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1. Introduction

The title of this paper has been chosen to be the same as our earlier paper [4]
with a ‘II’ meaning thereby that this is the second paper by us of this series submit-
ted for this journal. The approach is basically the same, only here more generalized
categories are involved. However, in the last section it will be observed that a some-
what different direction of development has taken place. In this paper we generalize
the work submitted in the proceedings of 13th Asian Logic Conference 2013 [5] by
taking the value set as any frame L instead of [0, 1]. This in turn, generalizes [4].
Further we proceed with the concept of variable basis fuzzy topological spaces on
fuzzy sets and propose the notion of variable basis topological systems whose under-
lying sets are fuzzy sets. Solovyov and Rodabough worked on variable basis fuzzy
topological spaces [7] and systems [8] over crisp sets. Hence their case become a
particular case of ours. Here we are able to establish adjunction between space and
system i.e. spatialization is achieved but adjunction between space and algebra or
system and algebra is still unsettled. In the particular case i.e. in [8] Solovyov also
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left this case as an open question. Zadeh introduced fuzzy sets in 1965 [10]. In this

paper by a fuzzy set we mean the pair (X, Ã) where X is a non-empty set and Ã is
a mapping from X to a suitable lattice.

To make this paper self-contained we include the following preliminaries.

Preliminaries A

The main aim of this paper is to generalize the notion of topological systems [9]
and find the categorical relationships with appropriate spaces and algebraic struc-
tures. In this section let us recall the basic concepts related to our work.

Definition 1.1. A frame is a partially ordered set such that

(1) every subset has a join,
(2) every finite subset has a meet, and
(3) binary meets distribute over arbitrary joins: i.e. x∧

∨
Y =

∨
{x∧y : y ∈ Y }.

Note that the Lindenbaum algebra of logic of finite observations or geometric
logic [9] is a frame. In this paper we are not concern about the logic though it is our
future aim. So the details of the logic is not provided here. We only indicate some
connections of the logic with the systems and algebras.

Definition 1.2. A topological system is a triple (X, |=, A) where X is a nonempty
set, A is a frame and |=, is a binary relation (i.e. |=⊆ X×A), satisfying the following
conditions.

(1) if S is a finite subset of A, then x |=
∧
S ⇔ x |= a for all a ∈ S,

(2) if S is any subset of A, then x |=
∨
S ⇔ x |= a for some a ∈ S.

Topological system was introduced by S. Vickers in 1989. In topological system
the binary relation plays the key role and indicates its relationship with the logic of
finite observations or geometric logic.

In our previous work [4] we already had some generalization of Vicker’s work,
known as fuzzy topological systems and defined as follows.

Definition 1.3 ([4]). A fuzzy topological system is a triple (X, |=, A), where X is a
set, A is a frame and |= is a [0, 1]- fuzzy relation from X to A such that

(1) if S is a finite subset of A, then gr(x |=
∧
S) = inf{gr(x |= s) : s ∈ S},

(2) if S is any subset of A, then gr(x |=
∨
S) = sup{gr(x |= s) : s ∈ S}.

Further we generalized the concept of fuzzy topological system.

Definition 1.4 ([5]). An F -topological system is a quadruple (X, Ã, |=, P ), where

(X, Ã) is a non-empty fuzzy set, P is a frame and |= is a [0, 1]- fuzzy relation from
X to P such that

(1) gr(x |= p) ≤ Ã(x),
(2) if S is a finite subset of P , then gr(x |=

∧
S) = inf{gr(x |= s) : s ∈ S},

(3) if S is any subset of P , then gr(x |=
∨
S) = sup{gr(x |= s) : s ∈ S}.

where gr(x |= p) is the degree in which x is related with p, x ∈ X, p ∈ P .

Definition 1.5. Let D = (X, Ã, |=, P ) and E = (Y, B̃, |=′, Q) be F topological
systems. A continuous map f : D −→ E is a pair (f1, f2) where,
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(1) f1 : (X, Ã) −→ (Y, B̃) is a proper function (c.f Definition 1.6) from (X, Ã)

to (Y, B̃),
(2) f2 : Q −→ P is a frame homomorphism and
(3) gr(x |= f2(q)) = gr(f1(x) |=′ q), for all x ∈ X and q ∈ Q.

Definition 1.6 ([2]). f1 is a proper function from (X, Ã) to (Y, B̃) meaning that f1
is a fuzzy relation from (X, Ã) to (Y, B̃) s.t. ∀x ∈| Ã |, ∃ unique y ∈| B̃ | for which

Ã(x) = f1(x, y) and f1(x, y′) = 0 if y′ 6= y ∈| B̃ |, where | Ã |= {x ∈ X : Ã(x) > 0}
and | B̃ |= {y ∈ Y : B̃(y) > 0}. For a fixed x ∈| Ã |, we will denote that

unique y ∈| B̃ | by f1(x).

