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1. INTRODUCTION

There are strong and efficient techniques to find approximate solutions for the
linear and nonlinear equations, that most of these equations don’t have exact solution
such as heat-like equations. In mathematics, in order to solve the model of heat-like
equations, we will introduce some imprecise parameters.

In this work, the contribution is solving heat-like equations with fuzzy parameters
via the same strategy as Buckley and Feuring [3, 4] using Variational Iteration
Method VIM. The VIM proposed by He in [8, 9, 10], is a method of solving linear
or nonlinear problems [14, 15] and gives rapid convergent successive approximations
of the exact solution if that last exists.

In comparison with the paper [1], we investigate problems with fuzzy parameters,
fuzzy initial value and fuzzy forcing functions, we propose a new theorem for finding
the exact fuzzy solutions, witch extended to the Buckley-Feuring for the proposed
models.

We begin Section 2 by defining the notation where we will use in the paper and
then in Section 3 and 4, fuzzy heat-like equations and the VIM are illustrated,
respectively. In Section 5, the same strategy as in Buckley-Feuring is presented for
two-dimensional fuzzy heat-like equation. Some examples in Section 6 illustrated.
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2. Preliminaries

We place a bar over a capital letter to denote a fuzzy number of Rn. So, A, K, γ,
β etc. all represent fuzzy numbers of Rn for some n. We write µA(t), a number

in [0, 1], for the membership function of A evaluated at t ∈ Rn. An α-cut of A is
always a closed and bounded interval that written A[α], is defined as {t|µU (t) ≥ α}
for 0 < α < 1. We separately specify A[0] as the closure of the union of all the U [α]
for 0 < α ≤ 1

Definition 2.1 ([5]). Let RF =
{
A | A : R→ [0, 1], satisfies (1)− (4)

}
:

(1) ∀A ∈ RF , A is normal.
(2) ∀A ∈ RF , A is a fuzzy convex set.
(3) ∀A ∈ RF , A is upper semi-continuous on R.
(4) A[0] is a compact set.

Then RF is called fuzzy number space and ∀A ∈ RF , A is called a fuzzy number.

Definition 2.2 ([5, 12]). We represent an arbitrary fuzzy number by an ordered
pair of functions A[α] = [A1(α), A2(α)], α ∈ [0, 1], which satisfy the following
requirements :

(1) A1(α) is a nondecreasing function over [0, 1],
(2) A2(α) is a nonincreasing function on [0, 1]
(3) A1(α) and A2(α) are bounded left continuous on (0, 1], and right continuous

at α = 0, and
(4) A1(α) ≤ A2(α), for 0 ≤ α ≤ 1

Definition 2.3. Let A = (a1, a2, a3), (a1 < a2 < a3). A is called triangular fuzzy
number with peak (center) a2, left width a2 − a1 > 0 and right width a3 − a2 > 0,
if its membership function has the following form :

µA(t) =


1− (a2 − t)

a2 − a1
, a1 ≤ t ≤ a2

1− (t− a2)

a3 − a2
, a2 ≤ t ≤ a3

0, otherwise.

The support of A is [a1, a3]. We can write :

(1) A > 0 if a1 > 0,
(2) A ≥ 0 if a1 ≥ 0,
(3) A < 0 if a3 < 0,
(4) A ≤ 0 if a3 ≤ 0.

Definition 2.4. For arbitrary fuzzy numbers A[α] =
[
a1(α), a2(α)

]
and

B[α] =
[
b1(α), b2(α)

]
we have algebraic operations as follows :

(1) (A+B)[α] =
[
a1(α) + b1(α), a2(α) + b2(α)

]
(2) (A−B)[α] =

[
a1(α)− b2(α), a2(α)− b1(α)

]
30
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(3)

kA[α] =


[
ka1(α), ka2(α)

]
k ≥ 0

[
ka2(α), ka1(α)

]
k < 0

(4) (A.B)[α] = {min z,max z} with

z =
{
a1(α).b1(α), a1(α).b2(α), a2(α).b1(α), a2(α).b2(α)

}
(5) If 0 /∈

[
b1(α), b2(α)

]
A

B
[α] =

[
(
a1
b1

)(α), (
a2
b2

)(α)

]
where (

a1
b1

)
(α) = min

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
(
a2
b2

)
(α) = max

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
We adopt the general definition of a fuzzy number given in [6].

