ,A) ∈ T ∗.
Again, let (F1, A), (F2, A) ∈ T ∗. Then F1(α), F2(α) ∈τα × να.
So, (F1

⋂̃
F2)(α) = F1(α)

⋂
F2(α) ∈ τα × να,∀α ∈ A.

Thus (F1, A)
⋂̃

(F2, A) ∈ T ∗.
Next let (Fi, A) ∈ T ∗, i ∈ I. So (

⋃
i∈I Fi)(α) =

⋃
i∈I [Fi(α)] ∈ τα × να, ∀α ∈ A.

Thus
⋃̃
i∈I(Fi, A) ∈ T ∗.

Therefore T ∗ is a soft topology over X × Y.
Now let (F,A) ∈ T ∗ and α ∈ A.
Then F (α) ∈ τα × να and hence ∃ Ui ∈ τα, Vi ∈ να, i ∈ I such that F (α) =⋃
i∈I Ui × Vi. for each pair Ui ∈ τα, Vi ∈ να take soft sets (FUi

, A) and (FVi
, A)

such that FUi
(α) = Ui, FUi

(β) = φ, ∀β(6= α) ∈ A and FVi
(α) = Vi, FVi

(β) = φ,
∀β(6= α) ∈ A.

So, (FUi
, A) ∈ τ∗ and (FVi

, A) ∈ ν∗ and hence (FUi
×̃FVi

, A) ∈ τ∗ × ν∗. Also
(FUi×̃FVi)(α) = FUi(α)×FVi(α) = Ui × Vi and (FUi×̃FVi)(β) = FUi(β)×FVi(β) =
φ, ∀β(6= α) ∈ A.

Let (Gα, A) =
⋃̃
i∈I(FUi

×̃FVi
, A). Then (Gα, A) ∈ τ∗×̃ν∗ and Gα(α) =

⋃
i∈I Ui×

Vi = F (α), Gα(β) = φ, ∀β( 6= α) ∈ A.
Again, let (G,A) =

⋃̃
α∈A(Gα, A). Then (G,A) ∈ τ∗×̃ν∗ and G(α) = F (α),

∀α ∈ A.
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Thus (F,A) = (G,A) ∈ τ∗×̃ν∗.
∴ T ∗ ⊆ τ∗×̃ν∗.
Also, let (F,A) ∈ τ∗×̃ν∗. Then ∃{(Ui, A) ∈ τ∗, (Vi, A) ∈ ν∗, i ∈ I} such that

(F,A) =
⋃̃
i∈I [(Ui, A)×̃(Vi, A)]. Also F (α) =

⋃
i∈I [Ui(α)×Vi(α)] ∈ τα×να,∀α ∈ A.

Hence (F,A) ∈ T ∗.
∴ τ∗×̃ν∗ ⊆ T ∗. Thus T ∗ = τ∗×̃ν∗. �

3. Convex and Balanced Soft Set

Definition 3.1. Let (F,A) and (G,A) be two soft sets over the vector space V over
the field K, the field of real and complex numbers. Then
(i) (F,A) + (G,A) = (F +G,A) where (F +G)(α) = F (α) +G(α), ∀α ∈ A.
(ii) k(F,A) = (kF,A) where (kF )(α) = {k·x : x ∈ F (α)}, ∀α ∈ A,∀k ∈ K.
(iii) x+(F,A) = (x+F,A) where (x+F )(α) = {x+y : y ∈ F (α)}, ∀α ∈ A,∀x ∈ V.
(iv) If (E,A) be any soft set overK then (E,A)·(F,A) = (E·F,A) where (E·F )(α) =
E(α) · F (α), ∀α ∈ A.

Note : Here actually if ⊕ is vector addition in V and +, · are the scalar addition
and scalar multiplication in K, then +̃, ·̃ may be used for denoting operations on
soft sets (F,A), (G,A) (e.g. (F,A) +̃ (G,A), x +̃ (F,A), k ·̃ (F,A) etc.). But for
the simplicity of notations we use the same symbols “ +” and “ juxtaposition ”
instead of “ +̃ ” and “ ·̃ ” respectively as the differences in their use are contextually
understood.

Definition 3.2. A soft set (F,A) over a vector space V is said to be
(a) convex if k(F,A) + (1− k)(F,A) ⊆̃ (F,A) , ∀k ∈ [0, 1].
(b) balanced if k(F,A) ⊆̃ (F,A) for all scalar k with | k |≤ 1.
(c) absolutely convex if it is balanced and convex.

Note : It is to be noted that
(1) (F,A) is convex (balanced) soft set iff for each α ∈ A, the ordinary set F (α) is
convex (balanced).
(2) If (F,A) and (G,A) are two convex (balanced) soft sets in a vector space V over
the scalar field K, then k1(F,A) + k2(G,A) is a convex (balanced) soft set in V for
all scalars k1, k2 ∈ K.
(3) If {(Fi, A)}i∈I is a family of convex (balanced) soft sets in a vector space V, then
(F,A) = ∩̃i∈I(Fi, A) is a convex (balanced) soft set in V.

Proposition 3.3. Let V and W be two vector spaces over the scalar field K and let
f : V →W be a linear map.
(a) If (F,A) is a convex (balanced) soft set in V , then f [(F,A)] is a convex (balanced)
soft set in W.
(b) f−1 [(G,A)] is a convex (balanced) soft set in V whenever (G,A) is a convex
(balanced) soft set in W.

Proof. (a) We will prove the result for the convex case. The proof for the balanced
case is similar. Let k ∈ [0, 1] and (F,A) be a convex soft set in V. Then

[kf [(F,A)] + (1− k)f [(F,A)]] (α)
= [kf [(F,A)]] (α) + [(1− k)f [(F,A)]] (α)
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= kf(F (α)) + (1− k)f(F (α))
= f(kF (α) + (1− k)F (α))
⊆ f(F (α)), ∀α ∈ A.
∴ kf [(F,A)] + (1− k)f [(F,A)] ⊆̃f [(F,A)] , which proves that f [(F,A)] is a con-

vex soft set.