Definition 1.7. Let (X, Ã) be a fuzzy set. The map iÃ : X ×X −→ [0, 1] (or L, a

frame) is said to be an identity proper function iff iÃ(x, x) = Ã(x), for any x ∈ X
and iÃ(x, x′) = 0 (or 0L, the least element of the frame L), when x 6= x′ in X.

Definition 1.8 ([5]). The category F -TopSys is defined thus.

• The objects are F -topological systems (X, Ã, |=, P ).
• The morphisms are continuous maps (c.f Definition 1.5).

• The identity on (X, Ã, |=, P ) is the pair (iA, iP ), where iA is the identity

proper function (c.f Definition 1.7) on the fuzzy set (X, Ã) and iP is the
identity frame homomorphism. This is an F -TopSys morphism can be
proved.
• If (f1, f2) : (X, Ã, |=, P ) −→ (Y, B̃, |=′, Q) and (g1, g2) : (Y, B̃, |=′, Q) −→

(Z, C̃, |=′′, R) are morphisms in F -TopSys, their composition (g1, g2) ◦
(f1, f2) = (g1◦f1, f2◦g2), where g1◦f1 is the composition of proper function
between fuzzy sets and f2 ◦ g2 is the composition of frame homomorphism
between two frames. It can be verified that (g1, g2) ◦ (f1, f2) is a morphism
in F -TopSys.

Definition 1.9 ([2]). Let (X, Ã) be a fuzzy set and τ a collection of fuzzy subsets

of (X, Ã) such that

(1) (X, φ̃) and (X, Ã) are in τ , where φ̃ : X −→ [0, 1] is such that φ̃(x) = 0, for
all x ∈ X;

(2) (X, Ã1), (X, Ã2) are in τ imply (X, Ã1 ∩ Ã2) is in τ , where Ã1 ∩ Ã2(x) =

Ã1(x) ∧ Ã2(x), for all x ∈ X;

(3) (X, Ãi) ∈ τ imply (X,∪i∈IÃi) ∈ τ , where ∪i∈IÃi : X −→ [0, 1] is such that

(∪i∈IÃi)(x) = ∨i∈IÃi(x), for all x ∈ X.

Then (X, Ã, τ) is an F -topological space.

Definition 1.10 ([2]). The category F -Top is defined thus.

• The objects are F -topological spaces (X, Ã, τ) on fuzzy sets (X, Ã).
• The morphisms are proper functions satisfying the following property: If f :

(X, Ã, τ) −→ (Y, B̃, τ ′) and (Y, B̃1) is a subset of (Y, B̃) such that (Y, B̃1) ∈
τ ′ then (X, f−1(B̃1)) ∈ τ , where f−1(B̃1) is a fuzzy subset of X given by

f−1(B̃1)(x) = B̃1(f(x)).

• The identity on (X, Ã, τ) is the identity proper function (c.f Definition 1.7)

on the fuzzy set (X, Ã). This is an F -Top morphism can be proved.
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• If f : (X, Ã, τ) −→ (Y, B̃, τ ′) and g : (Y, B̃, τ ′) −→ (Z, C̃, τ ′′) are morphisms
in F -Top, their composition g ◦ f is the composition of proper functions
between fuzzy sets. It can be verified that g ◦ f is a morphism in F -Top.

Definition 1.11 ([2]). Let (X, Ã) be an L-fuzzy set and τ a collection of fuzzy

subsets of (X, Ã) such that

(1) (X, φ̃) and (X, Ã) are in τ , where φ̃ : X −→ L is such that φ̃(x) = 0L, for
all x ∈ X, where 0L is the least element of the frame L;

(2) (X, Ã1), (X, Ã2) are in τ implies (X, Ã1 ∩ Ã2) is in τ , where (Ã1 ∩ Ã2)(x) =

Ã1(x) ∧ Ã2(x), for all x ∈ X;

(3) (X, Ãi) ∈ τ implies (X,∪i∈IÃi) ∈ τ , where ∪i∈IÃi : X −→ L is such that

(∪i∈IÃi)(x) = ∨i∈IÃi(x), for all x ∈ X.

Then (X, Ã, τ) is an L -topological space.

Preliminaries B

The basic notions of category theory are mostly taken from [1]. Let G : A −→ B
be a functor, and let B be a B-object.

Definition 1.12. For any category A = (O, homA, id, ◦) the dual (or opposite)
category of A is the category Aop = (O, homAop , id, ◦op) where homAop(A,B) =
homA(B,A) and f ◦op g = g ◦ f. (Thus A and Aop have the same objects and,except
for their direction, the same morphisms).

Definition 1.13 (G-structured arrow and G-costructured arrow).

(1) A G-structured arrow with domain B is a pair (f,A) consisting of an A-
object A and a B-morphism f : B −→ GA.

(2) A G-costructured arrow with codomain B is a pair (A, f) consisting of an
A-object A and a B-morphism f : GA −→ B.

Definition 1.14 (G-universal arrow and G-couniversal arrow).

