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Abstract. In this paper, by using the notions of ”not belonging” (∈)
and ”non quasi-k-coincidence” (qk) of a fuzzy point with a fuzzy set, we
define the notion of (∈,∈ ∨ qk)-fuzzy subgroups of a group which is a gen-
eralization of fuzzy subgroups and (∈,∈ ∨ q)-fuzzy subgroups. Also, we
generalized the concept of the ∈-level set, (∈ ∨ q)-level set and (∈,∈ ∨ q)-
level set by using ”not belonging” (∈) and ”non quasi-k-coincidence” (qk)
of a fuzzy point with a fuzzy set to obtain the notions of (∈ ∨ qk)-level
set and (∈,∈ ∨ qk)-level set. We give characterizations of an (∈,∈ ∨ qk)-
fuzzy subgroup by the properties of these generalized level sets. The im-
portant achievement of the study with an (∈,∈ ∨ qk)-fuzzy subgroup and
(∈,∈ ∨ qk)-level sets is the generalization of that the notions of fuzzy sub-
groups and level sets.
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1. Introduction

There are several types of complex difficulties in economics, envirment and en-
gineering. To handle these type of complex difficulties, we cannot fruitfully apply
classical models because of several uncertainties for these problems. There are some
theories as mathematical tools: interval mathematics, theory of probability, and the-
ory of fuzzy sets for dealing with uncertainties. The fuzzy set theory is profitably in
these mathematical models. The concept of fuzzy set was introduced by L.A. Zadeh
[17] of 1965, providing a natural framework for generalizing several basic notions of
algebra. Since then fuzzy sets have been applied to many branches of Mathematics.

Fuzzy logic combines the decision ability of human beings and speed of the com-
puters, and through this combination, an excellent decision making progress is ob-
tained under imprecise, vague and uncertain conditions. The complexity of today’s
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socioeconomic problems require more complex decision making processes. That’s
why decision makers have to consider many aspects of a problem. The necessity of
considering all relevant aspects of a problem forces them to use fuzzy multi-criteria
decision making systems. The most important thing in Fuzzy Group Decision Sup-
port Systems is to determine the evaluation criteria and their weights in decision
process. The knowledge and experience of a human expert is the best source for
such kind of information.

It is also useful in particle physics and string theory. Fuzzy set theory has been
developed in many directions by many scholars and has evoked great interest among
mathematicians working in different fields of mathematics such as functional analy-
sis, group, ring, near- ring, vector spaces, automation. There have been wide ranging
applications of the theory of fuzzy sets from the design of robots and computer sim-
ulation to Engineering and water resources planning.

The fuzzification of algebraic structures was initiated by Rosenfeld in 1971 [12],
he defined the concept of fuzzy subgroups. The fuzzy algebraic structures play a
vital role in Mathematics with wide applications in theoretical physics, computer
sciences, control engineering, information sciences, coding theory and topological
spaces [6, 16]. Murali [10] proposed a definition of a fuzzy point belonging to fuzzy
subset under a natural equivalence on fuzzy subset. Bhakat and Das generalized the
concept of Rosenfeld’s fuzzy subgroups and introduced the (∈,∈ ∨q)-fuzzy subgroups
in a group [5] by using the notions of belongingness (∈) and quasi-coincidence (q)
of fuzzy point and fuzzy set, which was introduced by Pu and Liu [11]. Liu [8]
introduced the concept fuzzy normal subgroup in 1982. A comprehensive study
of the fuzzy normal subgroups was defined by Mukherjee and Bhattacharya [9].
This concept was more studied in detail by Bhakat [3, 4], Bhakat and Das [5],
and Yuan et al. [16]. In particular, an (∈,∈ ∨q)-fuzzy subgroup is an imperative
and beneficial generalization of Rosenfeld’s fuzzy subgroup. In [13], Shabir et al.
defined the concept of (α, β)-fuzzy ideals of semigroups. M. Aslam et al introduced
generalized fuzzy Γ-ideals in Γ-LA-semigroup and characterized different classes of
Γ-LA-semigroup by the properties of generalized fuzzy Γ-ideals [1].