(b) Assume next that (G,A) is a convex soft set in W and let k ∈ [0, 1] . Set (M,A) =
kf−1 [(G,A)] + (1− k)f−1 [(G,A)] . Then ∀α ∈ A,

[f(M)] (α) = kf
[[
f−1(G)

]
(α)
]

+ (1 − k)f
[[
f−1(G)

]
(α)
]

= kf
[
f−1 [G(α)]

]
+

(1− k)f
[
f−1 [G(α)]

]
⊆ kG(α) + (1− k)G(α) ⊆ G(α),

and hence M(α) ⊆ f−1 [G(α)] .
Therefore (M,A)⊆̃f−1 [(G,A)] . Thus f−1 [(G,A)] is a convex soft set in V. �

4. Vector Soft Topology

Throughout the rest of the paper we use the notation V for the vector space
(V,+, ·) over the scalar field K, where K is the field of real or complex numbers, A
is the parameter set. Also, we use the notation xy instead of x · y.

Definition 4.1. Let K be the field of real or complex numbers, A be the parameter
set and να be the usual topology on K, ∀α ∈ A. Then the soft topology ν defined
as in Proposition 2.11 is called the soft usual topology on K.

Definition 4.2. Let V be a vector space over the scalar field K endowed with the
soft usual topology ν, A be the parameter set and τ be a soft topology on V . Then
τ is said to be a vector soft topology on V if the mappings:

(1) f : (V × V,A, τ×̃τ)→ (V,A, τ), defined by f(x, y) = x+ y and
(2) g : (K × V,A, ν×̃τ)→ (V,A, τ), defined by g(k, x) = kx

are soft continuous ∀x, y ∈ V and ∀k ∈ K.

Note : When we consider τ as a vector soft topology on V we always consider the
scalar field K with the soft usual topology.

Proposition 4.3. Let τ be a vector soft topology on a vector space V over the field
K, A be the parameter set and ν be the soft usual topology on K. Then τα is a
vector topology on V, ∀α ∈ A.

Proof. Let U ∈ τα. Then ∃ (F,A) ∈ τ such that F (α) = U. Since τ is a vector soft
topology, we have the mappings
f : (V × V,A, τ×̃τ)→ (V,A, τ), defined by f(x, y) = x+ y and
g : (K × V,A, ν×̃τ)→ (V,A, τ), defined by g(k, x) = kx
are soft continuous and hence f−1((F,A)) ∈ τ×̃τ and g−1((F,A)) ∈ ν×̃τ.
So, f−1(F (α)) ∈ (τ×̃τ)α = τα × τα,∀α ∈ A and g−1(F (α)) ∈ (ν×̃τ)α = να ×
τα,∀α ∈ A.
∴ f : (V × V, τα× τα)→ (V, τα) and g : (K × V, να× τα)→ (V, τα) are continuous,
∀α ∈ A. Hence, τα is a vector topology on V, ∀α ∈ A. �

Proposition 4.4. Let V be a vector space over the scalar field K endowed with the
soft usual topology ν, A be the parameter set and ∀α ∈ A, τα be a vector topology on
V . Then τ∗ is a vector soft topology on V, where τ∗ is defined as in Proposition 2.11.
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Proof. Let (F,A) ∈ τ∗. Then F (α) ∈ τα, ∀α ∈ A.
Since ∀α ∈ A, τα is a vector topology on V whereas να is a usual topology on K, we
have the mappings f : (V × V, τα × τα)→ (V, τα), defined by f(x, y) = x+ y and
g : (K × V, να × τα) → (V, τα), defined by g(k, x) = kx are continuous, ∀x, y ∈ V
and ∀k ∈ K, ∀α ∈ A.
So, f−1(F (α)) ∈ τα × τα,∀α ∈ A and g−1(F (α)) ∈ να × τα,∀α ∈ A and hence, by
Proposition 2.34 and Proposition 2.36 f−1((F,A)) ∈ T ∗ = τ∗×̃τ∗ and g−1((F,A)) ∈
S∗ = ν∗×̃τ∗.

Thus, the mappings f : (V ×V,A, τ∗×̃τ∗)→ (V,A, τ∗), defined by f(x, y) = x+y
and g : (K × V,A, ν∗×̃τ∗)→ (V,A, τ∗), defined by g(k, x) = kx are soft continuous
∀x, y ∈ V and ∀k ∈ K. Therefore, τ∗ is a vector soft topology on V. �

Example 4.5. (i) Let V be a vector space over the scalar field K where K is

equipped with the soft usual topology; τ1 =
{(

Φ̃, A
)
,
(
Ṽ , A

)}
and τ2 = {all soft

sets over V } are soft topologies on V.

Then τ1×̃τ1 =
{(

Φ̃, A
)
,
(
Ṽ × V ,A

)}
and τ2×̃τ2 = {all soft sets over V × V }. It

can be easily shown that τ1 and τ2 are vector soft topologies.

(ii) Consider the vector space R over the scalar field R where the scalar field R is
equipped with the soft usual topology. Let A = {e1, e2, e3} and τe1 = Indiscrete
topology on R, τe2 = Discrete topology on R, τe3 = The usual topology on R. Then
by Proposition 4.4, τ∗ = {(F,A) : F (ei) ∈ τei ; i = 1, 2, 3} is a vector soft topology
on the vector space R.

From Proposition 2.31, it is seen that if τ is enriched, then any constant mapping
f : (X,A, τ)→ (Y,A, ν) is soft continuous.

But the converse is not true. i.e. for continuity of constant mapping enrichedness
of τ is sufficient but not necessary, which follows from the following two Examples.

Example 4.6. Let X = {x1, x2, x3, x4, x5}, A = {α, β, γ} and

τ =
{(
X̃, A

)
,
(

Φ̃, A
)
, (F1, A) = {{x1} , φ, φ} , (F2, A) = {X,φ, φ}

}
. Then τ is a

soft topology onX and any constant map f : (X,A, τ)→ (X,A, τ) is soft continuous,
though τ is not enriched.

