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1. Introduction

Chang [1], Hutton [3], Lowen [6], Pu and Liu [8], Wong [12]and others have
discussed various aspects of fuzzy topology with crisp methods. Ying [13, 14] and
Sayed and Zhao [9] introduced fuzzifying topology and elementarily developed fuzzy
topology from a new direction with the semantic method of continuous valued logic.
Briefly speaking, a fuzzifying topology on a set X assigns each crisp subset of X
to a certain degree of being open, other than being definitely open or not. In
the framework of fuzzifying topology, Shen [11] introduced and studied T0-, T1-,
T2(Hausdorff)-,T3 (regular)- and T4(normal)-separation axioms in fuzzifying topol-
ogy. In [4], the concepts of the R0- and R1- separation axioms in fuzzifying topology
were added and their relations with the T1- and T2- separation axioms, were studied,
respectively. In [13], the authers introduced and studied the concepts of fuzzifying
negibourhood structure of a point, fuzzifying interior and fuzzifying closure . Erdel
Ekici [2] introduced the concepts of e-open sets and e-continuity in general topology.
We note the concepts of e-open sets and e-continuity are considered by Seenivasan
[10] to fuzzy topology. In the present paper, we define and study the concepts of
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e-open sets and e-neighborhood in fuzzifying topology. The main purpose of the
present paper, we introduce and study, T e0 -, Re0-, T e1 -,Re1-,T e2 -(e-Hausdorff)-, T e3 (e-
regularity)-, T e4 (e-normality)-, strong T e3 -, strong T e4 -separation axioms in fuzzifying
topology. Also, we give some of their characterizations as well as the relations of
these axioms and T0-, R0-,T1-, R1-, T2(Hausdorff)-, T3(regularity)-, T4(normality)-
separation axioms in fuzzifying topology.

2. Preliminaries

First, we display the logical and corresponding set theoretical notions [13, 14]
since we need them in this paper. For any formula ϕ, the symbol [ϕ] means the
truth value of ϕ, where the set of truth values is the unit interval [0, 1]. We write
|= ϕ if [ϕ] = 1 for any interpretation. The original formulae of fuzzy logical and
corresponding set theoretical notations are:

(1) [α] = α(α ∈ [0, 1]); [ϕ ∧ ψ] :=min([ϕ], [ψ]); [ϕ→ ψ] :=min(1, 1− [ϕ] + [ψ]);

(2) If Ã ∈ =(X), where =(X) is the family of all fuzzy sets of X, then [x ∈
Ã] := Ã(x);

(3) If X is the universe of discourse, then [∀xϕ(x)] := inf
x∈X

[ϕ(x)]. In addition

the following derived formulae are given,
(1) [¬ϕ] := [ϕ→ 0] := 1− [ϕ];
(2) [ϕ ∨ ψ] := [¬(¬ϕ ∧ ¬ψ)] := max([ϕ], [ψ]);
(3) [ϕ↔ ψ] := [ϕ→ ψ] ∧ [ψ → ϕ];

(4) [ϕ ∗ ψ] := [¬(ϕ → ¬ψ)] := max(0, [ϕ] + [ψ] − 1)
(
∗ is the Lukasiewicz

triangular-norm ( or ∧
.
)
)

;

(5) [ϕ∨̇ψ] := [¬(¬ϕ ∗ ¬ψ)] := [¬ϕ→ ψ)] :=min(1, [ϕ] + [ψ]);
(6) [∃xϕ(x)] := [¬∀x¬ϕ(x)] := sup

x∈X
[ϕ(x)];

(7) If Ã, B̃ ∈ =(X), then

[Ã ⊆ B̃] := [∀x(x ∈ Ã→ x ∈ B̃)] := inf
x∈X

min(1, 1− Ã(x) + B̃(x)).

Second, we give some definitions and results in fuzzifying topology.

Definition 2.1 ([13]). Let X be a universe of discourse, and let τ ∈ =(P (X)),
where P (X) is the power set of X satifying the following conditions:

(1) |= X ∈ τ ;
(2) for any A,B ∈ P (X), |= (A ∈ τ) ∧ (B ∈ τ)→ (A ∩B) ∈ τ ;
(3) for any {Aλ : λ ∈ Λ} ⊆ P (X), |= ∀λ(λ ∈ Λ→ Aλ ∈ τ)→

⋃
λ∈ΛAλ ∈ τ .

Then τ is called a fuzzifying topology and (X, τ) is a fuzzifying topological space.

The family of all fuzzifying closed sets will be denoted by Fτ or if there is no
confusion by F , and defined as follows: A ∈ F := (X −A) ∈ τ , where X −A is the
complement of A.

Definition 2.2 ([15]). The family of fuzzy regular open sets in fuzzifying topological
space (X, τ) is denoted by RO and defined as follows:

A ∈ RO := A ≡ A−◦,
140
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ie, [A ∈ RO] = [RO(A)] = min
(

inf
x∈A

A−◦(x), inf
x∈X−A

(1−A−◦(x))
)
.

Definition 2.3 ([13]). Let (X, τ) be a fuzzifying topological space. The fuzzifying
neighborhood system of a point x ∈ X is denoted by Nx ∈ =(P (X)) and defined as
follows:

Nx(A) = sup
x∈B⊆A

τ(B)

Definition 2.4 ([16]). Let (X, τ) be a fuzzifying topological space and let x ∈ X.
The δ-neighborhood system of x is denoted by Nδ

x(A) ∈ =(P (X)) and defined as
follows:

Nδ
x(A) = sup

x∈B⊆A
RO(B), ∀A ∈ P (X).

Definition 2.5 ([13]). Let (X, τ) be a fuzzifying topological space.

(1) The interior (resp. δ-interior) of a set A ∈ P (X) is denoted by A◦ ∈
=(X)(resp. A◦δ ∈ =(X)) and defined as follows:

A◦(x) = Nx(A) (resp. A◦δ(x) = Nδ
x(A)).

(2) The closure (resp. δ-closure) of a set A ∈ P (X) is denoted by Ā ∈ =(X)
(resp. A−δ ∈ =(X)) and defined as follows:

Ā(x) = 1−Nx(X −A) (resp. A−δ(x) = 1−Nδ
x(X −A)).

(3) β ∈ =(P (X)) is a base of τ iff τ = β(∪) (Theorem 4.1 [13]), i.e.,

τ(A) = sup
∪
λ∈Λ

Bλ=A

∧
λ∈Λ

β(Bλ).

(4) ϕ ∈ =(P (X)) is a subbase of τ if ϕ∩ is a base of τ , i.e.,

τ(A) = sup
∪
λ∈Λ

Dλ=A
inf
λ∈Λ

sup
∩

λi∈Iλ
Dλi=Dλ

inf
λi∈Iλ

ϕ(Dλi).

Lemma 2.6 ([5]). If [Ã ⊆ B̃] = 1, then

(1) |= Ã ⊆ B̃;

(2) |= (Ã)◦ ⊆ (B̃)◦.

Lemma 2.7 ([5]). Let (X, τ) be a fuzzifying topological space. For any A, B;

(1) |= X◦ = X;

(2) |= (Ã)◦ ⊆ Ã;

(3) |= (Ã ∩ B̃)◦ ≡ (Ã)◦ ∩ (B̃)◦;

(4) |= (Ã)◦◦ ⊇ (Ã)◦.

Lemma 2.8 ([5]). Let (X, τ) be a fuzzifying topological space. For any A ∈ =(X);

(1) |= X − (Ã)◦− ≡ (X − Ã)−◦;

(2) |= X − (Ã)−◦ ≡ (X − Ã)◦−.

Lemma 2.9 ([5]). If [Ã ⊆ B̃] = 1, then

(1) |= (Ã)◦− ⊆ (B̃)◦−;

(2) |= (Ã)−◦ ⊆ (B̃)−◦.

Remark 2.10. For simiplicity we use the following notations:
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(1) K(x, y) := ∃A
(
(A ∈ Nx ∧ y /∈ A) ∨ (A ∈ Ny ∧ x /∈ A)

)
;

(2) H(x, y) := ∃B∃C
(
(B ∈ Nx ∧ y /∈ B) ∧ (C ∈ Ny ∧ x /∈ C)

)
;

(3) M(x, y) := ∃B∃C(B ∈ Nx ∧ C ∈ Ny ∧B ∩ C = φ);
(4) V (x,D) := ∃A∃B(A ∈ Nx ∧B ∈ τ ∧D ⊆ B ∧A ∩B = φ);
(5) W (A,B) := ∃G∃H(G ∈ τ ∧H ∈ τ ∧A ⊆ G ∧B ⊆ H ∧G ∩H = φ).