It is now natural to investigate similar type of generalizations of the existing
fuzzy subsystems of other algebraic structures. Jun, in [7] generalized the concept
of quasi-coincident (q) by quasi-k-coincident (qk) of a fuzzy point with a fuzzy set,
and he introduced an ( ∈, qk)- fuzzy subalgebra and an ( ∈,∈ ∨qk)- fuzzy subalgebra
in BCK/BCI-algebra. Jun et al. studied the generalized form of Bhakat and Das
idea and they introduced ( ∈,∈ ∨qk)-fuzzy subgroups, ( ∈,∈ ∨qk)-fuzzy normal sub-
groups, ( ∈,∈ ∨qk)-fuzzy cosets and generalized the concept of level subsets [7]. In
[14], Shabir et al. initiated the concept of ( ∈,∈ ∨qk)-fuzzy ideals in semigroups and
characterized the different classes of semigroups. Shabir and Mehmood introduced
( ∈,∈ ∨qk)-fuzzy h-ideals in hemirings and charaterized hemiring by the properieties
of ( ∈,∈ ∨qk)-fuzzy h-ideals [15]. In [2], Abdullah et al. gave new generalization
of Rosenfeld’s fuzzy subgroup. They defined (∈,∈ ∨ qk)-fuzzy normal subgroups,
(∈,∈∨ qk)-fuzzy cosets and gave useful characterizations of (∈,∈∨ qk)-fuzzy normal
subgroups, (∈,∈ ∨ qk)-fuzzy cosets. The present author introduced a new type of
fuzzy normal subgroups and fuzzy coset in [2]. The present concept in this article is
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diffenrent from the concept of Jun et al in [7]. We proved by an example, the Jun
concept is different from the present concept.

In this paper, the present authors introduced a new type of a generalization of
fuzzy subgroups and its level sets by using the notions of ”not belonging” (∈) and
”non quasi-k-coincidence” (qk) of a fuzzy point with a fuzzy set, we define the notion
of (∈,∈ ∨ qk)-fuzzy subgroups of a group which is a generalization of fuzzy subgroups
and (∈,∈ ∨ q)-fuzzy subgroups. Also, we generalized the concept of ∈-level set,
(∈ ∨ q)-level set and (∈,∈ ∨ q)-level set by using the notions of ”not belonging”
(∈) and ”non quasi-k-coincidence” (qk) of a fuzzy point with a fuzzy set to abtain
the notions (∈ ∨ qk)-level set and (∈,∈ ∨ qk)-level set. We give characterizations
of an (∈,∈ ∨ qk)-fuzzy subgroup by the properties of these generalized level sets.
The important achievement of the study with an (∈,∈ ∨ qk)-fuzzy subgroup and
(∈,∈ ∨ qk)-level sets is the generalization of that the notions of fuzzy subgroups and
level sets. We prove that a fuzzy subset F of a group G is an (∈,∈ ∨ qk)-fuzzy
subgroup of G if and only if it the following conditions hold (1) for all x, y ∈ G,
max{F(xy), 1−k

2 } ≥ min{F(x),F(y)} and (2) for all x ∈ G, max{F(x−1), 1−k
2 } ≥

F(x). We make a connection between (∈,∈ ∨ qk)-fuzzy subgroup and generalized
level set as: a fuzzy subset F of G is an (∈,∈ ∨ qk)-fuzzy subgroup of G if and only
if the Uk (F ; t) 6= ∅ is a subgroup of G. We also give some related properties of
generalized level sets and relation among these generalized level sets. We prove that
for a fuzzy subset F of a set G, we have Uk (F ; t) ⊆ Fc

1−t ∪Fc
t+k,, where Fc denotes

the compliment of F , that is Fc (x) = 1−F (x) for all x ∈ G. Also, we show that for
a fuzzy subset F of a set G, we have Uk (F ; t) ⊆ Fc

1−t∩Fc
t+k, , where Fc denotes the

compliment of F , that is, Fc (x) = 1 − F (x) , for all x ∈ G. We prove a very good
result for group of prime order which is state as if F is an (∈,∈ ∨ qk)-fuzzy subgroup
of group of prime order G such that F (a) ≥ 1−k

2 for some element a (6= e) ∈ G, then
F(x) ≥ 1−k

2 for all x ∈ G.