Example 4.7. Let X = {x1, x2, x3, x4, x5}, Y = {y1,y2, y3} , A = {α, β, γ},
τ =

{(
X̃, A

)
,
(

Φ̃, A
)
, (F1, A) = {X,φ, φ} , (F2, A) = {φ,X, φ} , (F3, A) = {X,X, φ}

}
and ν =

{(
X̃, A

)
,
(

Φ̃, A
)
, (G1, A) = {{y2, y3} , {y1} , φ}

}
. Then (X,A, τ) and

(Y,A, ν) are two soft topological spaces and every constant map f : (X,A, τ) →
(Y,A, ν) is soft continuous though τ is not enriched.

So, we introduce the following definition:

Definition 4.8. Let (X,A, τ) and (Y,A, ν) be two soft topological spaces. Then τ
is said to be weak enriched iff any constant mapping f : (X,A, τ)→ (Y,A, ν) is soft
continuous.

Thus the Proposition 2.32 can be modified as:
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Proposition 4.9. Let (X,A, τ) be the product space of two soft topological spaces
(X1, A, τ1) and (X2, A, τ2) respectively, where τ2 ( or τ1) is a weak enriched soft
topology. Let a ∈ X1 (or X2). Then the mapping f : (X2, A, τ2) → (X,A, τ) ( or
f : (X1, A, τ2) → (X,A, τ)) defined by f(x2) = (a, x2) ( or f(x1) = (x1, a)) is soft
continuous ∀x2 ∈ X2(or ∀x1 ∈ X1 ).

Proposition 4.10. Let τ be a vector soft topology on a vector space V over the
field K endowed with the soft usual topology ν. If further, τ is a weak enriched soft
topology, then the map Mk : (V,A, τ) → (V,A, τ), defined by Mk(x) = kx is soft
continuous, ∀k ∈ K and Mk is a soft homeomorphism for k 6= 0.

Proof. Since τ be a vector soft topology on a vector space V , the map g : (K ×
V,A, ν×̃τ) → (V,A, τ), defined by g(k, x) = kx is soft continuous. Also since τ is
weak enriched, by Proposition 4.9, the map h : (V,A, τ)→ (K × V,A, ν×̃τ), defined
by h(x) = (k, x) is soft continuous for a fixed k ∈ K. Hence Mk = g ◦ h is soft
continuous. In case k 6= 0, M−1k (x) = x/k is soft continuous. Therefore, Mk is a
soft homeomorphism. �

Proposition 4.11. Let τ be a vector soft topology on a vector space V over the
field K endowed with the soft usual topology ν. If further, τ is a weak enriched soft
topology, then the map Ta : (V,A, τ) → (V,A, τ), defined by Ta(x) = a + x is soft
homeomorphism for any a ∈ V.

Proof. The proof is similar as above. �

Proposition 4.12. Let τ be a vector soft topology on a vector space V over the field
K endowed with the soft usual topology ν and τ be a weak enriched soft topology.
Then the mapping h : (V × V,A, τ×̃τ) → (V × V,A, τ×̃τ), defined by h(x, y) =
(ax, by) is soft continuous for all scalars a, b ∈ K and x, y ∈ V.

Proof. We know that the mappings πi : (V ×V,A, τ×̃τ)→ (V,A, τ), i = 1, 2; defined
by π1(x, y) = x and π2(x, y) = y are soft continuous. Also, Mk : (V,A, τ) →
(V,A, τ), defined by Mk(x) = kx is soft continuous, ∀k ∈ K.
Now, π1h : (V × V,A, τ×̃τ) → (V,A, τ), defined by π1h(x, y) = π1(ax, by) = ax =
Maπ1(x, y).
∴ π1h (= Maπ1) is soft continuous.
Similarly, π2h (= Mbπ2) is soft continuous.
Then from Proposition 2.30, we get that the mapping h : (V × V,A, τ×̃τ) → (V ×
V,A, τ×̃τ), defined by h(x, y) = (ax, by) is soft continuous for all scalars a, b ∈ K
and x, y ∈ V. �

Proposition 4.13. A weak enriched soft topology τ on a vector space V over the
field K, where K endowed with the soft usual topology ν, is a vector soft topology iff
the mapping L(a,b) : (V × V,A, τ×̃τ) → (V,A, τ), defined by L(a,b)(x, y) = ax + by,
is soft continuous ∀a, b ∈ K and ∀x, y ∈ V.

Proof. Let τ be a vector soft topology. Therefore f : (V × V,A, τ×̃τ) → (V,A, τ),
defined by f(x, y) = x+ y is continuous, ∀x, y ∈ V. Also, from Proposition 4.12, the
mapping h : (V ×V,A, τ×̃τ)→ (V ×V,A, τ×̃τ), defined by h(x, y) = (ax, by) is soft
continuous for all scalars a, b ∈ K and x, y ∈ V.
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Therefore, L(a,b) = f ◦ h : (V × V,A, τ×̃τ)→ (V,A, τ), defined by
L(a,b)(x, y) = f(h(x, y)) = f(ax, by) = ax + by, is soft continuous ∀a, b ∈ K and

∀x, y ∈ V.
Conversely, let the mapping L(a,b) : (V×V,A, τ×̃τ)→ (V,A, τ), defined by L(a,b)(x, y) =
ax+ by, is soft continuous ∀a, b ∈ K and ∀x, y ∈ V.

We know that the mappings π1 : (V×V,A, τ×̃τ)→ (V,A, τ), defined by π1(x, y) =
x and π2 : (K × V,A, ν×̃τ)→ (V,A, τ), defined by π2(k, y) = y are soft continuous
∀k ∈ K and ∀x, y ∈ V. Also, since τ is weak enriched by Proposotion 4.9, h0 :
(V,A, τ) → (V × V,A, τ×̃τ), defined by h0(x) = (x, θ) is soft continuous ∀x ∈ V ,
where θ is the zero element of V.
Therefore, g = π1 ◦ L(a,0) ◦ h0 ◦ π2 : (K × V,A, ν×̃τ)→ (V,A, τ),defined by
g(a, x) = π1 ◦ L(a,0) ◦ h0 ◦ π2(a, x)
= π1(L(a,0)(h0(π2(a, x))))
= π1(L(a,0)(h0(x)))
= π1(L(a,0)(x, θ))
= π1(ax, θ)
= ax
is soft continuous, ∀a ∈ K and ∀x ∈ V.
Since, L(a,b) : (V × V,A, τ×̃τ) → (V,A, τ), defined by L(a,b)(x, y) = ax + by,

is soft continuous ∀a, b ∈ K and ∀x, y ∈ V, taking a = 1, b = 1; we can define
f = L(1,1) : (V × V,A, τ×̃τ)→ (V,A, τ), such that f(x, y) = L(1,1)(x, y) = x+ y.