Definition 2.11 ([11]). Let Ω be the class of all fuzzifying topological spaces. The
unary fuzzy predicates Ti ∈ =(Ω), i = 1, ..., 4, and Ri ∈ =(X), i = 0, 1 are defined
as follows, respectively

(1) (X, τ) ∈ T0 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→ K(x, y)

)
;

(2) (X, τ) ∈ T1 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→ H(x, y)

)
;

(3) (X, τ) ∈ T2 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→M(x, y)

)
;

(4) (X, τ) ∈ T3 := ∀x∀D
(
(x ∈ X ∧D ∈ F ∧ x /∈ D)→ V (x, D)

)
;

(5) (X, τ) ∈ T4 := ∀A∀B
(
(A ∈ F ∧B ∈ F ∧A ∩B = φ)→W (A, B)

)
;

(6) (X, τ) ∈ R0 := ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→
(
K(x, y)→ H(x, y)

))
;

(7) (X, τ) ∈ R1 := ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→
(
K(x, y)→M(x, y)

))
.

Theorem 2.12 ([7]). The mapping Nγ : X → =N (P (X)), x 7→ Nγ
x , where

=N (P (X)) is the set of all normal fuzzy subset of P (X), has the following prop-
erties:

(1) |= A ∈ Nγ
x → x ∈ A;

(2) |= A ⊆ B → (A ∈ Nγ
x → B ∈ Nγ

x );
(3) |= A ∈ Nγ

x → ∃H
(
H ∈ Nγ

x ∧H ⊆ A ∧ ∀y(y ∈ H → H → H ∈ Nγ
x )
)
.

Theorem 2.13 ([7]). τγ(A) = inf
x∈A

Nγ
x (A).

3. Fuzzifying e-open sets

Definition 3.1. Let (X, τ) be a fuzzifying topological space.

(1) The family of fuzzifying e-open sets, denoted by τe ∈ =(P (X)), is defined
as follows: A ∈ τe := ∀x(x ∈ A → x ∈ A−◦δ ∪ A◦−δ), i.e., τe(A) =
inf
x∈A

max
(
A−◦δ(x), A◦−δ(x)

)
.

(2) The family of fuzzifying e-closed sets, denoted by Fe ∈ =(P (X)), is defined
as follows:

A ∈ Fe := (X −A) ∈ τe.

Example 3.2. Let X = {a, b, c} and let τ be a fuzzifying topology on X defined
as follows: τ(X) = τ(φ) = τ({a}) = τ({a, c}) = 1; τ({b}) = τ({a, b}) = 0; and
τ({c}) = τ({b, c}) = 1

8 . From the definition of the interior and the closure of a subset
of X and the interior and the closure of a fuzzy set of X we have the following:
τe(X) = τe(φ) = τe({a}) = τe({a, c}) = 1; and τe({b}) = τe({a, b}) = τe({c}) =
τe({b, c}) = 7

8 .

Lemma 3.3. For any α, β, γ, δ ∈ I, (1−α+β)∧ (1−γ+δ) ≤ 1− (α∧γ)+(β∧δ).

Theorem 3.4. Let (X, τ) be a fuzzifying topological space, then

(1) |= τe(X) = 1, τe(φ) = 1;
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(2) |= τe(A ∩B) ≥ τe(A) ∧ τe(B).
(3) |= τe(

⋂
λ∈Λ

Aλ) ≥
∧
λ∈Λ

τe(Aλ)

Proof. The proof of (1) is straightforward.

(2) From Lemma 3.3, we have
τe(A) ∧ τe(B)
= inf
x∈A

min
(
1, 1−A(x)+(A◦−δ ∪A−◦δ)(x)

)
∧ inf
x∈B

min
(
1, 1−B(x)+(B◦−δ ∪

B−◦δ)(x)
)

= inf
x∈A∩B

min
(
(1, 1 − A(x) + (A◦−δ ∪ A−◦δ)(x)

)
∧
(
1, 1 − B(x) + (B◦−δ ∪

B−◦δ)(x))
)

= inf
x∈A∩B

min
(
1, (1−A(x))+(A◦−δ∪A−◦δ)(x)∧(1−B(x))+(B◦−δ∪B−◦δ)(x)

)
≤ inf
x∈A∩B

min
((

1,
(
1− (A∩B)(x)

)
+(A◦−δ ∩B◦−δ)(x)∪ (A−◦δ ∩B−◦δ)(x)

))
≤ inf
x∈A∩B

min
(

1,
(
1− (A ∩B)(x)

)
+
(
(A ∩B)◦−δ(x) ∪ (A ∩B)−◦δ(x)

))
= τe(A ∩B).

(3) Proof follows from (2).

�

Theorem 3.5. Let (X, τ) be a fuzzifying topological space, then

(1) |= Fe(X) = 1, Fe(φ) = 1;
(2) |= Fe(A ∩B) ≥ Fe(A) ∧ Fe(B).
(3) |= Fe(

⋂
λ∈Λ

Aλ) ≥
∧
λ∈Λ

Fe(Aλ)

Proof. Follows from Theorem 3.4 �

Theorem 3.6. Let (X, τ) be a fuzzifying topological space. Then, we have

(1) |= τ ⊂ τe
(2) |= F ⊆ Fe

Proof. (1) [A ∈ τ ] = [A ⊆ A◦] ≤ [A ⊆ (A◦−δ ∪A◦−δ)] = [A ∈ τe].
(2) The proof is obtained from (1). �

4. Fuzzifying e-neighbouihood structure

Definition 4.1. Let x ∈ X. The fuzzifying e-neighborhood system of x, denoted
by Ne

x ∈ =(P (X)), is defined as follows:

A ∈ Ne
x := ∃B(x ∈ B ⊆ A→ B ∈ τe).(
i.e., Ne

x(A) = sup
x∈B⊆A

τe(B)
)

Theorem 4.2. The mapping Ne : X → =N (P (X)), x 7→ Ne
x, where =N (P (X)) is

the set of all normal fuzzy subset of P (X), has the following properties:

(1) |= A ∈ Ne
x → x ∈ A;

(2) |= A ⊆ B → (A ∈ Ne
x → B ∈ Ne

x);
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(3) |= A ∈ Ne
x ∧B ∈ Ne

x → A ∩B ∈ Ne
x . Conversely, if a mapping Ne

x satisfies
(2) and (3), then Ne

x assigns a fuzzifying topology on X which is denoted by
τe ∈ =(P (X)) and defined as

A ∈ τe := ∀x(x ∈ A→ A ∈ Ne
x).(

i.e., τe(A) = inf
x∈A

Ne
x(A)

)
Proof. (1) If [A ∈ Ne

x ] = sup
x∈H⊆A

τe(H) > 0, then there exists H0 such that x ∈ H0 ⊆

A. Now, we have [x ∈ A] = 1. Therefore, [A ∈ Ne
x ] ≤ [x ∈ A] always holds.

(2) The proof is immediate.
(3) From Theorem 3.4(2), we have

[A ∩B ∈ Ne
x ] = sup

x∈H⊆A∩B
τe(H) = sup

x∈H1⊆A,
x∈H2⊆B

τe(H1 ∩H2)

≥ sup
x∈H1⊆A,
x∈H2⊆B

τe(H1) ∧ τe(H2)

= sup
x∈H1⊆A

τe(H1) ∧ sup
x∈H2⊆B

τe(H2)

= [A ∈ Ne
x ∧B ∈ Ne

x ].
Conversely, we need to prove that τe(A) = inf

x∈A
Nx(A) is a fuzzifying topology.

From [[13], Theorem 3.2] and since τe satisfies properties (2) and (3), τe is a fuzzifying
topology. �

5. Fuzzifying e-derived sets, fuzzifying e-closure, and fuzzifying
e-interior

Definition 5.1. Let (X, τ) be a fuzzifying topological space. The fuzzifying e-
derived set of A, denoted by de ∈ =(P (X)), is defined as

de(A) = inf
B∩(A−{x})=φ

(1−Ne
x(B)).

Lemma 5.2. de(A)(x) = 1−Ne
x((X −A) ∪ {x}).

Proof. From Theorem 4.2(2), we have
de(A) = 1− sup

B∩(A−{x})=φ
Ne
x(B)

= 1− sup
B⊆((X−A)∪{x})

Ne
x(B)

= 1−Ne
x((X −A) ∪ {x}). �

Theorem 5.3. For any A, |= A ∈ Fe ↔ de(A) ⊆ A.

Proof. From Lemma 5.2, we have
[de(A) ⊆ A] = inf

x∈X−A
(1− de(A)(x)) = inf

x∈X−A
Ne
x((X −A) ∪ {x})

= inf
x∈X−A

Ne
x(X −A) = [X −A ∈ τe] = [A ∈ Fe]. �

Definition 5.4. Let (X, τ) be a fuzzifying topological space. The e-closure of A is
denoted and defined as follows:
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Cle(A)(x) = 1−Ne
x(X −A)

(
i.e., Cle(A)(x) = inf

x/∈B⊇A
(1− Fe(B))

)
.