(1) A G-structured arrow (g,A) with domain B is called G-universal for B
provided that for each G-structured arrow (g′, A′) with domain B there

exists a unique A-morphism f̂ : A −→ A′ with g′ = G(f̂) ◦ g i.e., s.t. the
triangle

B GA

GA′

g

g′
Gf̂

commutes.
(2) A G-costructured arrow (A, g) with codomain B is called

G-couniversal for B provided that for each G-costructured arrow

(A′, g′) with codomain B there exists a unique A-morphism f̂ : A′ −→ A

with g′ = g ◦G(f̂) i.e., s.t. the triangle
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GA B

GA′

g

Gf̂
g′

commutes.

Definition 1.15 (Left Adjoint and Right Adjoint).

(1) A functor G : A −→ B is said to be left adjoint provided that for every
B-object B there exists a G-couniversal arrow with codomain B.
i.e. there exist a natural transformation η : A −→ FGA where F : B −→ A
is a functor, s.t. for given f : A −→ FB there exist a unique B-morphism

f̂ : GA −→ B s.t. the triangle

A FGA

FB

η

f
F f̂

commutes.
This η is called the unit of the adjunction.
Hence we have the diagram of unit as follows

A B

A FGA

FB

η

f
F f̂

GA

B

f̂

The diagram above indicates the fact that η : A −→ FGA is the F -universal
arrow provided that for given f : A −→ FB there exist a unique B-morphism

f̂ : GA −→ B s.t. the triangle commutes.
(2) A functor G : A −→ B is said to be right adjoint provided that for every

B-object B there exists a G-universal arrow with domain B.
From the definition above it follows that there exist a natural transformation
ξ : FGA −→ A, where F : B −→ A is a functor s.t. for given f ′ : FB −→ A

there exist a unique B-morphism f̂ : B −→ GA s.t the triangle

FGA A

FB

ξ

F f̂
f ′

commutes
This ξ is called the co-unit of the adjunction.
Hence we have the diagram of co-unit as follows
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A B

FGA A

FB

ξ

F f̂
f ′

GA

B

f̂

The diagram above indicates the fact that ξ : FGA −→ A is the F -couniversal
arrow provided that for given f ′ : FB −→ A there exist a unique B-morphism

f̂ : GA −→ B s.t. the triangle commutes.

2. Relationships among L -TopSys, L -Top and Frm

Definition 2.1. Let L be a frame. An L -topological system is a quadruple (X, Ã, |=
, P ), where (X, Ã) is a non-empty L valued fuzzy set (L-fuzzy set), P is a frame and
|= is an L- fuzzy relation from X to P such that

(1) gr(x |= p) ∈ L.

(2) gr(x |= p) ≤ Ã(x),
(3) if S is a finite subset of P , then gr(x |=

∧
S) = inf{gr(x |= s) : s ∈ S},

(4) if S is any subset of P , then gr(x |=
∨
S) = sup{gr(x |= s) : s ∈ S}.

Note 1: Because of condition 2, |= is a fuzzy relation on the L-fuzzy set (X, Ã)
[3].

Note 2: The notion of topological system introduced in [9] was defined by crisp
set and crisp relation whereas the notion of fuzzy topological system defined in [4]
consists of crisp set and fuzzy relation. In our new setting the notion of L -topological
system is defined by L-fuzzy set and L-fuzzy relation.

Note 3: L -topological system is a natural generalization of F -topological system
[5].

The notion of continuous map between these L -topological systems is defined as
follows:

Definition 2.2. Let D = (X, Ã, |=, P ) and E = (Y, B̃, |=′, Q) be L -topological
systems. A continuous map f : D −→ E is a pair (f1, f2) where,

(1) f1 : (X, Ã) −→ (Y, B̃) is a proper function (Definition 1.6) from (X, Ã) to

(Y, B̃),
(2) f2 : Q −→ P is a frame homomorphism and
(3) gr(x |= f2(q)) = gr(f1(x) |=′ q), for all x ∈ X and q ∈ Q.

Let us define identity map and composition of two maps as follows:

Definition 2.3. Let D = (X, Ã, |=, P ) be an L -topological system. The iden-

tity map ID : D −→ D is a pair (I1, I2) defined by I1 : (X, Ã) −→ (X, Ã)

s.t. I1(x1, x2) = Ã(x) iff x1 = x2, otherwise I1(x1, x2) = 0L and I2 : P −→
P is identity morphism of P . Let D = (X, Ã, |=′, P ), E = (Y, B̃, |=′′, Q), F =

(Z, C̃, |=′′′, R). Let (f1, f2) : D −→ E and (g1, g2) : E −→ F be continuous maps.

The composition (g1, g2)◦ (f1, f2) : D −→ F is defined by g1 ◦f1 : (X, Ã) −→ (Z, C̃),
f2 ◦ g2 : R −→ P i.e. (g1, g2) ◦ (f1, f2) = (g1 ◦ f1, f2 ◦ g2).

128



Purbita Jana et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 123-137

Remark: In fact we can show that the identity map and the composition of
two continuous maps are indeed continuous maps. Hence we propose the category
L -TopSys whose objects are L -topological systems and the morphisms are the
above mentioned continuous maps. Thus we get the category L -TopSys of fuzzy
topological systems whose underlying sets are L-fuzzy sets.

