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1. Introduction

The notion of a semiring was first introduced by H. S. Vandiver [12] in 1934
but semirings had appeared in studies on the theory of ideals of rings. In structure,
semirings lie between semigroups and rings. The results which hold in rings but not
in semigroups hold in semirings since semiring is a generalization of ring. The study
of rings shows that multiplicative structure of ring is an independent of additive
structure whereas in semiring multiplicative structure of semiring is not an indepen-
dent of additive structure of semiring. The additive and the multiplicative structure
of a semiring play an important role in determining the structure of a semiring.
Semirings are useful in the areas of theoretical computer science as well as in the
solution of graph theory, optimization theory, in particular for studying automata,
coding theory and formal languages. Semiring theory has many applications in other
branches.

As a generalization of ring, the notion of a Γ-ring was introduced by N. Nobusawa
[9] in 1964. In 1981, M. K. Sen [11] introduced the notion of a Γ−semigroup as a
generalization of semigroup. The notion of a ternary algebraic system was intro-
duced by Lehmer [4] in 1932, Lister [6] introduced the notion of a ternary ring and
Dutta & Kar [1] introduced the notion of a ternary semiring which is a generaliza-
tion of ternary ring and semiring. In 1995, M. Murali Krishna Rao [7] introduced
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the notion of a Γ−semiring as a generalization of Γ−ring, ring, ternary semiring and
semiring,

A partially ordered set (poset) is a pair (X,≤), where X is a non-empty set and
≤ is a partial order (a reflexive, transitive and antisymmetric binary relation) on
X. For any subset A of X and x ∈ X, x is called a lower bound (upper bound)
of A if x ≤ a (a ≤ x respectively) for all a ∈ A. A poset (X,≤) is called a lattice
if every non-empty finite subset of X has greatest lower bound (glb or infimum)
and least upper bound (lub or supremum) in X. If (X,≤) is a lattice and, for any
a, b ∈ X, if we define a∧b = infimum {a, b} and a∨b = supremum {a, b}, then ∧ and
∨ are binary operations on X which are commutative, associative and idempotent
and satisfy the absorption laws a ∧ (a ∨ b) = a = a ∨ (a ∧ b). Conversely, any
algebraic system (X,∧,∨) satisfying the above properties becomes a lattice in which
the partial order is defined by a ≤ b⇐⇒ a = a∧ b⇐⇒ a∨ b = b. A lattice (X,∧,∨)
is called distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ X ( equivalently
a∨ (b∧c) = (a∨b)∧ (a∨c) for all a, b, c ∈ X). A lattice (X,∧,∨) is called a bounded
lattice it has the smallest element 0 and largest element 1; that is, there are elements
0 and 1 in X, such that 0 ≤ x ≤ 1 for all x ∈ X. A partially ordered set in which
every subset has infimum and supremum is called a complete lattice. Two elements
a, b of a bounded lattice (L,∧,∨, 0, 1) are complements if a ∧ b = 0, a ∨ b = 1. In
this case each of a, b is the complement of the other. A complemented lattice is a
bounded lattice in which every element has a complement.

The fuzzy set theory was developed by L. A. Zadeh [13] in 1965. In 1982, W. J. Liu
[5] defined and studied fuzzy subrings as well as fuzzy ideals in rings. In 1988, Zhang
[14] studied prime L−fuzzy ideals in rings where L is completely distributive lattice.
Jun et al. [3] studied fuzzy maximal ideals in Γ−near rings. The concept of L−fuzzy
ideal and normal L−fuzzy ideal in semirings were studied by Jun, Neggers and Kim
in [2]. Y. B. Jun et al. [2] studied normal complete distributive lattice fuzzy ideal in
semirings, whereas in this paper we study normal complemented distributive lattice
fuzzy ideal in Γ−semrings. In this paper, we introduce the notion of a L−fuzzy
Γ−subsemiring , L−fuzzy ideal, normal L−fuzzy ideal, L−fuzzy k ideal, L−fuzzy
maximal ideal in Γ−semiring, where L is a complemented distributive lattice and
study some of their properties. We prove that if µ is a maximal L− fuzzy ideal of
Γ−semiring M then Mµ is a maximal ideal of Γ−semiring M.

2. Preliminaries

In this section, we recall some definitions introduced by the pioneers in this field
earlier.

Definition 2.1 ([7]). A set S together with two associative binary operations called
addition and multiplication (denoted by + and · respectively) will be called semiring
provided

(i). Addition is a commutative operation.
(ii). Multiplication distributes over addition both from the left and from the

right.
(iii). There exists 0 ∈ S such that x+ 0 = x and x · 0 = 0 · x = 0 for each x ∈ S.
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Definition 2.2 ([7]). Let (M,+) and (Γ,+) be commutative semigroups. If there
exists a mapping M × Γ×M →M (images to be denoted by xαy, x, y ∈M,α ∈ Γ)
satisfying the following axioms for all x, y, z ∈M and α, β ∈ Γ,

(i) xα(y + z) = xαy + xαz,
(ii) (x+ y)αz = xαz + yαz,
(iii) x(α+ β)y = xαy + xβy
(iv) xα(yβz) = (xαy)βz,

then M is called a Γ−semiring.