Theorem 5.5. (1) Cle(A)(x) = 1−Ne
x(X −A);

(2) |= Cle(φ) ≡ φ;
(3) |= A ⊆ Cle(A).

Proof. (1) Cle(A)(x) = inf
x/∈B⊇A

(1 − Fe(B)) = inf
x∈X−B⊆X−A

(1 − τe(X − B)) = 1 −

sup
x∈X−B⊆X−A

τe(X −B) = 1−Ne
x(X −A).

(2) Cle(φ)(x) = 1−Ne
x(X − φ) = 0.

(3) It is clear that for any A ∈ P (X) and any x ∈ X, if x /∈ A, then Ne
x(A) = 0.

If x ∈ A, then Cle(A)(x) = 1−Ne
x(X−A) = 1−0 = 1. Then [A ⊆ Cle(A)] = 1. �

Theorem 5.6. For any x and A;

(1) |= Cle(A) ≡ de(A) ∪A;
(2) |= x ∈ Cle(A)↔ ∀B(B ∈ Ne

x → A ∩B 6= ϕ);
(3) |= A ≡ Cle(A)↔ A ∈ Fe.

Proof. (1) Applying Lemma 5.2 and Theorem 5.5 (3), we have
x ∈ de(A) ∪A = max(1−Ne

x((X −A) ∪ {x})), A(x) = Cle(A)(x).
(2) [∀B(B ∈ Ne

x → A ∩B 6= φ)] = inf
B⊆X−A

(1−Ne
x(B)) = 1−Ne

x(X −A)

= [x ∈ Cle(A)].
(3) From Theorem 5.5(1), we have
[A ≡ Cle(A)] = inf

x∈X−A
(1− Cle(A)(x))

= inf
x∈X−A

Ne
x(X −A) = [(X −A) ∈ Fe] = [A ∈ τe]. �

Theorem 5.7. For any A and B, |= B ≡ Cle(A)→ B ∈ Fe.

Proof. If [A ⊆ B] = 0, then [B ≡ Cle(A)] = 0. Now, we suppose [A ⊆ B] = 1, then
we have [B ⊆ Cle(A)] = 1− sup

x∈B−A
Ne
x(X −A) and [Cle(A) ⊆ B] = inf

x∈X−B
Ne
x(X −

A). So,

[B ≡ Cle(A)] = max
(

0, inf
x∈X−B

Ne
x(X −A)− sup

x∈X−B
Ne
x(X −A)

)
.

If [B ≡ Cle(A)] > t, then inf
x∈X−B

Ne
x(X − A) > t + sup

x∈B−A
Ne
x(X − A). For any

x ∈ X − B, sup
x∈C⊆X−A

τe(C) > t + sup
x∈B−A

Ne
x(X − A), that is, there exists Cx such

that x ∈ Cx ⊆ X − A and τe(Cx) > t+ sup
x∈B−A

Ne
x(X − A). Now, we want to prove

that Cx ⊆ X −B. If not, then there exists x′ ∈ B−A such that x′ ∈ Cx. Hence, we
can obtain that sup

x∈B−A
Ne
x(X−A) ≥ Ne

x′(X−A) ≥ τe(Cx) > t+ sup
x∈B−A

Ne
x(X−A).

This is a contradiction. Therefore, Fe(B) = τe(X − B) = inf
x∈X−B

Ne
x(X − B) ≥

inf
x∈X−B

τe(Cx) > t + sup
x∈B−A

Ne
x(X − A) > t. Since t is arbitrary, it holds that [B ≡

Cle(A)] ≤ [B ∈ Fe]. �

Definition 5.8. Let (X, τ) be a fuzzifying topological space. For any A ⊆ X, the
e-interior of A is given as follows:
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Inte(A)(x) = Ne
x(A).

Theorem 5.9. For any x, A and B,

(1) |= B ∈ τe ∧B ⊆ A→ B ⊆ Inte(A);
(2) |= A ≡ Inte(A)↔ A ∈ τe;
(3) |= x ∈ Inte(A)↔ x ∈ A ∧ x ∈ (X − de(X −A));
(4) |= Inte(A) ≡ X − Cle(X −A);
(5) |= B ≡ Inte(A)→ B ∈ τe;
(6) (a) |= Inte(A) ≡ X, (b) |= Inte(A) ⊆ A.

Proof. (1) If B 6⊆ A, then [B ∈ τe ∧B ⊆ A] = 0. If B ⊆ A, then
[B ⊆ Inte(A)] = inf

x∈B
Inte(A)(x)

= inf
x∈B

Ne
x(A) ≥ inf

x∈B
Ne
x(B)

= [B ∈ τe] = [B ∈ τe ∧B ⊆ A].

(2) [A ≡ Inte(A)] = min
(

inf
x∈A

Inte(A)(x), inf
x∈X−A

(1− Inte(A)(x))
)

= inf
x∈A

Inte(A)(x) = inf
x∈A

Ne
x(A) = [A ∈ τe].

(3) If x /∈ A, then [x ∈ Inte(A)] = 0 = [x ∈ A ∧ x ∈ (X − de(X − A))]. If x ∈ A,
then [x ∈ de(X − A)] = 1 − Ne

x(A ∪ {x}) = 1 − Ne
x(A) = 1 − Inte(A)(x), so that

[x ∈ A ∧ x ∈ (X − de(X −A)] = [x ∈ Inte(A)].
(4) It follows from Theorem 5.5(1)
(5) From (4) and Theorem 5.7, we have

[B ≡ Inte(A)] = [X −B ≡ Cle(X −A)] ≤ [X −B ∈ Fe] = [B ∈ τe].

(6) (a) It is obtained from (4) above and from Theorem 5.5(2).
(b) It is obtained from (3) above. �

6. Fuzzifying e-continuous functions

Definition 6.1. Let (X, τ) and (Y,U) be two fuzzifying topological spaces. For any
f ∈ Y X , a unary fuzzy predicates Ce ∈ =(Y X), called e-continuity, is given as

Ce(f) := ∀u(u ∈ U → f−1(u) ∈ τe).

Definition 6.2. Let (X, τ) and (Y,U) be two fuzzifying topological spaces. For any
f ∈ Y X , we define the unary fuzzy predicates ej ∈ =(Y X) where j = 1, 2, . . . , 5 as
follows:

(1) e1(f) := ∀B(B ∈ FY → f−1(B) ∈ FXe ), where FY is the family of closed
subsets of Y and FXe is the family of e-closed subsets of X;

(2) e2(f) := ∀x∀u(u ∈ Nf(x) → f−1(u) ∈ Ne
x), where N is the neighborhood

system of Y and Ne
x is the e-neighborhood system of X;

(3) e3(f) := ∀x∀u(u ∈ Nf(x) → ∃v(f(v) ⊆ u→ v ∈ Ne
x));

(4) e4(f) := ∀A(f(ClXe (A)) ⊆ ClY (f(A)));
(5) e5(f) := ∀B(ClXe (f−1(B)) ⊆ f−1(ClY (B))).

Theorem 6.3. (1) |= f ∈ Ce ↔ f ∈ e1;
(2) |= f ∈ Ce → f ∈ e2;
(3) |= f ∈ e2 ↔ f ∈ ej for j = 3, 4, 5.
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Proof. (1) We prove that [f ∈ Ce] = [f ∈ e1]
[f ∈ e1] = inf

A∈P (Y )
min(1, 1− FY (A) + FXe (f−1(A))

= inf
A∈P (Y )

min(1, 1− U(Y −A) + τe(X − f−1(A)))

= inf
A∈P (Y )

min(1, 1− U(Y −A) + τe(f
−1(Y −A)))

= inf
u∈P (Y )

min(1, 1− U(u) + τe(f
−1(u)))

= [f ∈ Ce].
(2) We prove that e2(f) ≥ Ce(f). If Nf(x)(u) ≤ Ne

x(f−1(u)), the result holds.

Suppose Nf(x)(u) > Ne
x(f−1(u)). It is clear that if f(x) ∈ A ⊆ u then x ∈ f−1(A) ⊆

f−1(u). Then,
Nf(x)(u)−Ne

x(f−1(u)) = sup
f(x)∈A⊆u

U(A)− sup
x∈B⊆f−1(u)

τe(B)

≤ sup
f(x)∈A⊆u

U(A)− sup
f(x)∈A⊆u

τe(f
−1(A))

≤ sup
f(x)∈A⊆u

(U(A)− τe(f−1(A))).

So, 1−Nf(x)(u) +Ne
x(f−1(u)) ≥ inf

f(x)∈A⊆u
(1− U(A) + τe(f

−1(A)))

and thus
min(1, 1−Nf(x)(u) +Ne

x(f−1(u))) ≥ inf
f(x)∈A⊆u

min(1, 1− U(A) + τe(f
−1(A)))

≥ inf
v∈P (Y ))

min(1, 1− U(v) + τe(f
−1(v)))

= Ce(f).
Hence, inf

x∈X
min

u∈P (Y )
min(1, 1−Nf(x)(u) +Ne

x(f−1(u))) ≥ [f ∈ Ce].