3. Fuzzy heat-like equations

We consider the heat-like equations in one and two dimensional cases which can
be written in the forms

• One-dimensional [1] :

(3.1) Ut(t, x) + P (x, γ)Uxx(t, x) = F (t, x, k)

• Two-dimensional [1] :

(3.2) Ut(t, x, y) + P (x, γ)Uxx(t, x, y) +Q(y, β)Uyy(t, x, y) = F (t, x, y, k)

or

(3.3) Ut(t, x, y) +Q(y, β)Uxx(t, x, y) + P (x, γ)Uyy(t, x, y) = F (t, x, y, k)

subject to certain initial and boundary conditions.
These initial and boundary conditions, in state two-dimensional, can come in a
variety of forms such as

U(0, x, y) = c1 or U(0, x, y) = g1(x, y, c2) or U(M1, x, y) = g2(x, y, c3, c4), . . .

In this paper the method is applied for the heat-like equation (3.2). For (3.1) and
(3.3), the same discussion can be made. In following lines, the components of (3.2)
are enumerated :

• I1 = [0,M1], I2 = [M2,M3] and I3 = [M4,M5] are three intervals, which
Mn1

(n1 = 2, 3, 4, 5) is negative or positive and M1 > 0.
• F (t, x, y, k), U(t, x, y), P (x, γ) and Q(y, β) will be continuous functions for

(t, x, y) ∈
∏3
j=1 Ij .

• P (x, γ) and Q(y, β) have a finite number of roots for each (x, y) ∈ I2 × I3
31
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• k =
(
k1, . . . , kn

)
, c =

(
c1, . . . , cm

)
, γ =

(
γ1, . . . , γs

)
and β =

(
β1, . . . , βe

)
are vectors of constants with kj ∈ Jj , ci ∈ Li and γr ∈ Hr and βl ∈ Dl.

Assume that (3.2) has a solution

(3.4) U(t, x, y) = G(t, x, y, k, c, γ, β)

for G and Gt(t, x, y, k, c, γ, β) + P (x, γ)Gxx(t, x, y, k, c, γ, β) +Q(y, β)Gyy(t, x, y, k, c, γ, β)

are continuous with (t, x, y) ∈
3∏
j=1

Ij , k ∈ J =

n∏
j=1

Jj , c ∈ L =

m∏
i=1

Li, γ ∈ H =

s∏
r=1

Hr

and β ∈ D =

e∏
l=1

Dl.

Suppose the constant kj , ci, γr and βl are imprecise in their values. We will model
this uncertainty by substituting triangular fuzzy numbers for the kj , ci , γr and
βl. If we fuzzify (3.2), then we obtain the fuzzy heat-like equation. Using the
extension principle, we compute F , P and Q from F , P and Q where F (t, x, y,K)
has K = (k1, . . . , kn) and P (x, γ) has γ = (γ1, . . . , γs) and Q(y, β) a β = (β1, . . . , βe)
for kj , γr and βl a triangular fuzzy numbers in Jj (0 ≤ j ≤ n), Hr (0 ≤ r ≤ s) and
Dl (0 ≤ l ≤ e).

The function U is changed to U where U :

3∏
j=1

Ij → F(R). That is, U(t, x, y) is a

fuzzy function. The fuzzy heat-like equation is

(3.5) U t(t, x, y) + P (x, γ)Uxx(t, x, y) +Q(y, β)Uyy(t, x, y) = F (t, x, y,K)

subject to certain initial and boundary conditions. The initial and boundary condi-
tions can be of the form

U(0, x, y) = C1 or U(0, x, y) = g1(x, y, C2) or U(M1, x, y) = g2(x, y, C3, C4)

The gj is the fuzzification gi via extension principle. Then, we will solve the problem
given in (3.5). Finally, we fuzzify G in (3.4).
Let Z(t, x, y) = G(t, x, y,K,C, γ, β) where Z is computed using the extension prin-
cipale and is a fuzzy solution. In section 5, we will discuss concept of the solution
with the same strategy as Buckley-Feuring for fuzzy heat-like equation.
Let K[α] =

∏n
j=1Kj [α], γ[α] =

∏s
r=1 γr[α], C[α] =

∏m
i=1 Ci[α]

and β[α] =
∏e
l=1 βl[α]

4. The variational iteration method

To illustrate the basic idea of the VIM we consider the following PDE model

(4.1) LtU + LxU + LyU +NU = F (t, x, y, k)

where Lt, Lx and Ly are linear operators of t, x and y, respectively, and N is a
nonlinear operator, also F (t, x, y, k) is the source non-homogeneous term. According
to the VIM [14, 15], we can express the following correction function for (4.1) in t,
x and y directions can be written as

Un+1(t, x, y) = Un(t, x, y) +

∫ t

0

λ{LsUn + (Lx + Ly +N)Ũn − F (s, x, y, k)}ds
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where λ is general lagrange multiplier [11], which can be identified optimally via the

variational theory [7, 15], and Ũn is a restricted variation which means δŨn = 0.
First, it is required to determine the lagrange multipliers λ that will be identified
optimally via integration by parts. The approximations Un+1, n ≥ 0, of the solution
U(t, x, y) will immediately follow upon using any selective function U0.
The initial values U(0, x, y) is usually used for the selected zeroth approximations U0.
With the Lagrange multiplies λ determined, then several approximation ui(t, x, y),
i ≥ 0 can be determined. Consequently, the solution is given as