2. Preliminaries

In this section, we will introduced the basic concept of definitions of previous
literature.

If A ⊆ G, then the characteristic function CA of A is a function from A into
{0, 1}, defined by

CA (x) =
{

1 if x ∈ A.
0 if x /∈ A.

A fuzzy subset of a universe X is a function f from X into the unit closed interval
[0, 1], that is, f : X → [0, 1]. For any two fuzzy subsets f and g of G, f ≤ g means
that, for all x ∈ G, f (x) ≤ g (x). The symbols f ∧ g, and f ∨ g will mean the
following fuzzy subsets of G.

(f ∧ g) (x) = f (x) ∧ g (x)
(f ∨ g) (x) = f (x) ∨ g (x)

for all x ∈ X. More generally, if {fi : i ∈ Ω} is a family of fuzzy subsets of G, then
∧i∈Ωfi and ∨i∈Ωfi are defined by
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(∧i∈Ωfi) (x) = ∧i∈Ω (fi (x))
(∨i∈Ωfi) (x) = ∨i∈Ω (fi (x))

and are called the intersection and the union of the family {fi : i ∈ Ω} of fuzzy
subsets of G, respectively.

Let f and g be two fuzzy subsets of G. Then the product f ◦ g is defined by

(f ◦ g) (x) =
{ ∨x=yz {f (y) ∧ g (z)} , if x = yz,

0 otherwise.

Definition 2.1. A fuzzy subset f of X of the form

f (y) =
{

t if y = x
0 if y 6= x

is said to be a fuzzy point with support ”x” and value ”t”, where t ∈ (0, 1] and is
denoted by xt or [x; t]. A fuzzy point xt is said to be not belong to (resp, be not
quasi-coincidence with) a fuzzy subset f , written as xt∈f(resp, xtqf) if f (x) < t
(resp, f(x) + t ≤ 1). If xt∈f and (resp, xtqf), then we can write xt ∈ ∧ qf (resp,
xt∈∨qf). And xt be not quasi-k-coincidence with a fuzzy subset f, written as xtqkf
if f(x)+ t+k ≤ 1 or f(x)+ t ≤ 1−k, and xt∈∨ qkf if xt∈f or xtqkf , here t ∈ (0, 1]
and k ∈ [0, 1) [7].

Definition 2.2 ([12]). A fuzzy subset f of a group G is said to be a fuzzy subgroup
of G if for all x, y ∈ G,

(i) f (xy) ≥ min (f (x) , f (y)) and (ii) f
(
x−1

) ≥ f (x).
or f

(
x−1y

) ≥ min
(
f

(
x−1

)
, f (y)

)
for all x−1, y ∈ G.

Definition 2.3 ([14]). Let f be a fuzzy subset of a group G. We define the upper
part f+ as follows, f+ (x) = f (x) ∨ 1−k

2 .

Definition 2.4 ([4]). A fuzzy subset f of G is called a fuzzy normal subgroup of G
if it is fuzzy subgroup of G that satisfies: f

(
y−1xy

) ≥ f (x) (∀ x, y ∈ G) (t ∈ (0, 1]).

Definition 2.5 ([4]). Let f and µ be two fuzzy subgroups of G. Then f is said to
be fuzzy conjugate of µ if for x ∈ G, f (y) = f

(
x−1yx

)
for all x ∈ G.

Definition 2.6 ([5]). A fuzzy subset f of a group G is said to be an (∈,∈ ∨q)-fuzzy
subgroup of G if for all x, y ∈ G,

(i) f (xy) ≥ min{f (x) , f (y) , 0.5} and (ii) f
(
x−1

) ≥ min{f (x) , 0.5}
or f

(
x−1y

) ≥ min
(
f

(
x−1

)
, f (y) , 0.5

)
for all x−1, y ∈ G.

Definition 2.7 ([7]). A fuzzy subset f of a group G is said to be an ( ∈,∈ ∨qk)-
fuzzy subgroup of G if it satisfy:

(i) (∀x, y ∈ G)
(
f(xy) ≥ min{f(x), f(y), 1−k

2 }) and
(ii) (∀x ∈ G)

(
f(x−1) ≥ min{f(x), 1−k

2 }) .

or f
(
x−1y

) ≥ min
(
f

(
x−1

)
, f (y) , 1−k

2

)
for all x−1, y ∈ G.