Then f is soft continuous. Then τ is a vector soft topology on V. �

Proposition 4.14. Let τ be a weak enriched vector soft topology on a vector space
V over the field K. If (F,A) is a soft open set and t is a non-zero scalar, then
(tF,A) is also a soft open set.

Proof. Since for t 6= 0, Mt : (V,A, τ)→ (V,A, τ) is a soft homeomorphism, (tF,A) =
Mt(F,A) is soft open whenever (F,A) is so. �

Corollary 4.15. Let τ be a weak enriched vector soft topology on a vector space V
over the field K. If (F,A) is a soft neighborhood of an element x ∈ V and t is a
non-zero scalar, then (tF,A) is soft neighborhood of tx.

Proposition 4.16. Let τ be a weak enriched vector soft topology on a vector space
V over the field K. If (F,A) is soft open, then [x0 + (F,A)] is soft open for all
x0 ∈ V.

Proof. Since the map Tx0
: (V,A, τ) → (V,A, τ), defined by Tx0

(x) = x + x0 is a
soft homeomorphism and Tx0

(F,A) = [x0 + (F,A)] , [x0 + (F,A)] is soft open for all
x0 ∈ V and ∀(F,A) ∈ τ. �

Proposition 4.17. Let τ be a weak enriched vector soft topology on a vector space
V over the field K. If (F,A) is a soft neighborhood of an element x0 ∈ V then
−x0 + (F,A) is a neighborhood of zero of V .

Proposition 4.18. Let (V,A, τ) be a soft topological space over a vector space V
over the field K, where K is equipped with the soft usual topology ν. Then τ is a
vector soft topology if and only if
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(i) ∀x, y ∈ V, ∀α ∈ A and ∀(W,A) ∈ τ with Ex+yα ∈̃(W,A), ∃(F,A), (G,A) ∈ τ such
that Exα∈̃(F,A), Eyα∈̃(G,A) and (F +G,A)⊆̃(W,A).
(ii) ∀x ∈ V, ∀k ∈ K, ∀α ∈ A and ∀(W,A) ∈ τ with Ekxα ∈̃(W,A), ∃(G,A) ∈
ν, (F,A) ∈ τ such that Exα∈̃(F,A), Ekα∈̃(G,A) and (G · F,A)⊆̃(W,A).

Proof. Let τ be a vector soft topology on the vector space V over the scalar field
K. Therefore f : (V × V,A, τ×̃τ) → (V,A, τ), defined by f(x, y) = x + y, g :
(K×V,A, ν×̃τ)→ (V,A, τ), defined by g(k, x) = kx is continuous, ∀x, y ∈ V,∀k ∈ K.
Let x, y ∈ V, α ∈ A and (W,A) ∈ τ with E

f(x,y)
α = Ex+yα ∈̃(W,A). Then by Proposi-

tion 2.22, ∃(U,A) ∈ (τ×̃τ) such that E
(x.y)
α ∈̃(U,A)and f(U,A)⊆̃(W,A).

Since (U,A) ∈ (τ×̃τ) ∃{(Ui, A), (Gi, A) ∈ τ, i ∈ I} such that
(U,A) = ∪̃i∈I [(Ui, A)×̃(Gi, A)]. So, ∃i ∈ I such that Exα∈̃(Ui, A), Eyα∈̃(Gi, A).
Now (Ui, A)×̃(Gi, A) ∈ (τ×̃τ) and (Ui, A)×̃(Gi, A)⊆̃(U,A) and hence
(Ui + Vi, A) = f [(Ui, A)×̃(Gi, A)]⊆̃f [(U,A)]⊆̃(W,A).
Thus the condition (i) is satisfied.
Condition (ii) can be proved similarly.
Conversely, let the given conditions be satisfied.

Let (W,A) ∈ τ and E
(x.y)
α ∈̃f−1[(W,A)].

Then f [E
(x.y)
α ] = E

f(x,y)
α = Ex+yα ∈̃(W,A) and hence by the given condition (i),

∃(Fx, A), (Gy, A) ∈ τ such that Exα∈̃(Fx, A), Eyα∈̃(Gy, A) and (Fx +Gy, A)⊆̃(W,A).

So, (Fx, A)×̃(Gy, A) ∈ (τ×̃τ) and f [(Fx, A)×̃(Gy, A)] = (Fx +Gy, A)⊆̃(W,A).

So, (Fx, A)×̃(Gy, A)⊆̃f−1[(W,A)] and

f−1[(W,A)] = ∪̃{E(x.y)
α : E

(x.y)
α ∈̃f−1[(W,A)]}

⊆̃ ∪̃{(Fx, A)×̃(Gy, A) : E
(x.y)
α ∈̃f−1[(W,A)]}

⊆̃ f−1[(W,A)].

Thus f−1[(W,A)] = ∪̃{(Fx, A)×̃(Gy, A) : E
(x.y)
α ∈̃f−1[(W,A)]} ∈ (τ×̃τ) and hence,

the mapping f : (V × V,A, τ×̃τ) → (V,A, τ), defined by f(x, y) = x + y is soft
continuous.
Continuity of the mapping g : (K × V,A, ν×̃τ)→ (V,A, τ), defined by g(k, x) = kx
can be proved similarly.
Therefore, (V,A, τ) is a vector soft topology on the vector space V over the field
K. �

5. Neighbourhood system of zero

In this section we study some basic properties of the system of neighbourhoods
of the zero vector. In this section, τ is a vector soft topology on a vector space V
over the scalar field K, A be the parameter set, the soft topology on K is the soft
usual topology ν and θ is the zero vector of V.