U(t, x, y) = lim
n→∞

Un(t, x, y)

According to the VIM, we construct a correction functional for (3.2) in t-direction
as follows

(4.2) Un+1(t, x, y) = Un(t, x, y)

+

∫ t

0

λ(s)
{

(Un)s + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)
}
ds

where n ≥ 0 and λ is a lagrange multiplier. We now determine the lagrange multiplier

δUn+1(t, x, y) = δUn(t, x, y)

+ δ

∫ t

0

λ(s)
{

(Un)s + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)
}
ds

Therefore, the stationary conditions are:

λ
′
(s) = 0

1 + λ(s)|s=t = 0

Thus, the lagrange multiplier is λ = −1. Submitting the results into (4.2) leads to
the following iteration formula

(4.3) Un+1(t, x, y) = Un(t, x, y)

−
∫ t

0

{(Un)s + P (x, γ)(Ũn)xx +Q(y, β)(Ũn)yy − F (s, x, y, k)}ds

Iteration formula start with initial approximation, for example U0(t, x, y) = U(0, x, y).
Also the VIM used for system of linear and nonlinear partial differential equation
[15] which handled in obtain Seikkala solution.

5. Buckley-Feuring Solution (BFS) and Seikkala solution (SS)

5.1. Buckley-Feuring solution.
Buckley-Feuring first proposed the BFS [2, 3]. They define for all t, x, y and
α ∈ [0, 1],

Z(t, x, y)[α] =
[
z1(t, x, y, α), z2(t, x, y, α)

]
, F

(
t, x, y, k

)
[α] =

[
F1(t, x, y, α), F2(t, x, y, α)

]
and to check (3.5) we must compute P

(
x, γ

)
and Q

(
y, β

)
. The α-cuts of P

(
x, γ

)
and Q

(
y, β

)
can be found as follows :
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∀α ∈ [0, 1]

P (x, γ)[α] =
[
P1(x, α), P2(x, α)

]
, Q(y, β)[α] =

[
Q1(y, α), Q2(y, α)

]
Let W = K[α]× C[α]× γ[α]× β[α]. By definition

(5.1) z1(t, x, y, α) = min
{
G(t, x, y, k, c, γ, β) : (k, c, γ, β) ∈W

}
(5.2) z2(t, x, y, α) = max

{
G(t, x, y, k, c, γ, β) : (k, c, γ, β) ∈W

}
and

(5.3) F1(t, x, y, α) = min
{
F (t, x, y, k) : k ∈ K[α]

}
(5.4) F2(t, x, y, α) = max

{
F (t, x, y, k) : k ∈ K[α]

}
∀(t, x, y) ∈

∏3
j=1 Ij and α ∈ [0, 1]

and

(5.5) P1(x, α) = min {P (x, γ)|γ ∈ γ[α]} , P2(x, α) = max {P (x, γ)|γ ∈ γ[α]}

∀x ∈ I2 and α ∈ [0, 1]
and

(5.6) Q1(y, α) = min
{
Q(y, β)|β ∈ β[α]

}
, Q2(y, α) = max

{
Q(y, β)|β ∈ β[α]

}
∀y ∈ I3 and α ∈ [0, 1]
Assume that P (x, γ) > 0, (P1(x, α) > 0), Q(y, β) > 0, (Q1(y, α) > 0) and the
zi(t, x, y, α) i = 1, 2, has continuous partial derivatives so (zi)t+Pi(zi)xx+Qi(zi)yy
is continuous for all t, x, y ∈

∏3
j=1 Ij and all α ∈ [0, 1].

Define

Γ(t, x, y, α) =
[
(z1)t + P1(x, α)(z1)xx +Q1(y, β)(z1)yy,

(z2)t + P2(x, α)(z2)xx +Q2(y, β)(z2)yy

]
for all (t, x, y) ∈

∏3
j=1 Ij and all α.