(3) (a) We prove that |= f ∈ e2 ↔ f ∈ e3. Since Ne
x is monotonous (Theorem 4.2

(2)), it is clear that sup
v∈P (X),f(v)⊆u

Ne
x(v) = sup

v∈P (X),v⊆f−1(u)

Ne
x(v) = Ne

x(f−1(u)).

Then,
e3(f) = inf

x∈X
inf

u∈P (Y )
min(1, 1−Nf(x)(u) + sup

v∈P (X),f(v)⊆u
Ne
x(v))

= inf
x∈X

inf
u∈P (Y )

min(1, 1−Nf(x)(u)) +Ne
x(f−1(u))) = e2(f).

(b) We prove that |= f ∈ e4 ↔ f ∈ e5.
Frist, for each B ∈ P (Y ), there exists A ∈ P (X) such that f−1(B) = A and

f(A) ⊆ B.
So, [ClXe (f−1(B)) ⊆ f−1(ClY (B))] ≥ [ClXe (A) ⊆ f−1(ClY (f(A))].
Hence,
e5(f) = inf

B∈P (Y )
[ClXe (f−1(B)) ⊆ f−1(ClY (B))]

≥ inf
A∈P (X)

[ClXe (A) ⊆ f−1(ClY (A)))] = e4(f).

Second, for each A ∈ P (X), there exists B ∈ P (Y ) such that f(A) = B and
f−1(B) ⊇ A. Hence, [ClXe (f−1(B)) ⊆ f−1(ClY (B))] ≤ [ClXe (A) ⊆ f−1(ClY (f(A)))].
Thus,
e4(f) = inf

A∈P (X)
[ClXe (A) ⊆ f−1(ClY (f(A)))]

≥ inf
B∈P (Y ),B=f(A)

[ClXe (f−1(B)) ⊆ f−1(ClY (B)))]
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≥ inf
B∈P (Y )

[ClXe (f−1(B)) ⊆ f−1(ClY (B))] = e5(f).

(c) We prove that |= f ∈ e5 ↔ f ∈ e2; from Theorem 5.5(1),
e5(f) = ∀B(ClXe (f−1(B)) ⊆ f−1(ClY (B)))

= inf
B∈P (Y )

inf
x∈X

min(1, 1− (1−Ne
x(X − f−1(B))) + 1−Nf(x)(Y −B))

= inf
B∈P (Y )

inf
x∈X

min(1, 1−Nf(x)(Y −B) +Ne
x(X − f−1(B)))

= inf
u∈P (Y )

inf
x∈X

min(1, 1−Nf(x)(u) +Ne
x(f−1(u))) = e2(f). �

Remark 6.4. In the following theorem, we indicate the fuzzifying topologies with
respect to which we evaluate the degree to which f is continuous and Ce-continuous.
Thus, the symbols (τ, U)-C(f) and (τ, U)-Ce(f), etc. will be understood.

Applying Theorems 3.6 one can deduce the following theorem.

Theorem 6.5. |= f ∈ (τ, U)-C → f ∈ (τ, U)-Ce.

Theorem 6.6. Let (X, τ) and (Y, σ) be two fuzzifying topological spaces. For any
f ∈ Y X ,

|= C(f)→ Ce(f)

Proof. The proof is obtained from Theorem 3.6. �

Remark 6.7. In crisp setting, that is, in the case that the underlying fuzzifying
topology is the ordinary topology, one can have Ce(f)→ C(f).

But this statement may not be true in general in fuzzifying topology as illustrated
by the following example.

Example 6.8. Let (X, τ) be the fuzzifying topological space defined in example
3.2 Consider the identity function f from (X, τ) onto (Y, σ), where σ is a fuzzifying
topology on Y defined as follows:

σ(y) =

{
1 if τ = {X,φ, {a, b}}
0 if otherwise.

Then, 7
8 = Ce(f) 6≤ C(f) = 0.

7. Fuzzifying e-separation axioms

Remark 7.1. For simplicity we use the following notations:

(1) Ke(x, y) := ∃A
(
(A ∈ Ne

x ∧ y /∈ A) ∨ (A ∈ Ne
y ∧ x /∈ A)

)
;

(2) He(x, y) := ∃B∃C
(
(B ∈ Ne

x ∧ y /∈ B) ∧ (C ∈ Ne
y ∧ x /∈ C)

)
;

(3) Me(x, y) := ∃B∃C(B ∈ Ne
x ∧ C ∈ Ne

y ∧B ∩ C = φ);
(4) Ve(x,D) := ∃A∃B(A ∈ Ne

x ∧B ∈ τe ∧D ⊆ B ∧A ∩B = φ);
(5) We(A,B) := ∃G∃H(G ∈ τe ∧H ∈ τe ∧A ⊆ G ∧B ⊆ H ∧G ∩H = φ).

Definition 7.2. Let Ω be the class of all fuzzifying topological spaces. The unary

fuzzy predicates e-Ti(T
e
i for short)∈ =(Ω), i = 0, 1, ..., 4, e-strong-T ei (T e

S

i for short)∈
=(Ω), i = 3, 4, and e-Ri(R

e
i for short) ∈ =(Ω), i = 0, 1 are defined as follows,

respectively
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(1) (X, τ) ∈ T e0 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→ Ke(x, y)

)
;

(2) (X, τ) ∈ T e1 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→ He(x, y)

)
;

(3) (X, τ) ∈ T e2 := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y)→Me(x, y)

)
;

(4) (X, τ) ∈ T e3 := ∀x∀D
(
(x ∈ X ∧D ∈ F ∧ x /∈ D)→ Ve(x, D)

)
;

(5) (X, τ) ∈ T e4 := ∀A∀B
(
(A ∈ F ∧B ∈ F ∧A ∩B = φ)→We(A, B)

)
;

(6) (X, τ) ∈ T eS3 := ∀x∀D
(
(x ∈ X ∧D ∈ Fe ∧ x /∈ D)→ V (x, D)

)
;

(7) (X, τ) ∈ T eS4 := ∀A∀B
(
(A ∈ Fe ∧B ∈ Fe ∧A ∩B = φ)→W (A, B)

)
;

(8) (X, τ) ∈ Re0 := ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→
(
Ke(x, y)→ He(x, y)

))
;

(9) (X, τ) ∈ Re1 := ∀x∀y
((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→
(
Ke(x, y)→Me(x, y)

))
.

Lemma 7.3. For any fuzzifying topological space (X, τ)

(1) |= K(x, y)→ Ke(x, y);
(2) |= H(x, y)→ He(x, y);
(3) |= M(x, y)→Me(x, y);
(4) |= V (x,D)→ Ve(x,D);
(5) |= W (A,B)→We(A,B).

Proof. From Theorem 3.6(1), |= τ ⊆ τe and so one can deduce that Nx(A) ≤ Ne
x(A)

for any A ∈ P (X), the proof is immediate. �

Theorem 7.4. For any fuzzifying topological space (X, τ)

(1) |= (X, τ) ∈ Ti → (X, τ) ∈ T ei , where i = 0, ..., 4.

(2) |= (X, τ) ∈ T eSi → (X, τ) ∈ Ti, where i = 3, 4.

(3) |= (X, τ) ∈ T eSi → (X, τ) ∈ T ei , where i = 3, 4.

Proof. (1) It is obtain from Lemma 7.3
(2) It follows from Theorem 3.6(2)
(3) It follows from (1) and (2). �

Lemma 7.5. For any fuzzifying topological space (X, τ)

(1) |= Me(x, y)→ He(x, y);
(2) |= He(x, y)→ Ke(x, y);
(3) |= Me(x, y)→ Ke(x, y);

Proof. (1) If Ne
x(B) = 0 or Ne

y (C) = 0, then the result holds. Suppose that Ne
x(B) >

0 and Ne
y (C) > 0. By Theorem 4.2(1) we have [x ∈ B] = 1 and [y ∈ C] = 1. So,

{B,C ∈ P (X) : B ∩ C = φ} ⊆ {B,C ∈ P (X) : y /∈ B ∧ x /∈ C}. Thus
[Me(x, y)] = sup

B∩C=φ
min(Ne

x(A), Ne
y (C)) ≤ sup

y/∈B,x/∈C
min(Ne

x(B), Ne
y (C))

= [He(x, y)].
(2) We have that [Ke(x, y)] = max

(
sup
y/∈A

Ne
x(A), sup

y/∈A
Ne
y (A)

)
≥ sup
y/∈A

Ne
x(A)

≥ sup
y/∈A,x/∈B

(
Ne
x(A) ∧Ne

y (B)
)

= [He(x, y)].

(3) It is obtained from (1) and (2). �

Theorem 7.6. For any fuzzifying topological spaces (X, τ)

(1) |= (X, τ) ∈ T e1 → (X, τ) ∈ T e0 ;
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(2) |= (X, τ) ∈ T e2 → (X, τ) ∈ T e1 .