Definition 2.4 ([2]). The category L -Top is defined thus.

• The objects are L -topological spaces on L-fuzzy sets (X, Ã, τ), (Y, B̃, τ ′)
etc.
• The morphisms are proper functions satisfying the following continuity prop-

erty: If f : (X, Ã, τ) −→ (Y, B̃, τ ′) and (Y, B̃1) is a subset of (Y, B̃) such that

(Y, B̃1) ∈ τ ′ then (X, f−1(B̃1)) ∈ τ .

• The identity on (X, Ã, τ) is the identity proper function (c.f Definition 1.7)

on the L-fuzzy set (X, Ã). That this is an L -Top morphism can be proved.

• If f : (X, Ã, τ) −→ (Y, B̃, τ ′) and g : (Y, B̃, τ ′) −→ (Z, C̃, τ ′′) are morphisms
in L -Top, their composition g ◦ f is the composition of proper functions
between L-fuzzy sets. It can be verified that g ◦ f is a morphism in L -Top.

It is to note that the category L -Top is denoted by Fuz−Top (L) in [2] when L
is a complete Heyting algebra instead of a frame.

Definition 2.5. Frames together with frame homomorphisms form the category
Frm [4].

The opposite category of frame is known as the category of locale and denoted
by Frmop or Loc.

The interrelation among the categories: L -TopSys, L -Top, Loc via some suit-
able functors shall be established. Let us propose a notion of extent.

Definition 2.6. Let (X, Ã, |=, P ) be an L - topological system and p ∈ P . For each

p, its extent in (X, Ã, |=, P ) is given by ext(p) = (X, ext∗(p)) where ext∗(p) is a
mapping from X to L defined by ext∗(p)(x) = gr(x |= p) for all x ∈ X.
i.e. ext∗(p) : X −→ L such that ext∗(p)(x) = gr(x |= p) for all x ∈ X.
Also ext(P ) = {(X, ext∗(p))}p∈P = (X, ext∗P ) where ext∗P = {ext∗p}p∈P .

Now the functor Ext is defined as follows:

Definition 2.7. Ext is a functor from L -TopSys to L -Top defined thus.
Ext acts on the object (X, Ã, |=′, P ) as Ext(X, Ã, |=′, P ) = (X, Ã, ext(P )) and on
the morphism (f1, f2) as Ext(f1, f2) = f1.

Next we define another functor J as follows:

Definition 2.8. J is a functor from L -Top to L -TopSys defined thus. J acts on
the object (X, Ã, τ) as J(X, Ã, τ) = (X, Ã,∈, τ) where “∈” is an L- fuzzy relation

such that gr(x ∈ T̃ ) = T̃ (x) for T̃ ∈ τ and on the morphism f as J(f) = (f, f−1).

To make a connection between L -TopSys and Loc (opposite category of Frm)
we introduce two functors viz. Lo, S.

Definition 2.9. Lo is a functor from L -TopSys to Loc defined thus. Lo acts
on the object (X, Ã, |=, P ) as Lo(X, Ã, |=, P ) = P and on the morphism (f1, f2) as
Lo(f1, f2) = f2.
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Definition 2.10. S is a functor from Loc to L -TopSys defined thus. S acts on
the object P as S(P ) = (Hom(P,L), P̃ , |=∗, P ), where

Hom(P,L) = {frame hom v : P −→ L}, P̃ (v) =
∨
p∈P v(p) and gr(v |=∗ p) = v(p),

and on the morphism f as S(f) = ( ◦ f, f).

Finally it can be shown that the following theorems hold.

Theorem 2.11. Ext is the right adjoint to the functor J .

Proof. We will prove the theorem by presenting the co-unit of the adjunction. Recall
that J(X, Ã, τ) = (X, Ã,∈ τ) and Ext(X, Ã, |=, P ) = (X, Ã, ext(P )).

So, J(Ext(X, Ã, |=, P )) = (X, Ã,∈, ext(P )).
Let us draw the diagram of co-unit-

L -TopSys L - Top

J(Ext(X, Ã, |=, P )) (X, Ã, |=, P )

J(Y, B̃, τ ′)

ξX

J(f)(= (f1, f
−1
1 ))

f̂(= (f1, f2))

Ext(X, Ã, |=, P )

(Y, B̃, τ ′)

f(= f1)

Let us define co-unit by ξX = (idX , ext
′)

i.e.

(X, Ã,∈, ext(P )) (X, Ã, |=, P )
ξX

(idX , ext
′)

where ext′ is a mapping from P to ext(P ) such that, ext′(p) = (X, ext∗(p)) for all

p ∈ P . It can be shown that (idX , ext
′) : J(Ext(X, Ã, |=, P )) −→ (X, Ã, |=, P ) is

indeed a continuous map of L -Topological System as follows.
According to the definition ext∗(p)(x) = gr(x |= p).
Hence ext′(p)(x) = gr(x |= p).
Consequently gr(x ∈ ext′(p)) = gr(idX(x) |= p).