If, for each fixed t, x, y ∈
∏3
j=1 Ij , Γ(t, x, y, α) defines the α-cut of a fuzzy number,

then will be said that Z(t, x, y) is differentiable and is written

Zt[α] + P [α]Zxx[α] +Q[α]Zyy[α] = Γ(t, x, y, α)

for all (t, x, y) ∈
∏3
j=1 Ij and all α

Sufficient conditions for Γ(t, x, y, α) to define α-cut of a fuzzy number are [6] :

(i) (z1)t(t, x, y, α)+P1(x, α)(z1)xx(t, x, y, α)+Q1(y, α)(z1)yy(t, x, y, α) is an in-

creasing function of α for each (t, x, y) ∈
∏3
j=1 Ij

(ii) (z2)t(t, x, y, α)+P2(x, α)(z2)xx(t, x, y, α)+Q2(y, α)(z2)yy(t, x, y, α) is an de-

creasing function of α for each (t, x, y) ∈
∏3
j=1 Ij and
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(iii) for (t, x, y) ∈
∏3
j=1 Ij(

z1
)
t
(t, x, y, 1) + P1(x, 1)

(
z1
)
xx

(t, x, y, 1) +Q1(y, 1)
(
z1
)
yy

(t, x, y, 1)

≤
(
z2
)
t
(t, x, y, 1) + P2(x, 1)

(
z2
)
xx

(t, x, y, 1) +Q2(y, 1)
(
z2
)
yy

(t, x, y, 1)

Now we assume that the zi(t, x, y, α) has continuous partial derivatives

so (zi)t + Pi(x, α)(zi)xx +Qi(y, α)(zi)yy is continuous on
∏3
j=1 Ij × [0, 1] i = 1, 2.

Hence, if conditions (i)-(iii) above are hold, Z(t, x, y) is differentiable.

For Z(t, x, y) to be a BFS of the fuzzy heat-like equation we need

(a) Z(t, x, y) differentiable
(b) (3.5) hold for U(t, x, y) = Z(t, x, y),
(c) Z(t, x, y) satisfies the initial and boundary conditions.

Z(t, x, y) is a BFS (without the initial and boundary conditions) if Z(t, x, y) is
differentiable and (Z)t+P (x, γ)(Z)xx+Q(y, β)(Z)yy = F (t, x, y, k) or the following
equations must hold

(5.7) (z1)t + P1(x, α)(z1)xx +Q1(y, α)(z1)yy = F1(t, x, y, α)

(5.8) (z2)t + P2(x, α)(z2)xx +Q2(y, α)(z2)yy = F2(t, x, y, α)

for all (t, x, y) ∈
∏3
j=1 Ij and α ∈ [0, 1].

Now, we will present a sufficient condition for the BFS to exist such as Buckley and
Feuring. Since there are such a variety of possible initial and boundary conditions,
so we will omit them from the following theorem. One must separately check out
the initial and boundary conditions. Thus, we will omit the constants ci, 1 ≤ i ≤ m,
from the problem. Therefore, (3.4) becomes U(t, x, y) = G(t, x, y, k, γ, β),

so Z(t, x, y) = G
(
t, x, y,K, γ, β

)
.

Theorem 5.1. Assume Z(t, x, y) is differentiable.

(a)

(5.9) if P (x, γi) > 0 and
∂P

∂γi

∂G

∂γi
> 0 x ∈ I2 for i = 1, 2, . . . ,m

and

(5.10) if Q(y, βl) > 0 and
∂Q

∂βl

∂G

∂βl
> 0 y ∈ I3 for l = 1, 2, . . . , e

and

(5.11) if
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, ..., n

Then BFS = Z(t, x, y)
(b) If relations (5.9) does not hold for some i or relation (5.10) does not hold

for some l, or relation (5.11) does not hold for some j, then Z(t, x, y) is not
a BFS.
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Proof.
(a) For simplicity assume kj = k, γi = γ , βl = β and ∂G

∂k < 0, ∂F
∂k < 0,

∂P
∂γ > 0, ∂G

∂γ > 0, ∂Q
∂β < 0 and ∂G

∂β < 0. The proof for ∂G
∂k > 0, ∂F

∂k > 0, ∂P
∂γ < 0,

∂G
∂γ < 0, ∂Q

∂β > 0 and ∂G
∂β > 0 is similar and omitted.

Since ∂G
∂k < 0 , ∂G

∂γ > 0 and ∂G
∂β < 0, then from (5.1) and (5.2) we have

z1(t, x, y, α) = G
(
t, x, y, k2(α), γ1(α), β2(α)

)
,

z2(t, x, y, α) = G
(
t, x, y, k1(α), γ2(α), β1(α)

)
from (5.3), (5.4) and ∂F

∂k < 0 we have

F1(t, x, y, α) = F
(
t, x, y, k2(α)

)
F2(t, x, y, α) = F

(
t, x, y, k1(α)

)
since (5.5) and ∂P

∂γ > 0 we have

P1(x, α) = P
(
x, γ1(α)

)
P2(x, α) = P

(
x, γ2(α)

)
from (5.6) and ∂Q

∂β < 0 we have

Q1(y, α) = Q
(
y, β2(α)

)
Q2(y, α) = Q

(
y, β1(α)

)
for all α ∈ [0, 1] where K[α] =

[
k1(α), k2(α)

]
, γ[α] =

[
γ1(α), γ2(α)

]
and

β[α] =
[
β1(α), β2(α)

]
.