Definition 2.3 ([7]). A Γ−semiring M is said to have zero element if there exists
an element 0 ∈M such that 0 + x = x = x+ 0 and 0αx = xα0 = 0, for all x ∈M.

Example 2.4 ([7]). Every semiring M is a Γ−semiring with Γ = M and ternary
operation as the usual semiring multiplication

Example 2.5 ([7]). Let M be the additive seimgroup of all m×n matrices over the
set of non negative rational numbers and Γ be the additive semigroup of all n×m
matrices over the set of non negative integers, then with respect to usual matrix
multiplication M is a Γ−semiring.

Definition 2.6 ([7]). Let M be a Γ−semiring and A be a non-empty subset of M.
A is called a Γ−subsemiring of M if A is a sub-semigroup of (M,+) and AΓA ⊆ A.
Definition 2.7 ([7]). Let M be a Γ−semiring. A subset A of M is called a left
(right) ideal of M if A is closed under addition and MΓA ⊆ A (AΓM ⊆ A). A is
called an ideal of M if it is both a left ideal and right ideal.

Definition 2.8 ([13]). Let M be a non-empty set, a mapping f : M → [0, 1] is
called a fuzzy subset of M .

Definition 2.9 ([13]). Let f be a fuzzy subset of a non-empty subset M, for t ∈ [0, 1]
the set ft = {x ∈M | f(x) ≥ t} is called level subset of M with respect to f.

Definition 2.10 ([8]). Let M be a Γ−semiring . A fuzzy subset µ of M is said to
be a fuzzy Γ−subsemiring of M if it satisfies the following conditions
(i) µ(x+ y) ≥ min {µ(x), µ(y)}
(ii) µ(xαy) ≥ min {µ(x), µ(y)}, for all x, y ∈M,α ∈ Γ.

Definition 2.11 ([8]). A fuzzy subset µ of a Γ−semiring M is called a fuzzy left
(right) ideal of M if for all x, y ∈M,α ∈ Γ
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ µ(y) (µ(x)).

Definition 2.12 ([8]). A fuzzy subset µ of a Γ−semiring M is called a fuzzy ideal
of M if for all x, y ∈M,α ∈ Γ
(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ max {µ(x), µ(y)}.
Definition 2.13 ([7]). An ideal I of a Γ−semiring M is called k ideal if for all
x, y ∈M, x+ y ∈ I, y ∈ I ⇒ x ∈ I.
Definition 2.14 ([13]). A fuzzy subset µ : M → [0, 1] is non-empty if µ is not the
constant function.
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Definition 2.15 ([13]). For any two fuzzy subsets λ and µ of M, λ ⊆ µ means
λ(x) ≤ µ(x) for all x ∈M.

Definition 2.16 ([8]). Let f and g be fuzzy subsets of Γ−semiring M. Then f ◦ g,
f + g, f ∪ g, and f ∩ g are defined by

f ◦ g(z) =

{
sup
z=xαy

{min{f(x), g(y)}},

0, otherwise.
; f + g(z) =

{
sup
z=x+y

{min{f(x), g(y)}},

0, otherwise

f ∪ g(z) = max{f(z), g(z)} ; f ∩ g(z) = min{f(z), g(z)}
x, y ∈M,α ∈ Γ, for all z ∈M .

Definition 2.17 ([7]). A function f : R → M where R and M are Γ−semirings
is said to be a Γ−semiring homomorphism if f(a + b) = f(a) + f(b) and f(aαb) =
f(a)αf(b) for all a, b ∈ R,α ∈ Γ.

Definition 2.18 ([8]). Let A be a non-empty subset of M. The characteristic func-
tion of A is a fuzzy subset of M is defined by

χ
A

(x) =

{
1, if x ∈ A;
0, if x /∈ A.

Definition 2.19 ([8]). A fuzzy ideal f of a Γ−semiring M with zero 0 is said to be a
k−fuzzy ideal of M if f(x+y) = f(0) and f(y) = f(0)⇒ f(x) = f(0), for all x, y ∈
M.

Definition 2.20 ([8]). A fuzzy ideal f of a Γ−semiring M is said to be a fuzzy
k−ideal of M if f(x) ≥ min{f(x+ y), f(y)}, for all x, y ∈M.

3. L−fuzzy ideals in Γ−semiring

In this section, we introduce the notion of a L−fuzzy Γ−subsemiring , L−fuzzy
ideal, normal L−fuzzy ideal, L−fuzzy k ideal and L−fuzzy maximal ideal in Γ-
semiring. Throughout this paper L = (L,≤,∧,∨) is a complemented distributive
lattice and Γ−semiring M is a Γ−semiring M with 0.

Definition 3.1. Let M be a Γ−semiring. A mapping µ : M → L is called a L−fuzzy
subset of Γ−semiring M, where L is a complemented distributive lattice.