Now define f as follows.
Given (f1, f2) : J(Y, B̃, τ ′) −→ (X, Ã, |=, P ), then f = f1.
Now we will prove that the diagram on the left commutes.
Here J(f) = (f1, f

−1
1 ) and (f1, f2) = ξX ◦ J(f) = (idX , ext

′) ◦ (f1, f
−1
1 ) = (idX ◦

f1, f
−1
1 ◦ ext′) Clearly idX ◦ f1 = f1.

Also we have f−11 ext′(p) = f−11 (p) = f2(p). So, f2 = f−11 ◦ ext′.
Hence ξX(= (idX , ext

′)) : J(Ext(X, Ã, |=, P )) −→ (X, Ã, |=, P ) is the co-unit, con-
sequently Ext is the right adjoint to the functor J . �

Theorem 2.12. Lo is the left adjoint to the functor S.

Proof. We will prove the theorem by presenting the unit of the adjunction.
Recall that S(Q) = (Hom(Q,L), Q̃, |=∗, Q) where gr(v |=∗ q) = v(q).

Hence S(Lo(X, Ã, |=, P )) = (Hom(P,L), P̃ , |=∗, P )
130



Purbita Jana et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 123-137

L -TopSys Loc

(X, Ã, |=, P ) S(Lo(X, Ã, |=, P ))

S(Q)

η

f(= (f1, f2))
Sf̂

Lo(X, Ã, |=, P )

Q

f̂(= f2)

Then unit is defined by η = (p∗, idP )

i.e.
(X, Ã, |=, P ) S(Lo(X, Ã, |=, P ))

η

(p∗, idP )

where

p∗ : (X, Ã) −→ (Hom(P,L), P̃ ) s.t. for any x ∈| Ã |, p∗(x) is a mapping from P

to L and p∗(x)(p) = gr(x |= p). We can show that (p∗, idP ) : (X, Ã, |=, P ) −→
S(Lo(X, Ã, |=, P )) is a continuous map of L -Topological System in the following
way.

Here it will be enough to show that gr(x |= idP (p)) = gr(p∗(x) |= p).
We have gr(x |= p) = p ∗ (x)(p) = gr(p∗(x) |= p).

Let us define f̂ as follows-

(f1, f2) : (X, Ã, |=, P ) −→ (Hom(P,L), P̃ , |=∗, P ) then f̂ = f2[as f2 is the frame
homomorphism].

Recall that S(f̂) = (− ◦ f2, f2) Now we have to show that the triangle on the left
commute.
We have to show that (f1, f2) = (− ◦ f2, f2) ◦ (p∗, idP ) = ((− ◦ f2)p∗, idP ◦ f2)
Clearly f2 = idP ◦ f2.
It is only left to show that f1 = (− ◦ f2)p∗ = px ◦ f2.
We have for all q ∈ Q

p∗(x) ◦ f2(q) = p∗(x)(f2(q))

= gr(x |= f2(q))

= gr(f1(x) |=∗ q)
= f1(x)(q).

So, ( ◦ f2)p∗ = f1. �

Theorem 2.13. Ext ◦ S is the right adjoint to the functor Lo ◦ J .

Proof. Proof follows from Theorem 2.11 and Theorem 2.12. �

3. Relationships among FuzzTopSys, FuzzTop and Frm

Definition 3.1. A Fuzz topological system is a quintuple (X,L, Ã, |=, P ), where

(X,L, Ã) is a Fuzz-object [2] (i.e. X is a non-empty set, L is a frame, Ã is a map
from X to L), P is a frame and |= is an L- fuzzy relation between X and P such
that

(1) gr(x |= p) ∈ L.

(2) gr(x |= p) ≤ Ã(x),
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(3) if S is a finite subset of P , then gr(x |=
∧
S) = inf{gr(x |= s) : s ∈ S},

(4) if S is any subset of P , then gr(x |=
∨
S) = sup{gr(x |= s) : s ∈ S}.

Note 1: Because of condition 2, |= is a fuzzy relation on the L-fuzzy set (X, Ã)
[3].

Note 2: The value set L of L -topological systems is fixed but in the case of Fuzz
topological system the value set L may vary. Thus we can consider an L -topological
system as a specific instant of Fuzz topological system.

Note 3: In [2] to define Fuzz-object (X,L, Ã), L is taken as a complete Heyting
algebra whereas in our work we consider L, a frame.

The notion of continuous map between these Fuzz topological systems is defined
as follows:

Definition 3.2. Let D = (X,L, Ã, |=, P ) and E = (Y,M, B̃, |=′, Q) be Fuzz topo-
logical systems. A continuous map f : D −→ E is a triple (f, φ, g) where,

(1) (f, φ) : (X,L, Ã) −→ (Y,M, B̃) such that
a) φ is a relation from L to M such that φ−1 : M −→ L is a map preserving
finite meet and arbitrary join,
b) f : X × Y −→ L is a map such that f(x, y) ≤ Ã(x) ∧ φ−1B̃(y), for all

x ∈ X, y ∈ Y and for any a in | Ã |, there exist unique b in | B̃ | with

f(a, b) = Ã(a) and f(a, b′) = 0L with b′ 6= b in | B̃ |.
(2) g : Q −→ P is a frame homomorphism and
(3) gr(x |= g(q)) =

∨
y∈Y [φ−1(gr(y |=′ q)) ∧ f(x, y)], for all x ∈ X and q ∈ Q.