As we know G(t, x, y, k, γ, β) solves (3.2), which means

Gt + P (x, γ)Gxx +Q(y, β)Gyy = F (t, x, y, k)

for all (t, x, y) ∈
3∏
j=1

Ij , k ∈ J , γ ∈ H and β ∈ D

Suppose Z(t, x, y) is differentiable and P (x, γ) > 0 and Q(y, β) > 0 so

∂tz1(t, x, y, α) + P1(x, α)∂xxz1(t, x, y, α) +Q1(y, α)∂yyz1(t, x, y, α) = F1(t, x, y, α)

∂tz2(t, x, y, α) + P2(x, α)∂xxz2(t, x, y, α) +Q2(y, α)∂yyz2(t, x, y, α) = F2(t, x, y, α)

for all (t, x, y) ∈
3∏
j=1

Ij and α ∈ [0, 1]

Hence, (5.7) and (5.8) holds and Z(t, x, y) is a BFS.

(b) Now consider the situation where (5.9) or (5.10) or (5.11) does not hold.
36
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Let us only look at one case where ∂Q
∂β < 0

(
assume ∂G

∂k > 0, ∂F
∂k > 0, ∂G

∂γ > 0,

∂P
∂γ > 0 and ∂G

∂β > 0, P (x, γ) > 0 and Q(y, β) > 0
)

. Then we have

z1(t, x, y, α) = G
(
t, x, y, k1(α), γ1(α), β1(α)

)
z2(t, x, y, α) = G

(
t, x, y, k2(α), γ2(α), β2(α)

)
F1(t, x, y, α) = F

(
t, x, y, k1(α)

)
, F2(t, x, y, α) = F

(
t, x, y, k2(α)

)
and

P1(x, α) = P
(
x, γ1(α)

)
P2(x, α) = P

(
x, γ2(α)

)
Q1(y, α) = Q

(
y, β2(α)

)
Q2(y, α) = Q

(
y, β1(α)

)
then we have

∂tz1(t, x, y, α) + P1(x, α)∂xxz1(t, x, y, α) +Q1(y, α)∂yyz1(t, x, y, α) = F1(t, x, y, α)

∂tz2(t, x, y, α) + P2(x, α)∂xxz2(t, x, y, α) +Q2(y, α)∂yyz2(t, x, y, α) = F2(t, x, y, α)

which is not true, because

Gt

(
t, x, y, k1(α), γ1(α), β1(α)

)
+ P

(
x, γ1(α)

)
Gxx

(
t, x, y, k1(α), γ1(α), β1(α)

)
+Q

(
y, β2(α)

)
Gyy

(
t, x, y, k1(α), γ1(α), β1(α)

)
= F

(
t, x, y, k1(α)

)
Gt

(
t, x, y, k2(α), γ2(α), β2(α)

)
+ P

(
x, γ1(α)

)
Gxx

(
t, x, y, k2(α), γ2(α), β2(α)

)
+Q

(
y, β1(α)

)
Gyy

(
t, x, k1(α), γ1(α), β2(α)

)
= F

(
t, x, y, k2(α)

)
�

Therefore, if Z(t, x, y) is a BFS and it satisfies the initial and boundary conditions
we will say that Z(t, x, y) is a BFS satisfying the initial and boundary conditions.
If Z(t, x, y) is not a BFS, then we will consider the SS.

5.2. Seikkala solution (SS).
Now let us define the SS [13]. Let

U(t, x, y)[α] =
[
u1(t, x, y, α), u2(t, x, y, α)

]
For example suppose P (x, γ) < 0 and Q(y, β) > 0, so consider the system of heat-like
equations

(5.12) (u1)t + P1(x, α)(u2)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)

(5.13) (u2)t + P2(x, α)(u1)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

Or if P (x, γ) > 0, Q(y, β) > 0, ∂P
∂γ > 0, ∂G

∂γ < 0, ∂Q
∂β > 0, ∂G

∂β > 0

(5.14) (u1)t + P1(x, α)(u1)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)
37
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(5.15) (u2)t + P2(x, α)(u2)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

for all (t, x, y) ∈
∏3
j=1 Ij and α ∈ [0, 1]. We append to Eqs. (5.12) and (5.13) any

initial and boundary conditions. For example, if it was U(0, x, y) = C then we add

(5.16) u1(0, x, y, α) = c1(α)

(5.17) u2(0, x, y, α) = c2(α)

where C[α] =
[
c1(α), c2(α)

]
.