Proof. The proof of (1) and (2) are obtained from Lemma 7.5 (2) and (1), respec-
tively. �

Corollary 7.7. For any fuzzifying topological spaces (X, τ)

|= (X, τ) ∈ T e2 → (X, τ) ∈ T e0 .

Proof. From Theorem 7.6 the proof is immedicate. �

Theorem 7.8. For any fuzzifying topological space (X, τ)

|= (X, τ) ∈ T e0 ↔
(
∀x∀y

(
x ∈ X ∧ y ∈ X ∧ x 6= y →

(
¬(x ∈ Cle({y}))

)
∨

¬(y ∈ Cle({x}))
))
.

Proof. Applying Theorem 4.2 (2) we have
[(X, τ) ∈ T e0 ] = inf

x 6=y
max

(
sup
y/∈A

Ne
x(A), sup

x/∈A
Ne
y (A)

)
= inf
x 6=y

max
(
Ne
x(X − {y}), Ne

y (X − {x})
)

= inf
x 6=y

max
(
1− Cle({y})(x), 1− Cle({x})(y)

)
= inf
x 6=y

(
¬Cle({y})(x) ∨ ¬Cle({x})(y)

)[
∀x∀y

(
x ∈ X ∧ y ∈ X ∧ x 6= y →

(
¬
(
x ∈ Cle({y})

))
∨ ¬(y ∈ Cle({x})

))]
. �

Theorem 7.9. Let (X, τ) be a fuzzifying topological space. Then

|= (X, τ) ∈ T e1 ↔ ∀x
(
{x} ∈ Fe

)
.

Proof. For any x1, x2, x1 6= x2, from Theorem 4.2 we have[
∀x
(
{x} ∈ Fe

)]
= inf
x∈X

Fe({x}) = inf
x∈X

τe(X − {x}) = inf
x∈X

inf
y∈X−{x}

Ne
y (X − {x})

≤ inf
y∈X−{x2}

Ne
y (X − {x2}) ≤ Ne

x1
(X − {x2}) = sup

x2 /∈A
Ne
x1

(A).

According to the same reason we can prove that[
∀x({x} ∈ Fe)

]
≤ sup
x1 /∈B

Ne
x2

(A).

Therefore [
∀x({x} ∈ Fe)

]
≤ inf
x1 6=x2

min
(

sup
x2 /∈A

Ne
x1

(A), sup
x1 /∈B

Ne
x2

(B)
)

= inf
x1 6=x2

sup
x2 /∈A,x1 /∈B

min
(
Ne
x1

(A), Ne
x2

(B)
)

=
[
(X, τ) ∈ T e1

]
.

On the other hand[
(X, τ) ∈ T e1

]
= inf
x1 6=x2

min
(

sup
x2 /∈A

Ne
x1

(A), sup
x1 /∈B

Ne
x2

(B)
)

= inf
x1 6=x2

min
(
Ne
x1

(X − {x2}), Ne
x1

(X − {x1})
)

≤ inf
x1 6=x2

Ne
x1

(X − {x2}) = inf
x2∈X

inf
x1∈X−{x2}

Ne
x1

(X − {x2})

= inf
x2∈X

τe
(
X − {x2}

)
= inf
x∈X

τe
(
X − {x}

)
=
[
∀x({x} ∈ Fe)

]
.

Thus
[
(X, τ) ∈ T e1

]
=
[
∀x({x} ∈ Fe)

]
. �
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Definition 7.10. The fuzzifying e-local base eβx of x is a function from P (X) into
I such that the following conditions are satisfied:

(1) |= eβx ⊆ Ne
x ;

(2) |= A ∈ Ne
x → ∃B(B ∈ eβx ∧ x ∈ B ⊆ A).

Lemma 7.11. |= A ∈ Ne
x ↔ ∃B(B ∈ eβx ∧ x ∈ B ⊆ A).

Proof. From the condition (1) in Defintion 7.10 and Theorem 4.2 (2) then Ne
x(A) ≥

Ne
x(B) ≥ eβx(B) for each B ⊆ X such that x ∈ B ⊆ A. So, Ne

x(A) ≥ sup
x∈B⊆A

eβx(B).

From condition (2) in Definition 3.1, Ne
x(A) ≤ sup

x∈B⊆A
eβx(B). Hence, Ne

x(A) =

sup
x∈B⊆A

eβx(B). �

Theorem 7.12. If eβx is a fuzzifying e-local basis of x, then

|= (X, τ) ∈ T e2 ↔ ∀x∀y
((
x ∈ X ∧y ∈ X ∧x 6= y

)
→
(
∃B
(
B ∈ eβx∧y /∈ Cle(B)

)))
.

Proof. Applying Lemma 7.11 we have[
∀x∀y

((
x ∈ X ∧ y ∈ X ∧ x 6= y

)
→
(
∃B
(
B ∈ eβx ∧ y /∈ Cle(B)

)))]
= inf
x 6=y

sup
B⊆X

min
(
eβx(B), Ne

y (X −B)
)

= inf
x 6=y

sup
B⊆X

min
(
eβx(B), sup

y∈C⊆(X−B)

eβx(C)
)

= inf
x 6=y

sup
B⊆X

sup
y∈C⊆(X−B)

min
(
eβx(B), eβy(C)

)
= inf
x 6=y

sup
B∩C=φ

sup
x∈D⊆B,y∈E⊆C

min
(
eβx(B), eβy(E)

)
= inf
x 6=y

sup
B∩C=φ

min
(

sup
x∈D⊆B

eβx(D), sup
y∈E⊆C

eβy(E)
)

= inf
x 6=y

sup
B∩C=φ

min
(
Ne
x(B), Ne

y (C)
)

=
[
(X, τ) ∈ T e2

]
. �

Theorem 7.13. Let (X, τ) be a fuzzifying topological space. Then

(1) |= (X, τ) ∈ Re1 → (X, τ) ∈ Re0.
(2) If T0(X, τ) = 1, then
(a) |= (X, τ) ∈ R0 → (X, τ) ∈ Re0.
(b) |= (X, τ) ∈ R1 → (X, τ) ∈ Re1.

Proof. (1) From Lemma 7.5 (1) we have[
(X, τ) ∈ Re0

]
= inf
x 6=y

min
(

1, 1−Ke(x, y) +He(x, y)
)

≥ inf
x6=y

min
(

1, 1−Ke(x, y) +Me(x, y)
)

=
[
(X, τ) ∈ Re1

]
.

(2) Since T0(X, τ) = 1, then for each x, y ∈ X and x 6= y we have, K(x, y) = 1 and
so, Ke(x, y) = 1.

(a) Applying Lemma 7.3(2) we have[
(X, τ) ∈ R0

]
= inf
x 6=y

min
(

1, 1−K(x, y) +H(x, y)
)
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≥ inf
x 6=y

min
(

1, 1−K(x, y) +He(x, y)
)

= inf
x 6=y

min
(

1, 1−Ke(x, y) +He(x, y)
)

=
[
(X, τ) ∈ Re0

]
.

(b) Applying Lemma 7.3 (3) we have[
(X, τ) ∈ R1

]
= inf
x 6=y

min
(

1, 1−K(x, y) +M(x, y)
)

≥ inf
x 6=y

min
(

1, 1−K(x, y) +Me(x, y)
)

= inf
x 6=y

min
(

1, 1−Ke(x, y) +Me(x, y)
)

=
[
(X, τ) ∈ Re1

]
. �

Theorem 7.14. Let (X, τ) be a fuzzifying topological space. Then

(1) |= (X, τ) ∈ T e1 → (X, τ) ∈ Re0;
(2) |= (X, τ) ∈ T e1 →

(
(X, τ) ∈ Re0 ∧ (X, τ) ∈ T e0

)
;

(3) If T e0 (X, τ) = 1, then |= (X, τ) ∈ T e1 ↔
(
(X, τ) ∈ Re0 ∧ (X, τ) ∈ T e0

)
.

Proof. (1) By some calculations we have
T e1 (X, τ) = inf

x 6=y
[He(x, y)] ≤ inf

x 6=y
min

(
1, 1− [Ke(x, y)] + [He(x, y)]

)
= Re0(X, τ).

(2) It is obtained from (1) and from Theorem 7.6 (1).
(3) Since T e0 (X, τ) = 1, then for every x, y ∈ X such that x 6= y we have [Ke(x, y)] =
1. Therefore,
[(X, τ) ∈ Re0 ∧ (X, τ) ∈ T e0 ] = [(X, τ) ∈ Re0] = inf

x 6=y
min

(
1, 1− [Ke(x, y)] + [He(x, y)]

)
= inf
x 6=y

[He(x, y)] = [(X, τ) ∈ T e1 ]. �

Theorem 7.15. Let (X, τ) be a fuzzifying topological space. Then

(1) |= ((X, τ) ∈ Re0 ∗ (X, τ) ∈ T e0 )→ (X, τ) ∈ T e1 ;

(2) If T e0 (X, τ) = 1, then |= ((X, τ) ∈ Re0 ∗ (X, τ) ∈ T e0 )↔ (X, τ) ∈ T e1 .