Let us define identity map and composition of two maps.

Definition 3.3. Let D = (X,L, Ã, |=, P ) be a Fuzz topological system. The identity
map ID : D −→ D is a triple (IA, IL, IP ) defined by IA : X × X −→ L s.t.

IA(x1, x2) = Ã(x) iff x1 = x2, otherwise IA(x1, x2) = 0L, IL : L −→ L is identity

morphism of L and IP : P −→ P is identity morphism of P . Let D = (X,L, Ã, |=′
, P ), E = (Y,M, B̃, |=′′, Q), F = (Z,N, C̃, |=′′′, R). Let (f, φ, g) : D −→ E and
(f1, φ1, g1) : E −→ F be continuous maps. The composition (f1, φ1, g1) ◦ (f, φ, g) :
D −→ F is defined by f1 ◦ f : X × Z −→ L such that f1 ◦ f(x, z) =

∨
y∈Y [f(x, y) ∧

φ−1(f1(y, z))] for all x ∈ X and z ∈ Z, φ1φ the relation composite of φ1, φ.

Remark: In fact we can show that the identity map is a continuous map and
the composition of two continuous maps is also so. Hence we propose the category
FuzzTopSys whose objects are Fuzz topological systems and the morphisms are
the above mentioned continuous maps.

Definition 3.4 ([2]). Let (X,L, Ã) be a Fuzz-object and τ a collection of maps from
X into L such that

(1) if U ∈ τ , U(x) ≤ Ã(x), for all x ∈ X;

(2) φ̃ and Ã are in τ , where φ̃ : X −→ L is such that φ̃(x) = 0L, for all x ∈ X,
where 0L is the least element of the frame L;

(3) τ is closed under finite infima and arbitrary suprema.

Then (X,L, Ã, τ) is a Fuzz topological space.

Definition 3.5 ([2]). The category FuzzTop is defined thus.
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• The objects are Fuzz topological spaces.
• The morphisms are pairs (f, φ) : (X,L, Ã, τ) −→ (X1, L1, Ã1, τ1) satisfying

the following properties:
a) φ is a relation from L to L1 such that φ−1 : L1 −→ L is a frame homo-
morphism.
b) f : X ×X1 −→ L is a map such that f(x, y) ≤ Ã(x) ∧ φ−1Ã1(y), for all

x ∈ X, y ∈ X1 and there exist unique b in | Ã1 | with f(a, b′) = Ã(a) for

b′ = b in | Ã1, otherwise f(a, b′) = 0L.
• If V ∈ τ1, then U ∈ τ where U(x) =

∨
y∈X1

[f(x, y)∧φ−1V (y)], for all x ∈ X.

• If (f, φ) : (X,L, Ã, τ) −→ (X1, L1, Ã1, τ1) and (g, ψ) : (X1, L1, Ã1, τ1) −→
(X2, L2, Ã2, τ2) are morphisms in FuzzTop, their composite (g, ψ) ◦ (f.φ) is

that of the Fuzz-morphisms (f, φ) : (X,L, Ã) −→ (X1, L1, Ã1) and (g, ψ) :

(X1, L1, Ã1) −→ (X2, L2, Ã2), viz. (g ◦ f, ψφ) with g ◦ f : X ×X2 −→ L as
g ◦ f(x, z) =

∨
y∈X1

[f(x, y) ∧ φ−1g(y, z)], for all x ∈ X, z ∈ X2 and ψφ is
the relational composite of φ and psi.

• The identity on (X,L, Ã, τ) is the identity (iA, iL) on the Fuzz-object (X,L, Ã).
This is a FuzzTop morphism can be proved.

The interrelation between the categories FuzzTopSys and FuzzTop is now es-
tablished via some suitable functors. First we propose a notion of extent.

Definition 3.6. Let (X,L, Ã, |=, P ) be a Fuzz topological system and p ∈ P .

For each p, its extent in (X,L, Ã, |=, P ) is given by ext(p) : X −→ L such that
ext(p)(x) = gr(x |= p) for any x ∈ X, and ext(P ) = {ext(p)}p∈P .

Now the functor Ext is defined as follows:

Definition 3.7. Ext is a functor from FuzzTopSys to FuzzTop defined thus.
Ext acts on the object (X,L, Ã, |=′, P ) as Ext(X,L, Ã, |=′, P ) = (X,L, Ã, ext(P ))
and on the morphism (f, φ, g) as Ext(f, φ, g) = (f, φ).