Let ui(t, x, y, α) i=1,2 solve Eqs. (5.12) and (5.13) plus initial and boundary condi-
tions. If [

u1(t, x, y, α), u2(t, x, y, α)
]
,

defines the α-cut of a fuzzy number, for all (t, x, y) ∈
∏3
j=1 Ij , then U(t, x, y) is the

SS.
We will say that derivative condition holds for fuzzy heat-like equation when Eqs.(5.9),
(5.10) and (5.11) are true.

Theorem 5.2.

(1) If BFS = Z(t, x, y), then SS = Z(t, x, y).
(2) If SS = Z(t, x, y) and the derivative condition holds, then BFS = U(t, x, y).

Proof.

(1) Follows from the definition of BFS and SS.
(2) If SS = U(t, x, y) then the Seikkala derivative [3] exists and since the derivative

condition holds, therefore, equation following holds

(u1)t + P1(x, α)(u1)xx +Q1(y, α)(u1)yy = F1(t, x, y, α)

(u2)t + P2(x, α)(u2)xx +Q2(y, α)(u2)yy = F2(t, x, y, α)

Also suppose one kj = k, γi = γ, βl = β, ∂G
∂γ < 0, ∂P

∂γ < 0, ∂G
∂k < 0 and ∂F

∂k < 0,
∂G
∂β > 0, ∂Q

∂β > 0 (the other cases are similar and are omitted). We see

z1(t, x, y, α) = G
(
t, x, y, k2(α), γ2(α), β1(α)

)
z2(t, x, y, α) = G

(
t, x, y, k1(α), γ1(α), β2(α)

)
F1(t, x, y, α) = F

(
t, x, y, k2(α)

)
, F2(t, x, y, α) = F

(
t, x, y, k1(α)

)
P1(x, α) = P

(
x, γ2(α)

)
, P2(x, α) = P

(
x, γ1(α)

)
Q1(y, α) = Q

(
y, β1(α)

)
, Q2(y, α) = Q

(
y, β2(α)

)
Now look at Eqs. (5.7), (5.8) also Eqs. (5.1) and (5.2), implies that

u1(t, x, y, α) = G
(
t, x, y, k2(α), γ2(α), β1(α)

)
= z1(t, x, y, α)

u2(t, x, y, α) = G
(
t, x, y, k1(α), γ1(α), β2(α)

)
= z2(t, x, y, α)

Therefore BFS = U(t, x, y) �
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Lemma 5.3. Consider (3.1) suppose Z(t, x) is differentiable.

(a)

(5.18) if P (x, γi) > 0 and
∂P

∂γi

∂G

∂γi
> 0 x ∈ I2 for i = 1, 2, . . . ,m

and

(5.19) if
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, . . . , n

Then BFS=Z(t, x)
(b) If relations (5.18) does not hold for some i or relation (5.19) does not hold

for some j, then Z(t, x) is not a BFS.

Proof. It is similar to theorem 5.1 �

6. Examples

We consider the following examples ([1],[14]) and we added fuzzy parameters to these
references.

Example 6.1. We first consider the one-dimensional heat-like equation with vari-
able coefficients as

(6.1) Ut +
γ

2
x2Uxx = k

with the initial conditions
U(0, x) = cx2

where t ∈ (0,M1], x ∈ (0,M2], k ∈ [0, J ], γ ∈ [0, H] and c ∈ [L, 0] are constants.
According to the VIM, a correct functional for (6.1) from (4.3) can be constructed
as follows

Un+1(t, x) = Un(t, x)−
∫ t

0

{(Un)s(s, x) +
γ

2
x2(Ũn)xx(s, x)− F (s, x, k)}ds

Beginning with an initial approximation U0(t, x) = U(0, x) = cx2, we can obtain the
following successive approximations
U1(t, x) = cx2(1− γt) + kt

U2(t, x) = cx2(1− γt+ γ2 t
2

2! ) + kt

U3(t, x) = cx2(1− γt+ γ2 t
2

2! − γ
3 t3

3! ) + kt

and Un(t, x) = cx2(1− γt+ γ2 t
2

2! − γ
3 t3

3! + · · ·+ (−1)nγn t
n

n! ) + kt, n ≥ 1
The VIM admits the use of U(t, x) = lim

n→∞
Un(t, x), which gives the exact solution

U(t, x) = cx2 exp(−γt) + kt

Now we fuzzify F (t, x, k), P (x, γ) and

G(t, x, k, c, γ) = cx2 exp(−γt) + kt.

Clearly

F (t, x,K) = K

P (x, γ) =
γ

2
x2
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so that

F1(t, x, α) = k1(α), F2(t, x, α) = k2(α)

P1(x, α) =
γ1
2
x2, P2(x, α) =

γ2
2
x2

Also G(t, x,K,C, γ) = Cx2 exp(−γt) +Kt, therefore

zi(t, x, α) = ci(α)x2 exp(−γi(α)t) + ki(α)t

for i = 1, 2 and C < 0 ( C = (c1, c2, c3) also with c3 < 0 ), K[α] = [k1(α), k2(α)],
C[α] = [c1(α), c2(α)], and γ[α] = [γ1(α), γ2(α)].