Proof. (1)[(X, τ) ∈ Reo ∗ (X, τ) ∈ T e0 ] = max
(

0, Re0(X, τ) + T e0 (X, τ)− 1
)

= max
(

0, inf
x 6=y

min(1, 1−[Ke(x, y)]+[He(x, y)])+ inf
x 6=y

[Ke(x, y)])−1
)

≤ max
(

0, inf
x 6=y

(min
(
1, 1− [Ke(x, y)]+[He(x, y)])+[Ke(x, y)]−1

))
= inf
x 6=y

[He(x, y)] = [(X, τ) ∈ T e1 ].

(2) [(X, τ) ∈ Re
o ∗ (X, τ) ∈ T e

0 ] = [Re
0(X, τ)] = inf

x 6=y
min

(
1, 1− [Ke(x, y)] + [He(x, y)]

)
= inf
x 6=y

[He(x, y)] = [(X, τ) ∈ T e1 ],

because T e0 (X, τ) = 1, we have for each x, y ∈ X such that x 6= y we have
[Ke(x, y)] = 1. �

Theorem 7.16. Let (X, τ) be a fuzzifying topological space. Then

(1) |= (X, τ) ∈ T e0 →
(
(X, τ) ∈ Re0 → (X, τ) ∈ T e1

)
;

(2) |= (X, τ) ∈ Re0 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e1

)
.
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Proof. (1) From Theorems 7.14(1) and 7.15 (1) we have[
(X, τ) ∈ T e0 →

(
(X, τ) ∈ Re0 → (X, τ) ∈ T e1

)]
= min

(
1, 1−

[
(X, τ) ∈ T e0

]
+ min(1, 1−

[
(X, τ) ∈ Re0

]
+
[
(X, τ) ∈ T e1

]))
= min

(
1, 1−

[
(X, τ) ∈ T e0

]
+ 1−

[
(X, τ) ∈ Re0

]
+
[
(X, τ) ∈ T e1

])
= min

(
1, 1−

([
(X, τ) ∈ T e0

]
+
[
(X, τ) ∈ Re0

]
− 1
)

+
[
(X, τ) ∈ T e1

])
= 1.

(2) From Theorem 7.6(1) and 7.15(1) the proof is similar to (1). �

Theorem 7.17. Let (X, τ) be a fuzzifying topological space. Then

(1) |= (X, τ) ∈ T e2 → (X, τ) ∈ Re1.

(2) |= (X, τ) ∈ T e2 →
(

(X, τ) ∈ Re1 ∧ (X, τ) ∈ T e0
)
.

(3) If T e0 (X, τ) = 1, then |= (X, τ) ∈ T e2 ↔
(

(X, τ) ∈ Re1 ∧ (X, τ) ∈ T e0
)
.

Proof. (1) we have

T e2 (X, τ) = inf
x 6=y

[Me(x, y)] ≤ inf
x 6=y

[Ke(x, y)→Me(x, y)] = Re1(X, τ).

(2) It is obtained from (1) and from Corollary 7.7
(3) Since T e0 (X, τ) = 1, then for every x, y ∈ X such that x 6= y we have [Ke(x, y)] =
1. Therefore,
T e2 (X, τ) = inf

x 6=y
[Me(x, y)] = inf

x 6=y
[Ke(x, y)→Me(x, y)] = Re1(X, τ)

= Re1(X, τ) ∧ T e0 (X, τ). �

Theorem 7.18. Let (X, τ) be a fuzzifying topological space. Then

(1) |=
(
(X, τ) ∈ Re1 ∗ (X, τ) ∈ T e0

)
→ (X, τ) ∈ T e2 ;

(2) If T e0 (X, τ) = 1, then |=
(
(X, τ) ∈ Re1 ∗ (X, τ) ∈ T e0

)
↔ (X, τ) ∈ T e2 .

Proof. (1) By some calculations we have
[(X, τ) ∈ Re1 ∗ (X, τ) ∈ T e0 ] = max

(
0, Re1(X, τ) + T e0 (X, τ)− 1

)
= max

(
0, inf
x6=y

min
(
1, 1− [Ke(x, y)] + [Me(x, y)]

)
+ inf
x 6=y

[Ke(x, y)]
)
− 1
)

≤ max
(

0, inf
x 6=y

(
min

(
1, 1− [Ke(x, y)] + [Me(x, y)]

)
+ [Ke(x, y)]

)
− 1
)

= inf
x6=y

[Me(x, y)] = T e2 (X, τ).

(2) Since T e0 (X, τ) = 1, then for every x, y ∈ X such that x 6= y we have [Ke(x, y)] =
1. Therefore,
[(X, τ) ∈ Re1 ∗ (X, τ) ∈ T e0 ] = [(X, τ) ∈ Re1] = inf

x6=y
min

(
1, 1− [Ke(x, y)] + [Me(x, y)]

)
= inf
x 6=y

[Me(x, y)] = T e2 (X, τ). �

Theorem 7.19. Let (X, τ) be a fuzzifying topological space. Then

(1) |= (X, τ) ∈ T e0 →
(
(X, τ) ∈ Re1 → (X, τ) ∈ T e2

)
;

(2) |= (X, τ) ∈ Re1 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e2

)
.
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Proof. (1) From Theorems 7.17(1) and 7.18(1) we have

[(X, τ) ∈ T e0 → ((X, τ) ∈ Re1 → (X, τ) ∈ T e2 )] = min
(

1, 1− T e0 (X, τ) +

min
(
1, 1−Re1(X, τ)+T e2 (X, τ)

))
= min

(
1, 1− [(X, τ) ∈ T e0 ]+1− [(X, τ) ∈

Re1] + [(X, τ) ∈ T e2 ]
)

= min
(
1, 1− ([(X, τ) ∈ T e0 ] + [(X, τ) ∈ Re1]−1) + [(X, τ) ∈ T e2 ]

)
= 1.

(2) From Corollary 7.7 and Theorem 7.18(1) the proof is similar to (1). �

Theorem 7.20. Let (X, τ) be a fuzzifying topological space. If [(X, τ) ∈ T e0 ] = 1,
then

(1) |=
(

(X, τ) ∈ T e0 →
(
(X, τ) ∈ Re0 → (X, τ) ∈ T e1

))
∧
(

(X, τ) ∈ T e1 → ¬
(
(X, τ) ∈ T e0 → ¬

(
(X, τ) ∈ Re0

)))
;

(2) |=
(

(X, τ) ∈ Re0 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e1

))
∧
(

(X, τ) ∈ T e1 → ¬
(
(X, τ) ∈ T e0 → ¬

(
(X, τ) ∈ Re0

)))
;

(3) |=
(

(X, τ) ∈ T e0 →
(
(X, τ) ∈ Re0 → (X, τ) ∈ T e1

))
∧
(

(X, τ) ∈ T e1 → ¬
(
(X, τ) ∈ Re0 → ¬

(
(X, τ) ∈ T e0

)))
;

(4) |=
(

(X, τ) ∈ Re0 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e1

))
∧
(

(X, τ) ∈ T e1 → ¬
(
(X, τ) ∈ Re0 → ¬

(
(X, τ) ∈ T e0

)))
.

Proof. For simplicity we put [(X, τ) ∈ T e0 ] = η, [(X, τ) ∈ Re0] = ζ and [(X, τ) ∈
T e1 ] = ξ. Now, applying Theorem 7.15 (2), the proof is obtained with some relations
in fuzzy logic as follows.
(1)

(
η → (ζ → ξ)

)
∧
(
ξ → ¬(η → ¬ζ)

)
=
(
η → ¬(ζ ∗ ¬ξ)

)
∧
(
ξ → ¬(η → ¬ζ)

)
= ¬

(
η ∗ ¬

(
¬(ζ ∗ ¬ξ)

))
∧ ¬
(
ξ ∗ (η → ¬ζ)

)
= ¬(η ∗ ζ ∗ ¬ξ) ∧ ¬

(
ξ ∗ ¬(η ∗ ζ)

)
= (η ∗ ζ → ξ) ∧ (ξ → η ∗ ζ) = η ∧ ζ ↔ ξ = 1

Since ∗ is commutative one can have the proof of statements (2)-(4) in a similar
way as (1). �

Theorem 7.21. Let (X, τ) be a fuzzifying topological space. If [(X, τ) ∈ T e0 ] = 1,
then

(1) |=
(

(X, τ) ∈ T e0 →
(
(X, τ) ∈ Re1 → (X, τ) ∈ T e2

))
∧
(

(X, τ) ∈ T e2 → ¬
(
(X, τ) ∈ T e0 → ¬

(
(X, τ) ∈ Re1

)))
;

(2) |=
(

(X, τ) ∈ Re1 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e2

))
∧
(

(X, τ) ∈ T e2 → ¬
(
(X, τ) ∈ T e0 → ¬

(
(X, τ) ∈ Re1

)))
;

(3) |=
(

(X, τ) ∈ T e0 →
(
(X, τ) ∈ Re1 → (X, τ) ∈ T e2

))
∧
(

(X, τ) ∈ T e2 → ¬
(
(X, τ) ∈ Re1 → ¬((X, τ) ∈ T e0

)))
;
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(4) |=
(

(X, τ) ∈ Re1 →
(
(X, τ) ∈ T e0 → (X, τ) ∈ T e2

))
∧
(

(X, τ) ∈ T e2 → ¬
(
(X, τ) ∈ Re1 → ¬

(
(X, τ) ∈ T e0

)))
;

Proof. The proof is similar to that of Theorem 7.20 �

Lemma 7.22. (1) If D ⊆ B, then

sup
A∩B=φ

Ne
x(A) = sup

A∩B=φ,D⊆B
Ne
x(A)

(2) sup
A∩B=φ

inf
y∈D

Ne
y (X −A) = sup

A∩B=φ,D⊆B
τe(B).