Definition 3.2. A L−fuzzy subset µ of a Γ−semiring M is called a L−fuzzy
Γ−subsemiring of M if

(i) µ(x+ y) ≥ min{µ(x), µ(y)}
(ii) µ(xαy) ≥ min{µ(x), µ(y)}, for all x, y ∈M,α ∈ Γ.

Definition 3.3. A L−fuzzy Γ−subsemiring of a Γ−semiring M is called a L−fuzzy
left (right) ideal of M if

µ(xαy) ≥ µ(y)
(
µ(x)

)
.

If µ is a fuzzy left and a fuzzy right ideal of Γ−semiring M then µ is called a
L−fuzzy ideal of M.

Theorem 3.4. Let µ be a L−fuzzy ideal of Γ−semiring M. Then µ(x) ≤ µ(0) for
all x ∈M.
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Proof. Let x ∈M,α ∈ Γ. µ(0) = µ(0αx) ≥ µ(x). Therefore µ(x) ≤ µ(0), for all x ∈
M. �

Theorem 3.5. Let M be a Γ−semiring. µ is a L−fuzzy left ideal of M if and only
if for any t ∈ L such that µt 6= φ, µt is a left ideal of Γ−semiring M.

Proof. Let µ be a L−fuzzy left ideal of Γ−semiring M and t ∈ L such that µt 6= φ.

Let x, y ∈ µt ⇒µ(x), µ(y) ≥ t
⇒µ(x+ y) ≥ min{µ(x), µ(y)} ≥ t
⇒x+ y ∈ µt.

Let x ∈M,y ∈ µt, α ∈ Γ, µ(xαy) ≥ µ(y) ≥ t. Then xαy ∈ µt. Therefore µt is a left
ideal of Γ−semiring M.

Conversely suppose that µt is a left ideal of Γ−semiring M. Let x, y ∈ M and
t = min{µ(x), µ(y)}. Then µ(x), µ(y) ≥ t⇒ x, y ∈ µt

⇒x+ y ∈ µt
⇒µ(x+ y) ≥ t
⇒µ(x+ y) ≥ min{µ(x), µ(y)}.

Let x, y ∈M, µ(y) = s⇒ y ∈ µs
⇒xαy ∈ µs
⇒µ(xαy) ≥ s = µ(y).

Therefore µ is a L−fuzzy left ideal. �

The proof of the following theorem follows from above theorem.

Theorem 3.6. Let M be a Γ−semiring. µ is a L−fuzzy ideal of M if and only if
for t ∈ L such that µt 6= φ, µt is an ideal of Γ−semiring M.

Theorem 3.7. Let M be a Γ−semiring and Mµ = {x ∈ M | µ(x) ≥ µ(0)}. If µ is
a L−fuzzy ideal of M then Mµ is an ideal of Γ−semiring.

Proof. Let µ be a L−fuzzy ideal of Γ−semiring M and x, y ∈Mµ.

⇒µ(x) ≥ µ(0), µ(y) ≥ µ(0)

⇒µ(x+ y) ≥ min{µ(x), µ(y)} ≥ µ(0)

⇒x+ y ∈Mµ

Now µ(xαy) ≥ min{µ(x), µ(y)} ≥ µ(0)

⇒xαy ∈Mµ.

Let x ∈Mµ, y ∈M,α ∈ Γ

⇒µ(x) ≥ µ(0)

⇒µ(yαx) ≥ µ(x) ≥ µ(0)

⇒yαx ∈Mµ.

Similarly xαy ∈Mµ. Hence Mµ is an ideal of Γ−semiring M. �
5
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Theorem 3.8. Let M and S be Γ−semirings and ψ : M → S be an onto homomor-
phism. If µ is a L−fuzzy ideal of S then the pre image of µ under ψ is a L−fuzzy
ideal of M.

Proof. Let µ be a L−fuzzy ideal of S and γ be the pre image of µ under ψ. Let
x, y ∈M,α ∈ Γ.

γ(x+ y) =µ(ψ(x+ y))

=µ(ψ(x) + ψ(y))

≥min{µ(ψ(x)), µ(ψ(y))}
=min{γ(x), γ(y)}

and γ(xαy) =µ(ψ(xαy))

=µ(ψ(x)αψ(y))

≥min{µ(ψ(x)), µ(ψ(y))}
=min{γ(x), γ(y)}

Hence γ is a L−fuzzy subsemiring of Γ−semiring M.
Let x, y ∈M,α ∈ Γ.

γ(xαy) =µ(ψ(xαy))

=µ(ψ(x)αψ(y))

≥µ{ψ(x)} = γ(x).

Therefore γ is a L−fuzzy left ideal of Γ−semiring M. Similarly we can prove γ is a
L−fuzzy right ideal of Γ−semiring M. Hence γ is a L−fuzzy ideal of M. �

Theorem 3.9. Let M be a Γ−semiring. If A is an ideal of Γ−semiring M then
there exists a L− fuzzy ideal µ of M such that µt = A, for some t ∈ L.

Proof. Suppose A is an ideal of Γ−semiring M and t ∈ L. We define L−fuzzy subset
of M by

µ(x) =

{
t, if x ∈ A
0, otherwise

⇒ µt = A. Let s ∈ L, we have

µs =


M, if s = 0

A, if 0 < s ≤ t
φ, otherwise.