Z(t, x) is differentiable because (zi(t, x, α))t + γi(α)
2 x2(zi(t, x, α))xx = ki(α)

for i = 1, 2 are α-cuts of k i.e. α-cuts of a fuzzy number. Due to

P (x, γ) > 0

∂G

∂k
> 0,

∂F

∂k
> 0

∂P

∂γ
> 0,

∂G

∂γ
= −cx2t exp(−γt) > 0

That is, (Z)t + γ
2x

2(Z)xx = k, a fuzzy number.

So Lemma 5.3 implies the result that Z(t, x) is a BFS. We easily see that

zi(0, x, α) = ci(α)x2

for i = 1, 2, so Z(t, x) also satisfies the initial condition. The BFS that satisfies the
initial condition may be written as

Z(t, x) = Cx2 exp(−γt) +Kt

for all (t, x) ∈ (0,M1]× (0,M2]

Example 6.2. Consider the two-dimensional heat-like equation with variable coef-
ficients as

(6.2)

{
Ut + γ

2x
2Uxx + β

2 y
2Uyy = kxy

U(0, x, y) = c1y
2 − c2x2

which t ∈ (0,M1], x ∈ (0,M2),y ∈ (0,M3) ,k ∈ [0, J ] , γ ∈ [0, H] , c1 ∈ [L, 0[,
c2 ∈ [0, E] and β ∈ [0, D]
Similarly we can establish an iteration formula in the form

(6.3) Un+1(t, x, y) = Un(t, x, y)−
∫ t

0

{
(Un(s, x, y))s

+
γ

2
x2(Ũn)xx(s, x, y) +

β

2
y2(Ũn)yy(s, x, y)− F (s, x, y, k)

}
ds

We begin with an initial arbitrary approximation:

U0(t, x, y) = U(0, x, y) = c1y
2 − c2x2

and using the iteration formula (6.3), we obtain the following successive approxima-
tions
U1(t, x, y) = c1y

2(1− βt)− c2x2(1− γt) + kxyt

U2(t, x, y) = c1y
2(1− βt+ β2t2

2! )− c2x2(1− γt+ γ2t2

2! ) + kxyt
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U3(t, x, y) = c1y
2(1− βt+ β2t2

2! −
β3t3

3! )− c2x2(1− γt+ γ2t2

2! −
γ3t3

3! ) + kxyt
and

Un(t, x, y) = c1y
2(1− βt+

β2t2

2!
+ ...+ (−1)n

βntn

n!
)

− c2x2(1− γt+
γ2t2

2!
+ ...+ (−1)n

γntn

n!
) + kxyt

Then, the exact solution is given by

U(t, x, y) = c1y
2 exp(−βt)− c2x2 exp(−γt) + kxyt

Fuzzify F (t, x, k), P (x, γ), Q(y, β) and

G(t, x, k, c, γ, β) = c1y
2 exp(−βt)− c2x2 exp(−γt) + kxyt

producing their α-cuts

z1(t, x, y, α) = c11y
2 exp(−β1t)− c22x2 exp(−γ1t) + k1xyt

z2(t, x, y, α) = c12y
2 exp(−β2t)− c21x2 exp(−γ2t) + k2xyt

F1(t, x, y, α) = k1(α)xy, F2(t, x, y, α) = k2(α)xy

P1(x, α) =
γ1(α)

2
x2, P2(x, α) =

γ2(α)

2
x2

Q1(x, α) =
β1(α)

2
y2, Q2(x, α) =

β2(α)

2
y2

where C1 < 0 (C1 = (c11, c12, c13) with c13 < 0) and K[α] =
[
k1(α), k2(α)

]
,

C1[α] =
[
c11(α), c12(α)

]
, C2[α] =

[
c21(α), c22(α)

]
, γ[α] =

[
γ1(α), γ2(α)

]
,

β[α] =
[
β1(α), β2(α)

]
.