Proof. (1) Since D ⊆ B, then we have

sup
A∩B=φ

Ne
x(A) = sup

A∩B=φ
Ne
x(A) ∧ [D ⊆ B] = sup

A∩B=φ,D⊆B
Ne
x(A).

(2) Let y ∈ D and A ∩B = φ. Then
sup

A∩B=φ,D⊆B
τe(B) = sup

A∩B=φ,D⊆B
τe(B) ∧ [y ∈ D] = sup

y∈D⊆B⊆X−A
τe(B).

= sup
y∈B⊆X−A

τe(B) = Ne
y (X −A)

= inf
y∈D

Ne
y (X −A) = sup

A∩B=φ
inf
y∈D

Ne
y (X −A). �

Definition 7.23. Let (X, τ) be a fuzzifying topological space. Then

eT
(1)
3 (X, τ) := ∀x∀D

((
x ∈ X ∧D ∈ F ∧ x /∈ D

)
→ ∃A

(
A ∈ Ne

x∧(
Cle(A) ∩D ≡ φ

)))
.

Theorem 7.24. Let (X, τ) be a fuzzifying topological space.

|= (X, τ) ∈ T e3 ↔ (X, τ) ∈ eT (1)
3 .

Proof. Now,

(X, τ) ∈ T (1)
3 = inf

x/∈D
min

(
1, 1−τ(X−D)+ sup

A∈P (X)

min
(
Ne
x(A), inf

y∈D
(1−Cle(A)(y)

)))
= inf
x/∈D

min
(

1, 1− τ(X −D) + sup
A∈P (X)

min
(
Ne
x(A), inf

y∈D
Ne
y (X −A)

))
.

and

[(X, τ) ∈ T e3 ] = inf
x/∈D

min
(

1, 1− τ(X −D) + sup
A∩B=φ,D∈B

min
(
Ne
x(A), τe(B)

))
.

So, the result holds if we prove that

sup
A∈P (X)

min(Ne
x(A), inf

y∈D
Ne
y (X −A)) = sup

A∩B=φ,D⊆B
min(Ne

x(A), τe(B))(7.1)

In fact, in the left side of 7.1 when A ∩ D 6= φ then there exists y ∈ X such that
y ∈ D and y ∈ A. Namely, y ∈ D and y /∈ X −A. So, inf

y∈D
Ne
y (X −A) = 0 and thus

7.1 becomes
sup

A∈P (X),A∩B=φ

min
(
Ne
x(A), inf

y∈D
Ne
y (X −A)

)
= sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τe(B)

)
,

which is obtained from Lemma 7.22 �

Definition 7.25. Let (X, τ) be a fuzzifying topological space. Then

eT
(2)
3 (X, τ) := ∀x∀B

(
(x ∈ B ∧B ∈ τ)→

(
∃A(A ∈ Ne

x ∧ Cle(A) ⊆ B)
))
.
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Theorem 7.26. Let (X, τ) be a fuzzifying topological space. Then

|= (X, τ) ∈ T e3 ↔ (X, τ) ∈ eT (2)
3 .

Proof. From Theorem 7.24, we have[
(X, τ) ∈ T e3

]
= inf
x/∈D

min
(

1, 1−τ(X−D)+ sup
A∈P (X)

min
(
Ne
x(A), inf

y∈D
Ne
y (X−A)

))
Now, if we put B = X −D, then

[(X, τ) ∈ T
(2)
3 ] = inf

x∈B
min

(
1, 1 − τ(B) + sup

A∈P (X)

min
(
Ne
x(A), inf

y∈(X−B)
Ne
y (X −

A)
))

.

= inf
x/∈D

min
(

1, 1−τ(X−D)+ sup
A∈P (X)

min
(
Ne
x(A), inf

y∈D
Ne
y (X−A)

))
.

= [(X, τ) ∈ T e3 ]. �

Definition 7.27. Let (X, τ) be a fuzzifying topological space and ϕ be a subbase

of τ then (X, τ) ∈ eT (3)
3 := ∀x∀D

(
x ∈ D ∧D ∈ ϕ→ ∃B

(
B ∈ Ne

x ∧ Cle(B) ⊆ D
))
.

Theorem 7.28. |= (X, τ) ∈ T e3 ↔ (X, τ) ∈ eT (3)
3 .

Proof. Since [ϕ ⊆ τ ] = 1, and with regards to Theorem 7.24 and 7.26 we have

eT
(3)
3 (X, τ) ≥ eT

(2)
3 (X, τ) = T e3 (X, τ). So, it remains to prove that eT

(3)
3 (X, τ) ≤

eT
(2)
3 (X, τ) and this is obtained if we prove for any x ∈ A,

min
(

1, 1− τ(A) + sup
B∈P (X)

min
(
Ne
x(B), inf

y∈X−A
Ne
y (X −B)

))
≥
[
(X, τ) ∈ eT (3)

3

]
.

Set
[
(X, τ) ∈ eT (3)

3

]
= δ. Then, for any x ∈ X and any Dλi ∈ P (X), λi ∈ Iλ(Iλ

denotes a finite index set), λ ∈ Λ,⋃
λ∈Λ

⋂
λi∈Iλ

Dλi = A

We have

1 − ϕ(Dλi) + sup
B∈P (X)

min
(
Ne
x(B), inf

y∈X−Dλi
Ne
y (X − B)

)
≥ δ > δ − ε, where ε is

any positive number. Thus

sup
B∈P (X)

min
(
Ne
x(B), inf

y∈X−Dλi
Ne
y (X −B)

)
> ϕ(Dλi)− 1 + δ − ε.

Set βλi = {B : B ⊆ Dλi}. Then

inf
λi∈Iλ

sup
B∈P (X)

min
(
Ne
x(B), inf

y∈(X−Dλi )
Ne
y (X −B)

)
.

= sup
f∈Π{βλi:λi∈Iλ}

inf
λi∈Iλ

min
(
Ne
x(f(λi)), inf

y∈(X−Dλi )
Ne
y

(
X − f(λi)

))
= sup
f∈Π{βλi:λi∈Iλ}

min
(

inf
λi∈Iλ

Ne
x(f(λi)), inf

λi∈Iλ
inf

y∈(X−Dλi )
Ne
y

(
X − f(λi)

))
= sup
f∈Π{βλi:λi∈Iλ}

min
(

inf
λi∈Iλ

Ne
x(f(λi)), inf

y∈
⋃

λi∈Iλ
(X−Dλi )

Ne
y (X − f(λi))

)
= sup
B∈P (X)

min
(

inf
λi∈Iλ

Ne
x(B), inf

y∈
⋃

λi∈Iλ
(X−Dλi )

Ne
y (X −B)

)
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= sup
B∈P (X)

min
(
Ne
x(B), inf

y∈
⋃

λi∈Iλ
(X−Dλi )

Ne
y (X −B)

)
,

where B = f(λi).
Similary, we can prove

inf
λ∈Λ

sup
B∈P (X)

min
(
Ne
x(B), inf

y∈
⋃

λi∈Iλ
(X−Dλi )

Ne
y (X −B)

)
= sup
B∈P (X)

min
(
Ne
x(B), inf

y∈
⋃
λ∈Λ

⋃
λi∈Iλ

(X−Dλi )
Ne
y (X −B)

)
≤ sup
B∈P (X)

min
(
Ne
x(B), inf

y∈
⋂
λ∈Λ

⋃
λi∈Iλ

(X−Dλi )
Ne
y (X −B)

)
≤ sup
B∈P (X)

min
(
Ne
x(B), inf

y∈X−A
Ne
y (X −B)

)
,

we have

sup
B∈P (X)

min
(
Ne
x(B), inf

y∈X−A
Ne
y (X −B)

)
≥ inf
λ∈Λ

inf
λi∈Iλ

sup
B∈P (X)

min
(
Ne
x(B), inf

y∈(X−Dλi )
Ne
y (X −B)

)
≥ inf
λ∈Λ

inf
λi∈Iλ

ϕ(Dλi)− 1 + δ − ε.
For any Iλ and Λ that satisfy ⋃

λ∈Λ

⋂
λi∈Iλ

Dλi = A

the above inequality is true. So,
sup

B∈P (X)

min
(
Ne
x(B), inf

y∈(X−A)
Ne
y (X −B)

)
≥

sup⋃
λ∈Λ

Dλ=A

inf
λ∈Λ

sup⋂
λi∈Iλ

Dλi=Dλ

inf
λi∈Iλ

ϕ(Dλi)− 1 + δ− ε.