Next we define another functor J as follows:

Definition 3.8. J is a functor from FuzzTop to FuzzTopSys defined thus. J acts
on the object (X,L, Ã, τ) as J(X,L, Ã, τ) = (X,L, Ã,∈, τ) where gr(x ∈ T̃ ) = T̃ (x)

for T̃ ∈ τ and on the morphism (f, φ) as J((f, φ)) = (f, φ, f−1φ ), where f−1φ (T̃ )(x) =∨
y∈Y [f(x, y) ∧ φ−1T̃1(y)] for all x ∈ X and T̃1 ∈ τ1.

By routine check it can be shown that Ext and J are indeed functors. Finally it
can be shown that the following theorem hold.

Theorem 3.9. Ext is the right adjoint to the functor J .

Proof. We will prove the theorem by presenting the co-unit of the adjunction. Recall
that J(X,L, Ã, τ) = (X,L, Ã,∈ τ) and Ext(X,L, Ã, |=, P ) = (X,L, Ã, ext(P )).

So, J(Ext(X,L, Ã, |=, P )) = (X,L, Ã,∈, ext(P )).
Let us draw the diagram of co-unit-
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FuzzTopSys FuzzTop

J(Ext(X,L, Ã, |=, P )) (X,L, Ã, |=, P )

J(Y,M, B̃, τ ′)

ξX

J(f, φ)(= (f, φ, f−1
φ ))

(f, φ, g)

Ext(X,L, Ã, |=, P )

(Y,M, B̃, τ ′)

(f, φ)

Let us define co-unit by ξX = (iA, iL, ext
∗)

i.e.

(X,L, Ã,∈, ext(P )) (X,L, Ã, |=, P )
ξX

(iA, iL, ext
∗)

where iA : X × X −→ L, iL : L −→ L and ext∗ is a mapping from P to ext(P )
such that, ext∗(p) = ext(p) for all p ∈ P . It can be shown that (iA, iL, ext

∗) :

J(Ext(X,L, Ã, |=, P )) −→ (X,L, Ã, |=, P ) is indeed a continuous map of Fuzz topo-
logical system as follows.
Now we will prove that the diagram on the left commutes.
Here J(f, φ) = (f, φ, f−1φ ) and (f, φ, g) = ξX ◦ J(f, φ) = (iA, iL, ext

∗) ◦ (f, φ, f−1φ ) =

(iA ◦ f, iL ◦ φ, f−1φ ◦ ext∗).
We have iA ◦ f : Y ×X −→M such that
iA ◦ f(y, x) =

∨
x′∈X [f(y, x′) ∧ φ−1(iA(x′, x))] = f(y, x) ∧ φ−1Ã(x).

Now f(y, x) ≤ B̃(y) ∧ φ−1Ã(x) ≤ φ−1Ã(x).

Hence f(y, x) ∧ φ−1Ã(x) = f(y, x).
Therefore iA ◦ f(y, x) = f(y, x) and consequently iA ◦ f = f .

Clearly iL ◦ φ = φ.
Now as (iA, iL, ext

∗) in continuous so gr(x ∈ ext∗(p)) =
∨
x′∈X [i−1L (gr(x′ |= p)) ∧

iA(x, x′)].

So, ext∗(p)(x) = gr(x |= p) ∧ Ã(x) = gr(x |= p).
Now (f, φ, g) is continuous and hence gr(y ∈ g(p)) =

∨
x∈X [φ−1(gr(x |= p))∧f(y, x)].

So, g(p)(y) =
∨
x∈X [φ−1(gr(x |= p)) ∧ f(y, x)].

Hence we get f−1φ ext(p)(y) =
∨
x∈X [f(y, x) ∧ φ−1(ext(p)(x))] =

∨
x∈X [φ−1(gr(x |=

p)) ∧ f(y, x)] = g(p)(y).
Hence f−1φ ◦ ext∗(p)(y) = g(p)(y).

So, g = f−1φ ◦ ext∗.
Hence ξX(= (iA, iL, ext

∗)) : J(Ext(X,L, Ã, |=, P )) −→ (X,L, Ã, |=, P ) is the co-
unit, consequently Ext is the right adjoint to the functor J . �

Note that in this section localification i.e existence of adjunction between Fuz-
zTopSys and Loc×Loc is not established. This can be considered as an interesting
open question.
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4. Subcategories of α-cuts

In this section we will construct two kinds of subsystems of some L -topological
systems. To do so here we will deal with some special kind of subsets of the fuzzy
set. We will construct the subsets using the concept of α-cut and fuzzy α-cut of
fuzzy set respectively. For the notion of classical α-cut of a fuzzy set we refer to [6].
Here we introduce a notion of fuzzy α-cut of a fuzzy set.

Definition 4.1 (α-cut of a fuzzy set). Let (X, Ã) be an L-fuzzy set. Then for α ∈ L,

where L is a frame, the α-cut of (X, Ã) is the ordinary set {x ∈ X | Ã(x) ≥ α}.