Hence every non-empty subset µs of µ is an ideal of Γ−semiring M. By Theorem
3.5., µ is a L−fuzzy ideal of Γ−semiring M. �

Corollary 3.10. If A is an ideal of Γ−semiring M then XA is a L−fuzzy ideal of
Γ−semiring M.

Theorem 3.11. Let µ and γ be two L−fuzzy ideals of Γ−semiring M. Then µ ∩ γ
is a L−fuzzy ideal of Γ−semiring M.

6
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Proof. Let a, b ∈M,α ∈ Γ.

µ ∩ γ(a+ b) = min{µ(a+ b), γ(a+ b)}
≥ min

{
min{µ(a), µ(b)},min{γ(a), γ(b)}

}
= min

{
min{µ(a), γ(a)},min{µ(b), γ(b)}

}
= min{µ ∩ γ(a), µ ∩ γ(b)}.

µ ∩ γ(aαb) = min{µ(aαb), γ(aαb)}
≥ min

{
max{µ(a), µ(b)},max{γ(a), γ(b)}

}
= max

{
min{µ(a), γ(a)},min{µ(b), γ(b)}

}
= max{µ ∩ γ(a), µ ∩ γ(b)}.

Hence µ ∩ γ is a L−fuzzy ideal of Γ−semiring M. �

Definition 3.12.
(i) A L−fuzzy ideal µ of Γ−semiring M is called L−fuzzy k ideal of M if

µ(x) ≥ min{µ(x+ y), µ(y)}, for all x, y ∈M.
(ii) A L−fuzzy ideal µ of Γ−semiring M is called L − k fuzzy ideal of M if

µ(x+ y) = 0, µ(y) = 0⇒ µ(x) = 0, for all x, y ∈M.

Theorem 3.13. Let f and g be L−fuzzy k ideals of M. Then f ∩ g is a L−fuzzy k
ideal of Γ−semiring M.

Proof. Let f and g be L−fuzzy k ideals of M. By Theorem 3.11., f ∩ g is a L−fuzzy
k ideal of Γ−semiring M. Let x, y ∈M. We have

f ∩ g(a) =min{f(x), g(x)}
≥min

{
min{f(x+ y), f(y)},min{g(x+ y), g(y)}

}
=min

{
min{f(x+ y), g(x+ y)},min{f(y), g(y)}

}
=min

{
f ∩ g(x+ y)}, f ∩ g(y)

}
.

Hence f ∩ g is a L−fuzzy k ideal of M. �

Theorem 3.14. A L−fuzzy subset µ of M is a L−fuzzy k ideal of Γ−semiring M
if and only if µt is a k ideal of Γ−semiring M for any t ∈ L, µt 6= φ.

Proof. Let µ be a L−fuzzy k ideal of Γ−semiring M. By Theorem 3.6, µt 6= φ then
µt is an ideal of Γ−semiring M for any t ∈ L. Suppose a, a + x ∈ µt ⇒ µ(a) ≥
t, µ(a+ x) ≥ t. Since µ is a L−fuzzy k ideal of Γ−semiring M.

We have µ(x) ≥ min{µ(a+ x), µ(a)}
⇒µ(x) ≥ t
⇒x ∈ µt.

Hence µt is a k ideal of Γ−semiring M.
Conversely assume that µt is a k ideal of Γ−semiring M with µt 6= φ. Let µ(a) =

t1, µ(x + a) = t2. Let t = min{t1, t2}. Then a ∈ µt, x + a ∈ µt for some x ∈ M ⇒
x ∈ µt ⇒ µ(x) ≥ t = min{t1, t2} = min{µ(x + a), µ(a)}. Therefore µ is a L−fuzzy
k ideal of Γ−semiring M. �

7
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Theorem 3.15. Let M be a Γ−semiring. If µ is a L−fuzzy k ideal of M then µ is
a L− k fuzzy ideal of M.

Proof. Let µ be a L−fuzzy k ideal of M. Let x, y ∈M and µ(0) = t ∈ L.
µ(x+ y) = µ(0) and µ(y) = µ(0).
µ(0) = t⇒ x+ y ∈ µt, y ∈ µt. By Theorem 3.14, µt is a k ideal of M.

⇒x ∈ µt
⇒µ(x) ≥ t = µ(0).

We have µ(x) ≤ µ(0), for all x ∈ M. Hence µ(x) = µ(0). Therefore µ is a L − k
fuzzy ideal of Γ−semiring M. �

The proof of the following theorem is similar to [7, Proposition 3.3].

Theorem 3.16. Intersection of a non-empty collection of L-fuzzy ideals of Γ-
semiring is a L-fuzzy ideal.

Theorem 3.17. The set of all L−fuzzy ideals of Γ−semiring M forms a complete
lattice.