Definition 2.8 ([7]). An (∈,∈ ∨qk)-fuzzy subgroup f of G is called an (∈,∈ ∨qk)-
fuzzy normal subgroup of G if f holds

(∀x, y ∈ G)
(
f(y−1xy) ≥ min{f(x), 1−k

2 }) .

or (∀ x, y ∈ G) (t ∈ (0, 1])
(
xt ∈ f =⇒ (

y−1xy
)
t
∈ ∨qkf

)
.
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Definition 2.9 ([7]). Let f be a fuzzy subset of G. For any x ∈ G, the fuzzy subset
f l

x : G → [0, 1], y → f
(
yx−1

) (
resp, fr

x : G → [0, 1], y → f
(
x−1y

))
is called the

fuzzy left (resp. right) coset of G determined by x and f .

Definition 2.10 ([7]). Let f be an (∈,∈ ∨qk)-fuzzy subgroup of G. For any x ∈ G,←−
fx

(
resp.

−→
fx

)
: G → [0, 1] is defined by

←−
fx (y) = min{f l

x (y) , 1−k
2 }

(resp.
−→
fx (y) = min{fr

x (y) , 1−k
2 }) is called the (∈,∈ ∨qk)-fuzzy left (resp. right)

coset of G determined by x and f .

Definition 2.11 ([5]). For a fuzzy subgroup f of G the normalizer of f, denoted by
N (f) and is defined by N (f) = {y ∈ G; f(y−1xy) ≥ min{f(x), 0.5} ∀ x ∈ G}.
Definition 2.12 ([3, 5, 7]). Let f be a fuzzy subset of a set G and t ∈ (0, 1] and
k ∈ [0, 1). Then the sets

ft = {x ∈ G | f (x) ≥ t} is called the ∈-level subset of G.
Q (f ; t) = {x ∈ G | f (x) + t > 1} = {x ∈ G | xtqf} is called the q-level subset of

G.
Q (f ; t) = {x ∈ G | f (x) + t ≥ 1} = {x ∈ G | xtqf} is called the q-level subset of

G.
Qk (f ; t) = {x ∈ G | f (x) + t + k > 1} = {x ∈ G | xtqkf} is called the qk-level

subset of G.
Qk (f ; t) = {x ∈ G | f (x) + t + k ≥ 1} = {x ∈ G | xtqkf} is called the qk-level

subset of G.
Uk (f ; t) = {x ∈ G | xt ∈ ∨qk f} = ft ∪Qk (f ; t) is called

(∈ ∨qk

)
-level subset of

G.

3. Major section

In this section the authors introduced a new generalization of fuzzy subgroups
and (∈,∈ ∨ q)-fuzzy subgroups and give some characterizations of them. In what
follows, let G denote a group with identity element e, and k an arbitrary element of
[0, 1] unless otherwise specified.

The following definition is a definition of (∈,∈ ∨ qk)-fuzzy subgroup of G.

Definition 3.1. A fuzzy subset f of a group G is said to be an (∈,∈ ∨ qk)-fuzzy
subgroup of G if for all x, y ∈ G and t, r ∈ (0, 1] and k ∈ [0, 1), the following
conditions hold;

(i) max{f(xy), 1−k
2 } ≥ min{f(x), f(y)} and

(ii) max{f(x−1), 1−k
2 } ≥ f(x).

Similarly, (∈,∈ ∨ qk)-fuzzy subgroup of G can also be defined as following
(i) (xy)M{t,r}∈f implies xt∈ ∨ qkf or yr∈ ∨ qkf and
(ii) x−1

t ∈f implies xt∈ ∨ qkf .

If k = 0, then it will be (∈,∈ ∨ q)-fuzzy subgroup of G.

Theorem 3.2. For any (∈,∈ ∨ qk)-fuzzy subgroup of G, the following relations hold;
(1) ⇔ (2) and (3) ⇔ (4) for all x, y ∈ G and t, r ∈ (0, 1] and k ∈ [0, 1), where

(1) (xy)M{t,r}∈f implies xt∈ ∨ qkf or yr∈ ∨ qkf.