= τ(A)− 1 + δ − ε,
i.e., min

(
1, 1− τ(A) + sup

B∈P (X)

min
(
Ne
x(B), inf

y∈(X−A)
Ne
y (X −B)

))
≥ δ − ε.

Because ε is any positive number, when ε→ 0 we have

[(X, τ) ∈ eT (2)
3 ] ≥ δ = [(X, τ) ∈ eT (3)

3 ].

So, |= (x, τ) ∈ T e3 ↔ (x, τ) ∈ eT (3)
3 . �

Definition 7.29. Let (X, τ) be the fuzzifying topological space and let

1. (X, τ) ∈ eST (1)
3 = ∀x∀D

((
(x ∈ X) ∧ (D ∈ Fe) ∧ (x /∈ D)

)
→ ∃A

(
A ∈ Nx∧(Cl(A)∩D ≡ φ)

))
;

2. (X, τ) ∈ eST (2)
3 = ∀x∀B

((
(x ∈ B) ∧ (B ∈ τ)

)
→ ∃A

(
A ∈ Ne

x ∧ (Cl(A) ∩

B)
))

;

157



A. Vadivel et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 139-160

3. (X, τ) ∈ eT (1)
4 = ∀A∀B

((
(A ∈ τ) ∧ (B ∈ F ) ∧ (A ∩B ≡ φ)

)
→ ∃G

(
(G ∈ τ)∧(A ⊆ G)∧(Cle(G)∩B ≡ φ)

))
;

4. (X, τ) ∈ eT (2)
4 = ∀A∀B

((
(A ∈ F ) ∧ (B ∈ τ) ∧ (A ⊆ B)

)
→ ∃G

(
(G ∈ τ)∧(A ⊆ G)∧(Cle(G)∩B)

))
;

5. (X, τ) ∈ eST (1)
4 = ∀A∀B

((
(A ∈ τ) ∧ (B ∈ Fe) ∧ (A ∩B ≡ φ)

)
→ ∃G

(
(G ∈ τ)∧(A ⊆ G)∧(Cle(G)∩B ≡ φ)

))
;

6. (X, τ) ∈ eST (2)
4 = ∀A∀B

((
(A ∈ F ) ∧ (B ∈ τe) ∧ (A ⊆ B)

)
→ ∃G

(
(G ∈ τ)∧(A ⊆ G)∧(Cle(G)∩B)

))
.

By a similar proof of Theorem 7.24 and 7.26 we have the following theorem.

Theorem 7.30. Let (X, τ) be any fuzzifying topological space. Then

(1) |= (X, τ) ∈ T eS3 ↔ (X, τ) ∈ eST (1)
3 ;

(2) |= (X, τ) ∈ T eS3 ↔ (X, τ) ∈ eST (2)
3 ;

(3) |= (X, τ) ∈ T e4 ↔ (X, τ) ∈ eT (1)
4 ;

(4) |= (X, τ) ∈ T e4 ↔ (X, τ) ∈ eT (2)
4 ;

(5) |= (X, τ) ∈ T eS4 ↔ (X, τ) ∈ eST (1)
4 ;

(6) |= (X, τ) ∈ T eS4 ↔ (X, τ) ∈ eST (2)
4 .

8. Relation among separation axioms

Theorem 8.1. |=
(
(X, τ) ∈ T e3 ∗ (X, τ) ∈ T1

)
→ (X, τ) ∈ T e2 ;

Proof. From Theorem 2.2 [11] we have, T1(X, τ) = inf
z∈X

τ(X − {z}). So, [(X, τ) ∈
T e3 ] + [(X, τ) ∈ T1]

= inf
x/∈D

min
(
1, 1− τ(X −D) + sup

A∩B=φ,D⊆B
min(Ne

x(A), τe(B))
)

+ inf
z∈X

τ(X − {z})

≤ inf
x∈X,x 6=y

inf
y∈X

min
(
1, 1− τ(X −{y}) + sup

A∩B=φ
min(Ne

x(A), Ne
y (B))

)
+ inf
z∈X

τ(X −

{z})

= inf
x∈X,x 6=y

(
inf
y∈X

min
(
1, 1− τ(X − {y}) + sup

A∩B=φ
min(Ne

x(A), Ne
y (B))

)
+

inf
z∈X

τ(X − {z})
)

≤ inf
x∈X,x 6=y

inf
y∈X

(
min

(
1, 1−τ(X−{y})+ sup

A∩B=φ
min(Ne

x(A), Ne
y (B))

)
+τ(X−{y})

)
≤ inf
x 6=y

(
1 + sup

A∩B=φ
min(Ne

x(A), Ne
y (B))

)
≤ 1 + inf

x 6=y
sup

A∩B=φ
min

(
Ne
x(A), Ne

y (B))
)

= 1 + [(X, τ) ∈ T e2 ],

158



A. Vadivel et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 139-160

namely, [(X, τ) ∈ T e2 ] ≥ [(X, τ) ∈ T e3 ] + [(X, τ) ∈ T1] − 1. Thus, [(X, τ) ∈ T e2 ] ≥
max

(
0, [(X, τ) ∈ T e3 ] + [(X, τ) ∈ T1]− 1

)
. �

Theorem 8.2. |=
(
(X, τ) ∈ T e4 ∗ (X, τ) ∈ T1

)
→ (X, τ) ∈ T e3 ;

Proof. It is equivalent to prove that [(X, τ) ∈ T e3 ] ≥ [(X, τ) ∈ T e4 ]+[(X, τ) ∈ T1]−1.
In fact,

[(X, τ) ∈ T e4 ] + [(X, τ) ∈ T1] = inf
E∩D≡φ

min
(

1, 1−min
(
τ(X − E), τ(X −D)

)
+ sup
A∩B=φ,E⊆A,D⊆B

min
(
τe(A), τe(B)

))
+ inf
z∈X

τ(X −{z})

≤ inf
x/∈D

min
(

1, 1−min
(
τ(X − {x}), τ(X −D)

)
+ sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τe(B)

))
+ inf
z∈X

τ(X − {z})

≤ inf
x/∈D

min
(

1,max(1− τ(X −D) + sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τe(B)

)
,

1−τ(X−{x})+ sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τey (B)

)))
+ inf
z∈X

τ(X−{z})

= inf
x/∈D

max
(

min
(
1, 1− τ(X −D) + sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B)

))
,

min
(
1, 1−τ(X−{x})+ sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B))

))
+ inf
z∈X

τ(X−{z})

≤ inf
x/∈D

max
(

min
(
1, 1−τ(X−D)+ sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B)

)
+τ(X−{x}),

min
(
1, 1− τ(X−{x}

)
+ sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τe(B)

)))
+

τ(X − {x})

≤ inf
x/∈D

max
(

min
(
1, 1−τ(X−D)+ sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B)

))
+τ(X−{x}),

1 + sup
A∩B=φ,D⊆B

min
(
Ne
x(A), τe(B)

))
≤ inf
x/∈D

(
min

(
1, 1− τ(X −D) + sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B)

))
+ 1
)

≤ inf
x/∈D

(
1− τ(X −D) + sup

A∩B=φ,D⊆B
min

(
Ne
x(A), τe(B)

))
+ 1 = [(X, τ) ∈ T e3 ] + 1.

By a similar procedures of Theorems 8.1-8.2 we have the following Theorems
respectively. �

Theorem 8.3. |=
(
(X, τ) ∈ T eS3 ∗ (X, τ) ∈ T e1

)
→ (X, τ) ∈ T2;

Theorem 8.4. |= ((X, τ) ∈ T eS4 ∗ (X, τ) ∈ T e1 )→ (X, τ) ∈ T eS3 ;
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From the above discussion one can have the following diagram

T e
S

4 ∗ T e1 ← T e
S

4 ∗ T e1
↓

↓ T e
S

3 ← T e
S

4

↓ ↓
T0 ← T1 ← T2 ← T3 ← T4

↓ ↓ ↓ ↓ ↓
T e0 ← T e1 ← T e2 ← T e3 ← T e4 .
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