Proof. Suppose the set of all L−fuzzy ideals denoted by LFI(M). Let µ1, µ2 ∈
LFI(M). Define a relation≤ such that µ1 ≤ µ2 if and only if µ1 ⊆ µ2. Then LFI(M)
is a poset with respect to a relation ≤ . Obviously µ1+µ2 is the least upper bound of
µ1 and µ2 and µ1 ∩µ2 is the greatest lower bound of µ1 and µ2. Therefore LFI(M)
is a lattice. Suppose ψ is a L−fuzzy subset of M such that ψ(x) = 1, for all x ∈M.
then ψ ∈ LFI(M) and µ(x) ≤ ψ(x) for all x ∈M,µ ∈ LFI(M). Therefore ψ is the
greatest element. Let {µi | i ∈ I} be a non-empty family of L−fuzzy ideals of M.
Then

⋂
i∈I

µi ∈ LFI(M). Hence LFI(M) is a complete lattice. �

Definition 3.18. Let µ be a L−fuzzy subset of X and a, b ∈ L. the mapping
µTa : X → L, µMb : X → L and µMT

b,a : X → L are called fuzzy translation, fuzzy
multiplication and fuzzy magnified translation of µ respectively, if

µTa (x) = µ(x) ∨ a; µMb (x) = b ∧ µ(x); µMT
b,a (x) =

(
b ∧ µ(x)

)
∨ a, for all x ∈ X.

Theorem 3.19. Let µ be a L−fuzzy subset of Γ−semiring M. Then a ∈ L, µ is a
L−fuzzy ideal of Γ−semiring M if and only if µTa , the fuzzy translation is a L−fuzzy
ideal of Γ−semiring M.

Proof. Suppose µ is a L−fuzzy ideal of Γ−semiring M. Let x, y ∈M,α ∈ Γ.

µTa (x+ y) = µ(x+ y) ∨ a
≥ min{µ(x), µ(y)}
= min{µ(x) ∨ a, µ(y) ∨ a}
= min{µTa (x), µTa (y)}.

µTa (xαy) = µ(xαy) ∨ a
≥ min{µ(x), µ(y)} ∨ a
= min{µ(x) ∨ a, µ(y) ∨ a}
= min{µTa (x), µTa (y)}.

8
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Hence µTa , the fuzzy translation is a L−fuzzy ideal of Γ−semiring M.
Conversely suppose that a ∈ L, µTa , the fuzzy translation is a L−fuzzy ideal of

Γ−semiring M. Let x, y ∈M,α ∈ Γ,

µTa (x+ y) ≥ min{µTa (x), µTa (y)}
= min{µ(x) ∨ a, µ(y) ∨ a}

µTa (x+ y) = µ(x+ y) ∨ a
⇒ µTa (x+ y) ∨ a ≥ min{µ(x) ∨ a, µ(y)} ∨ a
⇒ µTa (x+ y) ≥ min{µ(x), µ(y)}.

Now µTa (xαy) ≥ max{µTa (x), µTa (y)}
⇒ µ(xαy) ∨ a ≥ max{µ(x) ∨ a, µ(y) ∨ a}
⇒ µ(xαy) ∨ a ≥ max{µ(x), µ(y)} ∨ a
⇒ µ(xαy) ≥ max{µ(x), µ(y)}.

Hence µ is a L−fuzzy ideal of Γ−semiring M. �

Theorem 3.20. Let µ be a L−fuzzy subset of Γ−semiring M and a ∈ L. Then µ
is a L−fuzzy k ideal of Γ−semiring M if and only if µTa , the fuzzy translation is a
L−fuzzy k ideal of Γ−semiring M.

Proof. Suppose µ is a L−fuzzy k ideal of Γ−semiring M. By Theorem 3.19, µTa is a
L−fuzzy ideal of Γ−semiring M.

µTa (x) =µ(x) ∨ a
≥min{µ(x+ y), µ(y)} ∨ a
=min{µ(x+ y) ∨ a, µ(y) ∨ a}
=min{µTa (x+ y), µTa (y)}, for all x, y ∈M.

Hence µTa is a L−fuzzy k ideal of Γ−semiring M.
Conversely suppose that a ∈ L, µTa is a L−fuzzy k ideal of Γ−semiring M.

µ(x) ∨ a =µTa (x) ≥ min{µTa (x+ y), µTa (y)}
=min{µ(x+ y) ∨ a, µ(y) ∨ a}
=min{µ(x+ y), µ(y)} ∨ a

µ(x) ≥min{µ(x+ y), µ(y)}, for all x, y ∈M.

Therefore µ is a L−fuzzy k ideal of Γ−semiring M. �

Theorem 3.21. Let µ be a L−fuzzy subset of Γ−semiring M. Then µ is a L−fuzzy
ideal of Γ−semiring M if and only if b ∈ L, µMb , fuzzy multiplication is a L−fuzzy
ideal of Γ−semiring M.

9
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Proof. Suppose µ is a L−fuzzy ideal of Γ−semiring M. Let x, y ∈M,α ∈ Γ, b ∈ L.