Definition 4.2 (Strict α-cut of a fuzzy set). Let (X, Ã) be an L-fuzzy set. Then

for α ∈ L, where L is a frame, the strict α-cut of (X, Ã) is the ordinary set {x ∈ X |
Ã(x) > α}.

Definition 4.3 (Fuzzy α-cut of a fuzzy set). Let (X, Ã) be an L-fuzzy set. Then

for α ∈ L, where L is a frame, the fuzzy α-cut of (X, Ã) is the fuzzy subset (X, Ãα)

such that Ãα is defined as follows:

Ãα(x) = Ã(x) if Ã(x) ≥ α
= 0L otherwise.

4.1. TopSysα. Let (X, Ã, |=, P ) be an L -topological system. Let us consider the

triple ({x ∈ X | Ã(x) > α}, |=α, P ), where |=α⊆ X × P such that x |=α p iff
gr(x |= p) > α. It can be shown that the triple forms a topological system and
consequently a subsystem of L -topological system.

Thus we get subsystems for each α < 1L (1L is the top element of L). Now for

α > α′, {x ∈ X | Ã(x) > α} is a subset of {x ∈ X | Ã(x) > α′} and hence

({x ∈ X | Ã(x) > α}, |=α, P ) is a subsystem of ({x ∈ X | Ã(x) > α′}, |=α′ , P ).
Hence we get chains of subsystems of L -topological system.

The restriction of a continuous function between two L -topological systems is a
continuous function between corresponding subsystems for each α ∈ L.

The above subsystems for a fixed α < 1L(∈ L) together with continuous maps
form a category called TopSysα, which is a subcategory of L -TopSys. Here we
will get chains of subcategories of L -TopSys by changing the values of α.

It may be noted that for a linear L we will get only one chain.

4.2. Topα vs. TopSysα. Let (X, Ã, τ) be an L -topological space and take strict

α-cut of (X, Ã) i.e., {x ∈ X | Ã(x) > α}. Let τα be defined by τα = {{x ∈ X |
Ti(x) > α} | T̃i ∈ τ}. Then ({x ∈ X | Ã(x) > α}, τα) also form a topological space
and called the topological subspace.

For any fixed α ∈ L, topological subspaces together with continuous maps forms
a category, which is a subcategory of the category Top, called Topα.

By routine check it can be shown that the restriction of the functors (Ext and
J) between TopSys and Top are adjoint functors between TopSysα and Topα, for
each α ∈ L.

4.3. L -TopSysα. Let (X, Ã, |=, P ) be an L -topological system. Let us consider

the quadruple (X, Ãα, |=α, P ), where (X, Ãα) is the fuzzy α-cut of (X, Ã), |=α is an
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L-fuzzy relation between X and L such that gr(x |=α p) = gr(x |= p) for Ã(x) ≥ α

and gr(x |=α p) = 0L for Ã(x) < α. It can be shown that the quadruple forms an L -
topological system and consequently an L -topological subsystem of L -topological
system. Hence for each α ∈ L we will get L -topological subsystems. Furthermore
as for α > α′, (X, Ãα) is a fuzzy subset of (X, Ãα′), we will get chains of such
L -topological subsystems.

A continuous map between two L -topological subsystems, say (X, Ãα, |=α, P )

and (Y, B̃α, |=′α, Q), is the restriction of a continuous map between the L -topological

systems (X, Ã, |=, P ) and (Y, B̃, |=′, Q).
It can be shown that for fixed α ∈ L, L -topological subsystems together with

the above mentioned continuous maps form a subcategory of L -TopSys. Thus we
will get chains of such subcategories of L -TopSys by changing the values of α in
L. For a fixed α ∈ L, let us call the corresponding subcategory by L -TopSysα.

4.4. L -Topα vs. L -TopSysα. Let (X, Ã, τ) be an L -topological space and take

fuzzy α-cut of (X, Ã) i.e., (X, Ãα). Let τ ′ be defined by τ ′ = {(X, T̃ ′) | T̃ ′ =

Ãα ∩ T̃ , T̃ ∈ τ}. Then (X, Ãα, τ
′) also form an L -topological space and called the

L -topological subspace.
For any fixed α ∈ L, L -topological subspaces together with continuous maps

form a category, which is a subcategory of the category L -Top, called L -Topα.
By routine check it can be shown that the restriction of the functors (Ext and

J) between L -TopSys and L -Top are adjoint functors between L -TopSysα and
L -Topα, for each α ∈ L.

5. Conclusion

This paper provides a generalization of the notion of [0, 1]-Top, [0, 1]-TopSys
[4], Loc and their categorical relationships. Furthermore, two ways of constructing
subspaces and subsystems of an L -topological space and an L -topological system
respectively are provided. Also a concept of fuzzy α-cut is introduced.

In our future work we shall consider

(1) the generalization of TopSysα by taking strict α-cut of the set and β-cut
for the relation, for α, β < iL;

(2) the relationship of α, β in this context in details;
(3) the study of Topα, TopSysα, L -Topα, L -TopSysα in details and
(4) the notion of many valued and fuzzy geometric logic as a generalization of

geometric logic.
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