(2) max{f(xy), 1−k
2 } ≥ min{f(x), f(y)}.
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(3) x−1
t ∈f implies xt∈ ∨ qkf.

(4) max{f(x−1), 1−k
2 } ≥ f(x).

Proof. Now (1) ⇒ (2), Assume that (2) is not true, then there exists some a, b ∈ G
such that max{f(ab), 1−k

2 } < min{f(a), f(b)} implies there exists some t ∈ ( 1−k
2 , 1]

such that max{f(ab), 1−k
2 } < t ≤ min{f(a), f(b)}.

Case-1 : If max{f(ab), 1−k
2 } = f(ab), then f(ab) < t ≤ min{f(a), f(b)} which

implies that f(ab) < t and t ≤ min{f(a), f(b)} implies (ab)t∈f and at ∈ f or bt ∈ f .
Case-2 : If max{f(ab), 1−k

2 } = 1−k
2 , then 1−k

2 < t ≤ min{f(a), f(b)} which implies
that 1−k

2 < t ≤ f(a) (if f(a) < f(b)) or 1−k
2 < t ≤ f(b) (if f(b) < f(a)) implies

f(a) + t + k > 1−k
2 + 1−k

2 + k = 1 or f(b) + t + k > 1−k
2 + 1−k

2 + k = 1, so atqkf or
btqkf . Combining case-1 and 2. Then,

at ∈ f and atqkf or bt ∈ f and btqkf =⇒ at ∈ ∧qkf or bt ∈ ∧qkf .

Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G implies that (ab)M{t,r}∈ f implies
at∈ ∨ qkf or br∈ ∨ qkf . So our assumption is wrong and there does not exist any
a, b ∈ G such that

max{f(ab),
1− k

2
} < min{f(a), f(b)}.

Hence result (2) is true for all x, y ∈ G.
Conversely (2) ⇒ (1). Let for some x, y ∈ G and t, r ∈ ( 1−k

2 , 1]. Then,

(xy)M{t,r}∈f ⇒ f(xy) < min{t, r}.
Case-1 : If max{f(xy), 1−k

2 } = f(xy), then

min{f(x), f(y)} ≤ f(xy) < min{t, r} or min{f(x), f(y)} < min{t, r}
which implies that min{f(x), f(y)} < t or min{f(x), f(y)} < r and hence f(x) <
t (if f (x) < f (y))or f(y) < r (if f (y) < f (x)) implies that xt∈f or yr∈f which
implies that xt∈ ∨ qkf or yr∈ ∨ qkf, which is the required result (1).

Case-2 : If max{f(xy), 1−k
2 } = 1−k

2 , then

min{f(x), f(y)} ≤ 1− k

2
which implies that f(x) <

1− k

2
or f(y) <

1− k

2
.

Let xt ∈ f ⇒ t ≤ f(x) implies that f(x) + t + k ≤ 1−k
2 + 1−k

2 + k = 1. So
xtqkf ⇒ xt∈ ∨ qkf .

Or let yr ∈ f ⇒ r ≤ f(y) implies that f(y) + r + k ≤ 1−k
2 + 1−k

2 + k = 1. So
yrqkf ⇒ yr∈ ∨ qkf . Hence xt∈ ∨ qkf or yr∈ ∨ qkf , which is the required result (1).

(3) ⇒ (4) Assume that (4) is not true and there exists a ∈ G implies a−1 ∈ G
such that max{f(a−1), 1−k

2 } < f(a) implies there exist some t ∈ ( 1−k
2 , 1] such that

max{f(a−1),
1− k

2
} < t ≤ f(a).

Case-1 : If max{f(a−1), 1−k
2 } = f(a−1), then f(a−1) < t ≤ f(a) ⇒ a−1

t ∈f and
at ∈ f .

Case-2 : If max{f(a−1), 1−k
2 } = 1−k

2 , then

1− k

2
< t ≤ f(a) ⇒ f(a) + t + k >

1− k

2
+

1− k

2
+ k = 1, so atqkf .
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Combining case-1 and 2 we get

at ∈ f and atqkf ⇒ at ∈ ∧qkf .

Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G implies that a−1
t ∈f implies at∈∨ qkf .

So our assumption is wrong and there does not exist any a ∈ G such that

max{f(a−1),
1− k

2
} < f(a).

Hence result (4) is true for all x ∈ G.
(4) ⇒ (3) Let for some x−1 ∈ G and t ∈ (1−k

2 , 1] we have (x−1)t∈f implies f(x−1) <
t.

Case-1 : If max{f(x−1), 1−k
2 } = f(x−1), then

t > f(x−1) ≥ f(x) ⇒ f(x) < t ⇒ xt∈f ⇒ xt∈ ∨ qkf .

Case-2 : If max{f(x−1), 1−k
2 } = 1−k

2 . So f(x) ≤ 1−k
2 . Let

xt ∈ f ⇒ t ≤ f(x) ⇒ f(x) + t + k ≤ 1− k

2
+

1− k

2
+ k = 1,

which implies xtqkf ⇒ xt∈ ∨ qkf . The required result (3). ¤

The following Corollary is particular case of Theorem 3.2. If k = 0, then the
following corollary obtain. This mean that Theorem 3.2 is a generalization.

Corollary 3.3. For any (∈,∈ ∨ q)-fuzzy subgroup of G, we have (1) ⇔ (2) and
(3) ⇔ (4) for all x, y ∈ G and t, r ∈ (0, 1] and k ∈ [0, 1).

(1) (xy)M{t,r}∈f implies xt∈ ∨ qf or yr∈ ∨ qf
(2) max{f(xy), 0.5} ≥ min{f(x), f(y)}
(3) x−1

t ∈f implies xt∈ ∨ qf
(4) max{f(x−1), 0.5} ≥ f(x)

Proof. The proof follows from Theorem 3.2. ¤

Theorem 3.4. A fuzzy subset f of a group G is said to be an (∈,∈ ∨ qk)-fuzzy
subgroup of G if and only if the following conditions hold for all x, y ∈ G and
t, r ∈ (0, 1] and k ∈ [0, 1).

(1) For all x, y ∈ G, max{f(xy), 1−k
2 } ≥ min{f(x), f(y)} and

(2) For all x ∈ G, max{f(x−1), 1−k
2 } ≥ f(x).

Proof. Suppose fuzzy subset f of a group G is an (∈,∈ ∨ qk)-fuzzy subgroup of
G. Now first prove result (1). Assume that there exist some a, b ∈ G such that
max{f(ab), 1−k

2 } < min{f(a), f(b)} implies there exists some t ∈ ( 1−k
2 , 1] such that

max{f(ab),
1− k

2
} < t ≤ min{f(a), f(b)}.

Case-1 : If max{f(ab), 1−k
2 } = f(ab), then f(ab) < t ≤ min{f(a), f(b)} which

implies that f(ab) < t and t ≤ min{f(a), f(b)}, so (ab)t∈f and t ≤ f(a) or t ≤ f(b)
implies (ab)t∈f and at ∈ f or bt ∈ f.

Case-2 : If max{f(ab), 1−k
2 } = 1−k

2 , then 1−k
2 < t ≤ min{f(a), f(b)} which

implies that 1−k
2 < t ≤ f(a)(if f(a) < f(b)) or 1−k

2 < t ≤ f(b)(if f(b) < f(a)) and
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hence f(a) + t + k > 1−k
2 + 1−k

2 + k = 1 or f(b) + t + k > 1−k
2 + 1−k

2 + k = 1, so
atqkf or btqkf. Combining case-1 and 2 we get

at ∈ f and atqkf or bt ∈ f and btqkf ⇒ at ∈ ∧qkf or bt ∈ ∧qkf

Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G implies that (ab)M{t,r}∈f ⇒ at∈∨qkf
or br∈∨ qkf . So our assumption is wrong and there does not exist any a, b ∈ G such
that

max{f(ab),
1− k

2
} < min{f(a), f(b)}.