Definition 5.1. A collection B of soft neighbourhoods of a soft element Exα is said
to be a fundamental soft nbd system or soft nbd base of Exα if for any soft nbd (F,A)
of Exα, ∃(H,A) ∈ B such that (H,A)⊆̃(F,A).

Proposition 5.2. Let B be a fundamental soft nbd system of the soft element Eθα
in (V,A, τ). Then ∀(F,A) ∈ B, (−F,A) is also a soft nbd of Eθα, where (−F )(α) =
{−x : x ∈ F (α)}.
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Proof. Proof follows from Proposition 4.15. �

Definition 5.3. A soft set (F,A) over a vector space V over the field K is said to
be symmetric iff (−F,A) = (F,A). A soft nbd system is said to be symmetric soft
nbd system if all the members of that system are symmetric.

Proposition 5.4. Let τ be a vector soft topology over a vector space V over the field
K. Then there exists a fundamental symmetric soft nbd system of the soft element
Eθα in (V,A, τ).

Proposition 5.5. Let τ be a vector soft topology on a vector space V over the scalar
field K. Then for a soft nbd (W,A) of Eθα ∃ a balanced soft nbd (F,A) of Eθα such
that F (α) ⊆W (α) . If further, τ is enriched soft topology, then
(i) every soft nbd of Eθα contains a balanced soft nbd of Eθα.
(ii) every convex soft nbd of Eθα contains an absolutely convex soft nbd of Eθα.

Proof. Let (W,A) ∈ τ and Eθα ∈ (W,A) . By the continuity of g : (k, x) → kx and

g
(
E

(0,θ)
α

)
= E

g(0,θ)
α = Eθα, ∃ (H,A) ∈ ν and (G,A) ∈ τ such that E

(0,θ)
α ∈̃

(
H×̃G,A

)
and g

(
H×̃G,A

)
⊆̃ (W,A) . So ∃ δ > 0 such that γG (α) ⊆ W (α) for all γ with

| γ |< δ. Consider (F,A) = ∪{(ρG,A) :| ρ |< δ} . Then (F,A) is a balanced nbd of
Eθα and F (α) ⊆W (α) .
(i) If further, τ is an enriched then taking F (α) = ∪{ρH (α) :| ρ |< δ} and F (β) =
φ, ∀β 6= α we see that (F,A) is a balanced soft nbd of Eθα and (F,A) ⊆ (W,A) .
(ii) Let (F,A) be a convex soft nbd of Eθα. Then ∃ (H,A) ∈ τ such that Eθα∈̃(H,A)
⊆̃(F,A). Then θ ∈ H(α) ⊆ F (α). Again since τα is a vector topology on V, H(α) ∈
τα. Then F (α) is a convex nbd of θ in (V, τα). Then by topological vector space
theory, ∃ a balanced and convex nbd W of θ in (V, τα) such that θ ⊆W ⊆ F (α).
Now construct a soft set (G,A) such that G(α) = W and G(β) = φ ,∀β 6= α. Then
(G,A) ∈ τ , as τ is enriched and Eθα∈̃(G,A)⊆̃(F,A). Also (G,A) is balanced and
convex soft set.
∴ (G,A) is an absolutely convex soft nbd of Eθα such that (G,A)⊆̃(F,A). �

Corollary 5.6. Let τ be an enriched vector soft topology over a vector space V over
the scalar field K, K is equipped with the soft usual topology. Then ∃ a balanced soft
nbd base of the soft element Eθα in (V,A, τ).

Proof. Follows from Proposition 5.5. �

Proposition 5.7. For each soft nbd (W,A) of Eθα in (V,A, τ) where τ is a weak
enriched soft topology and for each finite set {k1, k2, ......., kn} with ki = 1 or −1,
i = 1, 2, ......, n, ∃ a symmetric soft nbd (U,A) of Eθα such that

(k1U,A) + (k2U,A) + ............+ (knU,A)⊆̃(W,A).

Proof. Let (W,A) be a soft nbd of Eθα. Since (k1E
θ
α) + (k2E

θ
α) + ...........+ (knE

θ
α) =

Eθα, by soft continuity of addition and scalar multiplication in (V,A, τ), it follows
that there exist soft nbds (F1, A), (F2, A),.......,(Fn, A) of Eθα such that (k1F1, A) +
(k2F2, A) + ............+ (knFn, A)⊆̃(W,A).
Let (F,A) = (F1, A)∩̃(F2, A)∩̃............∩̃(Fn, A). Then (F,A) is a soft nbd of Eθα
and since τ is a weak enriched soft topology, (−F,A) is a soft nbd of Eθα. Let
(U,A) = (F,A)∩̃(−F,A). Then (U,A) is a symmetric soft nbd of Eθα.
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Thus (k1U,A) + (k2U,A) + ............ + (knU,A) ⊆̃(k1F,A) + (k2F,A) + ............ +
(knF,A) ⊆̃(k1F1, A) + (k2F2, A) + ............+ (knFn, A) ⊆̃(W,A). �

Proposition 5.8. Let B be a soft nbd base of the soft element Eθα in (V,A, τ), where
τ is a weak enriched soft topology. Then B′ = {x + (F,A) : (F,A) ∈ B} is a soft
nbd base of Exα.

Proof. Let (G,A) be any soft nbd of Exα. Then T−x[(G,A)] is a soft nbd of T−x(Exα).
i.e. −x + (G,A) is a soft nbd of −x + Exα = Eθα. So, ∃(F,A) ∈ B such that
Eθα∈̃(F,A)⊆̃−x+(G,A). Hence Tx[(F,A)] is a soft nbd of Tx(Eθα) such that Tx(Eθα)
∈̃Tx [(F,A)] ⊆̃Tx [−x+ (G,A]). Thus Exα ∈̃ [x+ (F,A)] ⊆̃ [x− x+ (G,A)] = (G,A).
Thus B′ is a soft nbd base of Exα. �

Proposition 5.9. If B be a soft nbd base of the soft element Exα in (V,A, τ), where
τ is a weak enriched soft topology. Then
(i) B′ = {−x+ (F,A) : (F,A) ∈ B} is a soft nbd base of Eθα.
(ii) B′ = {(tF,A) : (F,A) ∈ B} is a soft nbd base of Etxα , where t is a non zero
scalar.