µMb (x+ y) = µ(x+ y) ∧ b
≥ min{µ(x), µ(b)} ∧ b
= min{µ(x) ∧ b, µ(b) ∧ b}

µMb (x+ y) = min{µMb (x), µMb (y)}.
Now µMb (xαy) = µa(xαy) ∧ b

≥ max{µ(x), µ(y)} ∧ b
= max{µ(x) ∧ b, µ(y) ∧ b}

µMb (xαy) = max{µMb (x), µMb (y)}.

Hence µMb , fuzzy multiplication is a L−fuzzy ideal of Γ−semiring M.
Conversely suppose that µMb , fuzzy multiplication is a L−fuzzy ideal of Γ−semiring

M. Let x, y ∈M,α ∈ Γ.

µMb (x+ y) ≥ min{µMb (x), µMb (y)}
µ(x+ y) ∧ b ≥ min{µ(x) ∧ b, µ(y) ∧ b}
µ(x+ y) ∧ b ≥ min{µ(x), µ(y)} ∧ b

µ(x+ y) ≥ min{µ(x), µ(y)}.
Now µMb (xαy) ≥ max{µMb (x), µMb (y)}

µ(xαy) ∧ b ≥ max{µ(x) ∧ b, µ(y) ∧ b}
µ(xαy) ∧ b ≥ max{µ(x), µ(y)} ∧ b

µ(xαy) ≥ max{µ(x), µ(y)}.

Hence µ is a L−fuzzy ideal of Γ−semiring M. �

Theorem 3.22. Let µ be a L−fuzzy subset of Γ−semiring M. Then µ is a L−fuzzy
k ideal of Γ−semiring M if and only if b ∈ L, µMb , fuzzy multiplication is a L−fuzzy
k ideal of Γ−semiring M.

Proof. Suppose µ is a L−fuzzy k ideal of Γ−semiring M. By Theorem 3.21, µMb is
a L−fuzzy ideal of Γ−semiring M. Let x, y ∈M,α ∈ Γ, b ∈ L.

µMb (x) =µ(x) ∧ b
≥min{µ(x+ y), µ(y)} ∧ b
=min{µ(x+ y) ∧ b, µ(y) ∧ b}
=min{µMb (x+ y), µMb (y)}, for all x, y ∈M.

10
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Hence µMb is a L−fuzzy k ideal of Γ−semiring M. Conversely suppose that a ∈ L, µMb
is a L−fuzzy k ideal of Γ−semiring M.

µ(x) ∧ b =µMb (x) ≥ min{µMb (x+ y), µMb (y)}
=min{µ(x+ y) ∧ b, µ(y) ∧ b}
=min{µ(x+ y), µ(y)} ∧ b

µ(x) ≥min{µ(x+ y), µ(y)}, for all x, y ∈M.

Therefore µ is a L−fuzzy k ideal of Γ−semiring M. �

Theorem 3.23. Let µ be a L−fuzzy k subset of Γ−semiring M. Then µ is a L−fuzzy
k ideal of Γ−semiring M if and only if µMT

b,a is a L−fuzzy k ideal of Γ−semiring M.

Proof. Let µ be a L−fuzzy k ideal of Γ−semiring M.
⇔ µMb is a L−fuzzy k ideal of Γ−semiring M, by Theorem 3.22.
⇔ µMT

b,a is a L−fuzzy k ideal of Γ−semiring M, by Theorem 3.20. �

Let µ be a L−fuzzy subset of Γ−semiring M. Then the set {x ∈M | µ(x) = µ(0)},
is denoted by Mµ.

Theorem 3.24. If µ is a L−fuzzy k ideal of Γ−semiring M then Mµ is a k ideal
of Γ−semiring M.

Proof. Let µ be a L−fuzzy k ideal of Γ−semiring M and x, y ∈ Mµ. Then µ(x) =
µ(0) = µ(y).

µ(x+ y) ≥ min{µ(x), µ(y)}
= min{µ(0), µ(0)} = µ(0).

We have µ(x+ y) ≤ µ(0). Therefore µ(0) = µ(x+ y). Hence x+ y ∈Mµ.
Let x ∈Mµ, y ∈M,α ∈ Γ.

µ(xαy) ≥ max{µ(x), µ(y)}
= max{µ(0), µ(y)} = µ(0).

We have µ(xαy) ≤ µ(0). Therefore µ(0) = µ(xαy). Hence xαy ∈ Mµ. Mµ is an
ideal of Γ−semiring M. Let x + y, x ∈ Mµ. Then µ(x + y) = µ(0) = µ(x). Since
µ is a L−fuzzy k ideal of Γ−semiring M, we have µ(y) ≥ min{µ(x + y), µ(x)} =
min{µ(0), µ(0)} = µ(0). Therefore µ(y) = µ(0)⇒ y ∈Mµ. Hence Mµ is a k ideal of
Γ−semiring M. �

Theorem 3.25. If t ∈ L such that µt 6= φ, µt is a k ideal of Γ−semiring M then µ
is a L− k fuzzy ideal of M.