We first check to see if Z(t, x, y) is differentiable. We compute[
(z1)t +

γ1
2
x2(z1)xx +

β1
2
y2(z1)yy, (z2)t +

γ2
2
x2(z2)xx +

β2
2
y2(z2)yy

]
which are α-cuts of Kxy i.e. α-cuts of a fuzzy number. Hence, Z(t, x, y) is differen-
tiable.
Since

P (x, γ) > 0, Q(y, β) > 0

∂F

∂k
> 0,

∂G

∂k
> 0

∂P

∂γ
> 0,

∂G

∂γ
> 0

∂Q

∂β
> 0,

∂G

∂β
> 0

Then Theorem (5.1) tells us that Z(t, x, y) is a BFS. The initial condition

z1(0, x, y) = c11(α)y2 − c22x2

z2(0, x, y) = c12(α)y2 − c21x2
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Therefore Z(t, x, y) is a BFS which also satisfies the initial condition. This BFS may
be written

Z(t, x, y) = C1y
2 exp(−βt)− C2x

2 exp(−γt) +Kxyt

for all (x, y) ∈ (0,M2)× (0,M3), t ∈ (0,M1]

Example 6.3. Assume c ∈]0, L]. K, γ and C are triangular fuzzy numbers as in
Example 6.1 with C = (c1, c2, c3) and c1 > 0. Then there is no BFS (Lemme 5.3).
We proceed to look for a SS. We must solve

(u1)t +
γ1(α)

2
x2(u1)xx = k1(α)

(u2)t +
γ1(α)

2
x2(u2)xx = k2(α)

subject to

u1(0, x, α) = c1(α)x2, u2(0, x, α) = c2(α)x2

If the intervals [u1(t, x, α), u2(t, x, α)] define α-cuts of a fuzzy number U(t, x); then
SS =U(t, x). By VIM, the solution is

u1(t, x, α) = c1(α)x2 exp(−γ1(α)t) + k1(α)t

u2(t, x, α) = c2(α)x2 exp(−γ2(α)t) + k2(α)t

Now we show [u1(t, x, α), u2(t, x, α)] defines α-cut of a fuzzy number.
Thus we only need to check if ∂u1

∂α > 0 and ∂u2

∂α < 0. Since ui(t, x, α) are continuous
and u1(t, x, 1) = u2(t, x, 1). There is a region R contained in [0, 1]× [0, 1] for which
the SS exists and [0, 1]× [0, 1]−R there may be no SS.
Since K, C and γ are triangular fuzzy numbers, hence, we pick simple fuzzy param-
eter so that k

′

1(α), c
′

1(α) and γ
′

1(α) are all positive numbers while k
′

2(α) ,c
′

2(α)

and γ
′

2(α) are negative numbers. The ”prime” denotes differentiation with re-

spect to α. Then there is a λ > 0 so that k
′

1(α) = c
′

1(α) = γ
′

1(α) = λ and

k
′

2(α) = c
′

2(α) = γ
′

2(α) = −λ. Then, for the SS exist we need

∂u1
∂α

= λ(x2 exp(−γ1(α)t)− c1(α)tx2 exp(−γ1(α)t) + t) > 0

∂u2
∂α

= −λ(x2 exp(−γ2(α)t)− c2(α)tx2 exp(−γ2(α)t) + t) < 0

Therefore inequalities hold if 1 − c2(α)t ≥ 0 for all α ∈ [0, 1]. So under the above
assumptions we may choose

R =
{

(t, x)|0 < t ≤ 1

c3
for all 0 < x ≤M2

}
and the SS exists on R in form Eqs

U(t, x) = Cx2 exp(−γt) +Kt
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Remark 6.4. We note that if we consider heat-like equation homogenous
(i.e k = 0) as in example 6.1, we need to solve the following system (6.1) using
0[α] = [α− 1, 1− α], it is clear that in this new procedure, the solution is

u1(t, x, α) = c1(α)x2 exp(−γi(α)t) + (α− 1)t

u2(t, x, α) = c2(α)x2 exp(−γi(α)t) + (1− α)t

So Theorem 5.2 implies the result that U(t, x) = Z(t, x) is a BFS. We easily see that

zi(0, x, α) = ci(α)x2

for i=1,2 , So Z(t, x) also satisfies the initial condition. The BFS that satisfies the
initial condition may be written as

Z(t, x) = Cx2 exp(−γt) + 0t

for all (t, x) ∈ (0,M1]× (0,M2]

7. Conclusion

In this paper, we give sufficient condition for the Buckley-Feuring solution to exist
by the VIM for the proposed models, we obtain the exact solution of various kinds
of fuzzy heat-like equations. Application of this method is easy and calculation of
successive approximations is direct and straightforward. We using the VIM and
strategy based on [4] introduced two type of solutions, the Buckley-Feuring solution
and the Seikkala solution. If the Buckley-Feuring solution fails to exist and when the
Seikkala solution fails to exist we offer no solution to the fuzzy heat-like equations.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their helpful comments.
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Laboratoire de Mathématiques Appliquées & Calcul Scientifique, Sultan Moulay Sli-
mane University, PO Box 523, 23000 Beni Mellal, Morocco

44


	 Solutions of fuzzy heat-like equations by variational iteration method. By 