Proposition 5.10. If B be the system of all nbds of the soft element Eθα in (V,A, τ),
then Bα = {U(α) : (U,A) ∈ B} is the system of all nbds of θ in (V, τα).

Proposition 5.11. Let B be the system of all nbds of the soft element Eθα in

(V,A, τ) and (F,A) be any soft set over V. Then F (α) = ∩(U,A)∈B [F (α) + U(α)]
= ∩(U,A)∈B [U(α) + F (α)] .

Proof. Since B be the system of all nbds of the soft element Eθα, Bα = {U(α) :
(U,A) ∈ B} is system of all nbds of θ in (V, τα). So, using Proposition 2.21 we have,

F (α) = F (α)
α

= ∩(U,A)∈B [F (α) + U(α)] = ∩(U,A)∈B [U(α) + F (α)] . �

Proposition 5.12. For any soft nbd (U,A) of Eθα in (V,A, τ), where τ is a weak

enriched soft topology, ∃ a soft nbd (W,A) of Eθα such that W (α) ⊆ U(α). If further,

τ is enriched, then (W,A)⊆̃(U,A).

Proof. Let (U,A) any soft nbd of Eθα. Then by Proposition 5.7, ∃ a soft nbd (F,A)

of Eθα such that(F,A) + (F,A)⊆̃(U,A). Also, by Proposition 2.21, F (α) = F (α)
α
.

Since (F,A) is a nbd of Eθα, by Proposition 5.11, F (α) ⊆ [F (α) + F (α)] ⊆ U (α) .

So, taking (W,A) = (F,A)we get W (α) ⊆ U(α).
If further, τ is enriched, then taking W (α) = F (α) and W (β) = φ, ∀β 6= α, we get

(W,A)⊆̃(U,A). �

Definition 5.13. A soft topological space (X,A, τ) is said to be level regular space

if for any soft closed set (F,A) and any soft element Exα such that Exα /̃∈(F,A), ∃
(U,A), (V,A) ∈ τ such that Exα∈̃(U,A), F (α) ⊆ V (α) and U(α) ∩ V (α) = φ.

Proposition 5.14. A soft topological space (X,A, τ) is level regular space iff ∀Exα ∈
= and ∀(U,A) ∈ τ such that Exα∈̃(U,A), ∃(V,A) ∈ τ such that Exα∈̃(V,A) and

V (α) ⊆ U(α).
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Proof. Let (X,A, τ) be a level regular space and Exα ∈ =, (U,A) ∈ τ such that

Exα∈̃(U,A). Let (F,A) = (X̃, A) \ (U,A). Then (F,A) is soft closed and Exα /̃∈(F,A).
Since (X,A, τ) is level regular, ∃ (V,A), (W,A) ∈ τ such that Exα∈̃(V,A), F (α) ⊆
W (α) and V (α) ∩W (α) = φ. Now, V (α), W (α) ∈ τα and V (α) ⊆ X \W (α). Thus

V (α) = V (α)
α

= X \W (α)
α

= X \W (α) ⊆ X \ F (α) = U(α).

Conversely, let Exα ∈ = and (F,A) be soft closed such that Exα /̃∈(F,A). Consider

(U,A) = (X̃, A) \ (F,A). Then (U,A) ∈ τ such that Exα∈̃(U,A). So, by the given

condition ∃(V,A) ∈ τ such that Exα∈̃(V,A) and V (α) ⊆ U(α). Now V (α) = V (α)
α

is closed in τα. Let W (α) = X \V (α). Then W (α)∈ τα. Then ∃(G,A) ∈ τ such that

G(α) = W (α) and F (α) = X \ U(α) ⊆ X \ V (α) = G(α). Also V (α) ∩ G(α) = φ.
Therefore, (X,A, τ) is a level regular space. �

Proposition 5.15. Let τ be a vector soft topology on a vector space V over the field
K, where τ is a weak enriched soft topology. Then the soft topological space (V,A, τ)
is level regular. If further, τ is enriched, then (V,A, τ) is soft regular.

Proof. Let Exα ∈ = and (U,A) ∈ τ be such that Exα∈̃(U,A). Then (U,A) is a soft
nbd of Exα and hence by Proposition 5.9, [−x+ (U,A)] = (W,A) (say) is a soft nbd

of Eθα. Then by Proposition 5.12, ∃ a soft nbd (F,A) of Eθα such that F (α) ⊆W (α).
Since τ is weak enriched, [x+ (F,A)] is a soft nbd of Exα and hence ∃(P,A) ∈ τ such
that Exα ∈̃(P,A) ⊆̃ [x+ (F,A)] .

Then P (α) ⊆ x+ F (α)

= x+ F (α)
α

= x+ F (α)
α

[∵ (V, τα) is a topological vector space]

= x+ F (α)
⊆ x+ [−x+ U(α)] = U(α).
∴ By Proposition 5.14, the soft topological space (V,A, τ) is level regular.

If further, τ is enriched, then by Proposition 5.12, (F,A)⊆̃(W,A).

Thus, (P,A) ⊆̃[x+ (F,A)]

= Tx[(F,A)]

= Tx[(F,A)], [since Tx is a soft homeomorphism and τ is enriched ]

= x+ (F,A)
⊆̃x+ [−x+ (U,A)] = (U,A).

Therefore, by Proposition 2.27, the soft topological space (V,A, τ) is soft regular. �

Lemma 5.16. Let τ be a vector soft topology on a vector space V over the scalar
field K and τ be an enriched soft topology. Then
(i) If (W,A) be any open nbd of Eθα, then Exα + (W,A) is an open nbd of Exα.
(ii) If (W,A) be any open nbd of Exα, then Etα · (W,A) is an open nbd of Etxα , for
any non zero scalar t.