Proof. Let µt be k ideal of Γ−semiring M, t ∈ L and µ(x + y) = µ(0) and µ(y) =
µ(0). ⇒ x+ y ∈ Mµ. since Mµ is a k ideal of Γ−semiring M ⇒ x ∈ Mµ. Therefore
µ(x) ≥ µ(0). By Theorem 3.4, we have µ(x) ≤ µ(0). Hence µ(x) = µ(0). Therefore
µ is a L− k fuzzy ideal of M. �

Definition 3.26. A L−fuzzy subset µ of a Γ−semiring M is said to be normal if
µ(0) = 1.

11
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Definition 3.27. Let µ be a L−fuzzy subset of Γ−semiring M. We define µ+ on S
by

µ+(x) = µ(x) ∨
(
µ(0)

)′
,where

(
µ(0)

)′
is the complement of µ(0)

The proofs of the following theorems are straight forward.

Theorem 3.28. Let A be an ideal of Γ−semiring M. If we define L−fuzzy subset
on M by

χ
A

(x) =

{
1, if x ∈ A
0, if x /∈ A

, for all x ∈M.

Then χA is a normal L−fuzzy ideal of M and Mχ
A

= A.

Theorem 3.29. If µ and λ are normal L−fuzzy ideals of Γ−semiring M then µ∩λ
is a normal L−fuzzy ideal of Γ−semiring.

Theorem 3.30. If µ is a normal L−fuzzy ideal of Γ−semiring M then µTa , fuzzy
translation is a normal L−fuzzy ideal.

Proof. Let µ be a normal L−fuzzy ideal of Γ−semiring M. By Theorem 3.19, µTa ,
the fuzzy translation is a L−fuzzy ideal of Γ−semiring M.

µTa (x) =µ(x) ∨ a, for all x ∈M.

⇒ µTa (0) =µ(0) ∨ a
=1 ∨ a = 1.

Hence the theorem. �

Theorem 3.31. Let µ be a L−fuzzy subset of Γ−semiring M. Then

(i) µ+ is a normal L−fuzzy subset of M containing µ.
(ii) (µ+)+ = µ.
(iii) µ is a normal if and only if µ+ = µ.
(iv) If there exists a L−fuzzy subset γ of M satisfying γ+ ⊆ µ then µ is a normal.

Proof. (i)

We have µ+(x) = µ(x) ∨ (µ(0))′, for all x ∈M.

µ+(0) = µ(0) ∨ (µ(0))′ = 1,

and µ(x) ≤ µ(x) ∨ (µ(0))′ = µ+(x), for all x ∈M.

Hence µ+ is a normal L−fuzzy subset of M containing µ.
(ii)

(µ+)+(x) = µ+(x) ∨ (µ+(0))′

= µ+(x) ∨ 1′

= µ+(x) ∨ 0 = µ+(x), for all x ∈M.

Therefore (µ+)+ = µ.
12
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(iii) Suppose µ = µ+.

We have µ+(x) = µ(x) ∨ (µ(0))′, for all x ∈M
⇒ µ(x) = µ(x) ∨ (µ(0))′

⇒ µ(0) = µ(0) ∨ (µ(0))′ = 1.

Hence µ is a normal.
Conversely suppose that µ is a normal. Then

µ+(x) = µ(x) ∨ (µ(0))′

= µ(x) ∨ (1′) = µ(x)

Therefore µ+ = µ.

(iv)

We have γ+(x) = γ(x) ∨ (γ(0))′

⇒ γ+(0) = γ(0) ∨ (γ(0))′

= 1

We have γ+ ⊆ µ
⇒ γ+(0) ≤ µ(0)

⇒ 1 ≤µ(0)

µ(0) = 1.

Hence µ is a normal.
�

Theorem 3.32. Let µ be a L−fuzzy subset of Γ−semiring M. If µ is a L−fuzzy
ideal of M then µ+ is a normal L−fuzzy ideal of M containing µ.

Proof. Let x, y ∈M,α ∈ Γ. Then

µ+(x+ y) = µ(x+ y) ∨ (µ(0))′

≥ min{µ(x), µ(y)} ∨ (µ(0))′

= min{µ(x) ∨ (µ(0))′, µ(y) ∨ (µ(0))′}
= min{µ+(x), µ+(y)}.

µ+(xαy) = µ(xαy) ∨ (µ(0))′

≥ µ(y) ∨ (µ(0))′

= µ+(y).

Similarly µ+(xαy) ≥ µ+(x). By Theorem 3.31, µ+ is a normal L−fuzzy ideal con-
taining µ. �

Corollary 3.33. Let µ be a L−fuzzy subset of Γ−semiring and x ∈M. If µ+(x) = 0
then µ(x) = 0.

13



M. Murali Krishna Rao et al./Ann. Fuzzy Math. Inform. 10 (2015), No. 1, 1–16

Proof. By Theorem 2.28, we have

µ(x) ≤µ+(x)

⇒ µ(x) ≤µ+(x) = 0

⇒ µ(x) ≤0.

Therefore µ(x) = 0 �

Theorem 3.34. Let M be a Γ−semiring, ψ : M → M be an onto homomorphism
and µ be a L−fuzzy subset of M. Define µψ : M → L by µψ(x) = µ(ψ(x)), for all x ∈
M. If µ is a L−fuzzy ideal of M then µψ is a L−fuzzy ideal of M.