Proof. (i) Let (W,A) be any open nbd of Eθα, α ∈ A. Then E(α) = θ ∈ W (α) ∈ τα
i.e. W (α) is an open nbd of θ in τα. Since τα is a vector topology on V and W (α) is
an open nbd of θ in τα, [x+W (α)] is an open nbd of x in τα. Now, [Exα + (W,A)] (α)
= {x+ y : y ∈ W (α)} and [Exα + (W,A)] (β) = φ ∀β 6= α. ∴ Exα + (W,A) ∈ τ , since
τ is enriched. Again Exα∈̃ [Exα + (W,A)] .
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Therefore, [Exα + (W,A)] is an open nbd of Exα.
Proof of (ii) is similar as above. �

We now introduce the following definitions:

Definition 5.17. Let (X,A, τ) be a soft topological space. If for Exα, E
y
α ∈ = with

x 6= y ,

(i) ∃ (F,A) ∈ τ such that [Exα∈̃(F,A) and Eyα /̃∈(F,A)] or [Eyα∈̃(F,A) and Exα /̃∈(F,A)],
then (X,A, τ) is called level T0−space.

(ii) ∃ (F,A), (G,A) ∈ τ such that [Exα∈̃(F,A) and Eyα /̃∈(F,A)] and [Eyα∈̃(G,A) and

Exα /̃∈(G,A)], then (X,A, τ) is called level T1−space.
(iii) ∃ (F,A), (G,A) ∈ τ such that Exα∈̃(F,A), Eyα∈̃(G,A) and F (α) ∩ G (α) = φ,
then (X,A, τ) is called level T2−space.

Proposition 5.18. Let τ be a weak enriched vector soft topology on a vector space
V over the scalar field K, K is equipped with the soft usual topology and θ is the
zero vector of V. Then the following statements are related as follows: (i) ⇔ (ii) ;
(iii) ⇒ (iv) ⇒ (i).
(i) (V,A, τ) is a level T0− space.
(ii) (V,A, τ) is a level T1− space.
(iii) (V,A, τ) is a level T2− space .
(iv) ∩̃{(U,A) : (U,A) ∈ B} = {Eθα}, where B is a fundamental system of nbds of
Eθα, α ∈ A.
Proof. (i) ⇔ (ii):
Let (V,A, τ) be a level T0− space and Exα, Eyα ∈ = such that Exα 6= Eyα. Then ∃ an
soft open set (F,A) such that one of Exα and Eyα belong to (F,A) but the other does
not belong to (F,A).

Let Exα∈̃(F,A) but Eyα /̃∈(F,A). Consider (W,A) = [−x+ (F,A)] . Then (W,A) is a
soft open set containing Eθα and (U,A) = (W,A)∩̃(−W,A) is a symmetric soft open
set containing Eθα.
So, [y + (U,A)] is an soft open set containing Eyα.

We shall now show that Exα /̃∈ [y + (U,A)] . If possible let Exα∈̃ [y + (U,A)]. Then
E−xα ∈̃ [(−U,A) + (−y)] = (U,A) + (−y) ⊆̃(W,A) + (−y) = [(−x) + (F,A) + (−y)].
Thus Eθα = Exα + E−xα ∈̃Exα + [(−x) + (F,A) + (−y)] = Eθα + (F,A) + (−y). Thus,
y + Eθα = Eyα∈̃y +

[
Eθα + (F,A) + (−y)

]
. Therefore, Eyα∈̃(F,A), a contradiction.

∴ (V,A, τ) is a level T1− space. Conversely, if (V,A, τ) is a level T1− space then
obviously (V,A, τ) is a level T0− space.

(iii)⇒ (iv) :
Let (V,A, τ) is a level T2− space and B be a fundamental system of nbds of Eθα.
Let Exα∈̃∩̃{(U,A) : (U,A) ∈ B}.
If possible let Exα 6= Eθα. Since (V,A, τ) is a level T2− space, there exist a soft open

set (F,A) such that Eθα∈̃(F,A) but Exα /̃∈(F,A). Since B be the fundamental system
of nbds of Eθα, ∃ (U,A) ∈ τ such that (U,A)⊆̃(F,A).

So, Exα /̃∈(U,A), which contradicts our assumption Exα∈̃(U,A), ∀(U,A) ∈ B.
Thus Exα = Eθα and ∩̃{(U,A) : (U,A) ∈ B} = {Eθα}.
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(iv)⇒ (i) :
Let ∩̃{(U,A) : (U,A) ∈ B} = {Eθα} and Exα, Eyα ∈ = such that Exα 6= Eyα. Then

E−yα +Exα 6= Eθα and ∃ (U,A) ∈ B such that E−yα +Exα /̃∈(U,A). So, Exα /̃∈ [y + (U,A)].

Thus, [y + (U,A)] is a soft open set containing Eyα but Exα /̃∈ [y + (U,A)].
∴ (V,A, τ) is a level T0− space. �

Proposition 5.19. Let τ be an enriched vector soft topology on a vector space V
over the scalar field K, K is equipped with the soft usual topology and θ is the zero
vector of V. Then the following statements are equivalent:
(i) (V,A, τ) is a soft T0− space.
(ii) (V,A, τ) is a soft T1− space.
(iii) (V,A, τ) is a soft T2− space.
(iv) ∩̃{(U,A) : (U,A) ∈ B} = {Eθα}, where B is a fundamental system of nbds of
Eθα, α ∈ A.

Proof. (i)⇒ (ii) :
Let (V,A, τ) be a soft T0− space and Exα, Eyβ ∈ = such that Exα 6= Eyβ . If α 6= β and

since τ is enriched, ∃ soft open sets (F,A), (G,A) where F (α) = V, F (β) = φ, ∀β 6= α

and G(β) = V, G(α) = φ, ∀α 6= β. So, Exα∈̃(F,A), Eyβ /̃∈(F,A) and Eyβ∈̃(G,A),

Exα /̃∈(G,A). For the case when α = β and x 6= y, the proof is similar as of Proposi-
tion 5.18.