Proof. Let M be a Γ−semiring and x, y ∈M,α ∈ Γ.

µψ(x+ y) = µ(ψ(x+ y))

= µ(ψ(x) + ψ(y))

≥ min{µ(ψ(x)), µ(ψ(y))}

= min{µψ(x), µψ(y)}

and µψ(xαy) = µ(ψ(xαy))

= µ(ψ(x)αψ(y))

≥ min{µ(ψ(x)), µ(ψ(y))}

= min{µψ(x), µψ(y)}.

Therefore µψ is a L−fuzzy Γ−subsemiring of M.

µψ(xαy) = µ(ψ(xαy))

= µ(ψ(x)αψ(y))

≥ {µ(ψ(y))}

= µψ(y).

Similarly µψ(xαy) ≥ µψ(x).

Hence µψ is an ideal of Γ−semiring M. �

Theorem 3.35. Let µ and γ be L−fuzzy ideals of Γ−semiring M. If µ ⊆ γ and
µ(0) = γ(0) then Mµ ⊆Mγ .

Proof. Suppose that µ ⊆ γ and µ(0) = γ(0).

If x ∈Mµ ⇒ µ(x) = µ(0) = γ(0)

⇒ γ(0) = µ(x) ≤ γ(x), for all x ∈M.

We have γ(x) ≤ γ(0), for all x ∈M
⇒ γ(x) = γ(0).

Therefore x ∈Mγ . Hence Mµ ⊆Mγ . �

Corollary 3.36. Let µ and γ be normal L−fuzzy ideals of Γ−semiring M. If µ ⊆ γ
then Mµ ⊆Mγ .

14
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Theorem 3.37. If µ and γ are normal L−fuzzy ideals of Γ−semiring M then
Mµ∩γ = Mµ ∩Mγ .

Proof. Let µ and γ be normal L−fuzzy ideals of Γ−semiring M.

Suppose x ∈Mµ∩γ

if and only if µ ∩ γ(x) = µ ∩ γ(0)

if and only if min{µ(x), γ(x)} = min{µ(0), γ(0)} = 1

if and only if µ(x) = 1 and γ(x) = 1

if and only if µ(x) = µ(0) and γ(x) = γ(0)

if and only if x ∈Mµ ∩Mγ

Hence Mµ∩γ = Mµ ∩Mγ .

�(
N(M),⊆) denotes the partially ordered set of normal L−fuzzy ideals of Γ−semiring

M under set inclusion.

Definition 3.38. A non constant L−fuzzy ideal µ of Γ−semiring M is said to be a
maximal L−fuzzy ideal if µ+ is a maximal element of

(
N(M),⊆)

Theorem 3.39. If µ be a non constant maximal normal L−fuzzy ideal of Γ−semiring
M then µ takes the values only 0 and 1.

Proof. Let y ∈ M,µ be a maximal normal L−fuzzy ideal of Γ−semiring M, 0 <
µ(y) < 1 and µ(y) = a. Define L−fuzzy subset γ of M by γ(x) = µ(x)∨a, for all x ∈
M. Then γ(x) = µTa (x) and γ(x) ≥ µ(x), for all x ∈ M. By Theorem 3.30, γ is a
normal L−fuzzy ideal of Γ−semiring M. If x 6= 0, µ(x) < γ(x). Therefore µ is not a
maximal, which is a contradiction. Hence the theorem. �

Theorem 3.40. If µ is a maximal L−fuzzy ideal of Γ−semiring M then Mµ is a
maximal ideal of Γ−semiring M.

Proof. Let µ be a maximal L−fuzzy ideal of Γ−semiring M. Then µ+ is a maximal
element of

(
N(M),⊆). By Theorem 3.39, µ+ takes only the values 0 and 1.

If µ+(x) = 1⇒ µ(x) ∨
(
µ(0)

)′
= 1

⇒ µ(0) = 1, sinceµ(0) ≥ µ(x), for all x ∈M.

We have µ(x) ≤ µ+(x), for all x ∈M.

If µ+(x) = 0⇒ µ(x) ∨
(
µ(0)

)′
= 0

⇒ µ(x) = 0 and
(
µ(0)

)′
= 0

⇒ µ(0) = 1.

Therefore µ is a normal L−fuzzy ideal of Γ−semiring M. Now Mµ is a proper ideal
of Γ−semiring M, since µ is a non constant. Let A be an ideal of Γ−semiring M
such that Mµ ⊆ A ⇒ χ

Mµ
⊆ χA ⇒ µ = χ

Mµ
⊆ χA. Since µ and χA are normal

L−fuzzy ideals of M and µ = µ+ ⇒ µ is a maximal element of N(M) ⇒ µ = χA
or χA = 1, where 1 : M ⇒ L,1(x) = 1, for all x ∈M is a L−fuzzy ideal. If χA = 1

15
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then A = M. If µ = χA then Mµ = MχA = A. Hence Mµ is a maximal ideal of
Γ−semiring M. �
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