(ii)⇒ (iii) :
Next assume that (V,A, τ) is a soft T1− space. we only consider the case when
α = β and x 6= y. Since τ is a soft T1− space, it follows that {Exα} is soft closed set

and hence (P,A) = (Ṽ , A) \ {Exα} is soft open set containing {Eyα}.
So, [(−y) + (P,A)] is a soft nbd of Eθα. Then by Proposition 5.7, ∃ a soft open nbd
(W,A) of Eθα such that (W,A)+(−W,A)⊆̃ [(−y) + (P,A)] . So, [y + (W,A)] is a soft

open nbd of Eyα and (Q,A) = (Ṽ , A) \ [y + (W,A)] is a soft open set.

If Exα∈̃[y + (W,A)], then since Exα + (W,A) is a soft open nbd of Exα,

[Exα + (W,A)] ∩̃ [y + (W,A)] 6= (Φ̃, A)
⇒ ([Exα + (W,A)] ∩̃ [y + (W,A)]) (α) 6= φ.
Then ∃ z ∈ ([Exα + (W,A)] ∩̃ [y + (W,A)]) (α).
∴ z = x+ t, for some t ∈W (α) and z = y + s, for some s ∈W (α).
So, x+t = y+s, t, s ∈W (α).And this implies that x = y+s−t ∈ [y +W + (−W )] (α).
i.e. Exα∈̃ [y + (W,A) + (−W,A)] ⊆̃y + (−y) + (P,A) = (P,A), which is a contradic-

tion, because Exα /̃∈(P,A).
Thus (Q,A) is a soft open set containing Exα. Then Exα∈̃(Q,A), Eyα∈̃ [y + (W,A)]

and (Q,A)∩̃ [y + (W,A)]= (Φ̃, A).
Therefore, (V,A, τ) is a soft T2− space.

Proof of (iii) ⇒ (iv) ⇒ (i) is similar as above.
Therefore, the statements (i), (ii), (iii) and (iv) are equivalent. �
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Proposition 5.20. Let τ be a vector soft topology on a vector space V over the
scalar field K, where τ is an enriched soft topology. Then there exists a fundamental
soft nbd system B of closed nbds of Eθα such that
(i) each (U,A) ∈ B is symmetric;
(ii) ∀(U,A) ∈ B, ∃(W,A) ∈ B such that (W,A) + (W,A)⊆̃(U,A);
(iii) ∀(U,A) ∈ B and ∀a ∈ V , ∃(W,A) ∈ B such that (W,A)⊆̃ [E−aα + (U,A) + Eaα]
i.e. [Eaα + (W,A) + E−aα ] ⊆̃(U,A);
(iv) ∀(W,A) ∈ B and ∀Eaα∈̃(W,A), ∃(U,A) ∈ B such that [Eaα + (U,A)] ⊆̃(W,A).

Proof. (i) We know that ∃ a fundamental system B′ of symmetric nbds of Eθα.

Let B = {(U,A) : (U,A) ∈ B′}.
Since (U,A) ∈ B′ ⇒ (U,A) is symmetric and hence (−U,A) = (U,A).
Again since the scalar multiplication is soft homeomorphism and hence ∀α ∈ A,
[−U ](α) = [−U ] (α)

α
= − [U(α)]

α
= −

[
U(α)

α
]

= −
[
U(α)

]
=
[
−U
]

(α).

So, (U,A) = − (U,A) = −
[
(U,A)

]
. Thus (U,A) is a symmetric closed nbd of Eθα.

We shall now show that B is a fundamental system of nbds of Eθα.
Let (W,A) be any nbd of Eθα. Then by Proposition 5.12, there exists a nbd (F,A)

of Eθα such that (F,A)⊆̃(W,A).
Since B′ is a fundamental system of nbds of Eθα, ∃ (U,A) ∈ B′ such that

(U,A) ⊆̃(F,A).

Then (U,A) ∈ B and (U,A)⊆̃(F,A)⊆̃(W,A).
Therefore B is a fundamental system of closed nbds of Eθα such that each member

of B is symmetric.

(ii) Let (U,A) ∈ B. Then from Proposition 5.7, ∃ a symmetric nbd (F,A) of
Eθα such that (F,A) + (F,A) ⊆̃ (U,A) . Since B is a fundamental system of nbds
of Eθα ∃(W,A) ∈ B such that (W,A)⊆̃ (F,A) . Then (W,A) + (W,A)⊆̃ (F,A) +
(F,A) ⊆̃(U,A).

(iii) Let (U,A) ∈ B. Since
[
a+ Eθα + (−a)

]
= Eθα, (U,A) is a soft nbd of Eθα and

the translation mapping is soft homeomorphism, ∃ a soft nbd (V1, A) of Eθα such
that [a+ (V1, A) + (−a)] ⊆̃ (U,A) .
Since B is a fundamental system of nbds of Eθα, ∃(W,A) ∈ B such that (W,A) ⊆̃ (V1, A) .
Therefore Eaα+(W,A)+E−aα ⊆̃ [a+ (W,A) + (−a)] ⊆̃ [a+ (V1, A) + (−a)] ⊆̃ (U,A) .

(iv) Let (W,A) ∈ B and Eaα∈̃(W,A).
Since a + Eθα = Eaα i.e. Ta(Eθα) = Eaα, (W,A) is a soft nbd of Eaα and translation
mapping is soft homeomorphism, there exist a soft nbd (U1, A) of Eθα such that
Ta [(U1, A)] ⊆̃(W,A) i.e. [a+ (U1, A)] ⊆̃(W,A).
Since B is a fundamental system of nbds of Eθα, ∃(U,A) ∈ B such that (U,A) ⊆̃ (U1, A) .
Therefore Eaα + (U,A)⊆̃ [a+ (U,A)] ⊆̃ [a+ (U1, A)] ⊆̃(W,A). �

62



Moumita Chiney et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 45–64

6. Conclusion

In this paper, we have introduced vector soft topology and studied its separation
properties. In this context the neighbourhood systems of soft elements play impor-
tant role because of the homeomorphism property of the translation operator. This
is just a beginning of studying soft topological vector spaces. There is a huge scope
of further study in extending the results of classical topological vector spaces [28] in
soft setting.
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