Hence result-(1) is true for all x, y ∈ G.
Now result-(2) Assume that 2 is not true and there exist some a ∈ G implies

a−1 ∈ G such that max{f(a−1), 1−k
2 } < f(a) implies there exist some t ∈ ( 1−k

2 , 1]
such that

max{f(a−1),
1− k

2
} < t ≤ f(a).

Case-1 : If max{f(a−1), 1−k
2 } = f(a−1), then f(a−1) < t ≤ f(a) implies that a−1

t ∈f
and at ∈ f.

Case-2 : If max{f(a−1), 1−k
2 } = 1−k

2 , then 1−k
2 < t ≤ f(a) which implies that

f(a) + t + k > 1−k
2 + 1−k

2 + k = 1, so atqkf.
Combining case-1 and 2 we get

at ∈ f and atqkf =⇒ at ∈ ∧qkf .

Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G implies that a−1
t ∈f =⇒ at∈ ∨ qkf .

So our assumption is wrong and there does not exist any a ∈ G such that

max{f(a−1),
1− k

2
} < f(a).

Hence result(2) is true for all x ∈ G.
Conversely; Suppose conditions (1) and (2) are true then show that fuzzy subset

f of a group G is an (∈,∈ ∨ qk)-fuzzy subgroup of G. Let suppose that there exist
some x, y ∈ G and t, r ∈ ( 1−k

2 , 1], such that

(xy)M{t,r}∈f ⇒ f(xy) < min{t, r}
Case-1 : If max{f(xy), 1−k

2 } = f(xy), then min{f(x), f(y)} ≤ f(xy) < min{t, r}
which implies that min{f(x), f(y)} < min{t, r} implies min{f(x), f(y)} < t or
min{f(x), f(y)} < r and hence f(x) < t (if f (x) < f (y))or f(y) < r (if f (y) < f (x))
implies that xt∈for yr∈f ⇒ xt∈ ∨ qkf or yr∈ ∨ qkf.

Case-2 : If max{f(xy), 1−k
2 } = 1−k

2 , then min{f(x), f(y)} ≤ 1−k
2 implies that

f(x) ≤ 1−k
2 or f(y) ≤ 1−k

2 . Let xt ∈ f ⇒ t ≤ f(x). Then, f(x) + t + k ≤
1−k
2 + 1−k

2 + k = 1, so xtqkf ⇒ xt∈ ∨ qkf . Or let yr ∈ f ⇒ t ≤ f(y). Then,
f(y) + t + k ≤ 1−k

2 + 1−k
2 + k = 1, so yrqkf ⇒ yr∈ ∨ qkf . Combining both cases,

then xt∈∨ qkf or yr∈∨ qkf. Thus, the required results obtain. Let assume that for
some x−1 ∈ G and t ∈ ( 1−k

2 , 1]. Then,

(x−1)t∈f =⇒ f(x−1) < t.

Case-1 : If max{f(x−1), 1−k
2 } = f(x−1), then t > f(x−1) ≥ f(x) which implies that

f(x) < t ⇒ xt∈f ⇒ xt∈ ∨ qkf.
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Case-2 : If max{f(x−1), 1−k
2 } = 1−k

2 , so f(x) ≤ 1−k
2 . Let

xt ∈ f ⇒ t ≤ f(x), hence f(x) + t + k ≤ 1− k

2
+

1− k

2
+ k = 1.

So xtqkf =⇒ xt∈ ∨ qkf . This completes the proof. ¤

The following Corollary is particular case of Theorem 3.4. If k = 0, then the
following corollary obtain. This mean that Theorem 3.4 is a generalization.

Corollary 3.5. A fuzzy subset f of a group G is said to be an (∈,∈ ∨ q)-fuzzy
subgroup of G if and only if the following conditions hold for all x, y ∈ G and
t, r ∈ (0, 1] and k ∈ [0, 1).

(1) For all x, y ∈ G, max{f(xy), 0.5} ≥ min{f(x), f(y)} and
(2) For all x ∈ G, max{f(x−1), 0.5} ≥ f(x).

Proof. The proof follows from Theorem 3.4. ¤

Theorem 3.6. Let f be a fuzzy subset of a group G. Then (1) ⇔ (2).
(1) (t ∈ ( 1−k

2 , 1] implies ft 6= ∅ is a subgroup of G).
(2) f satisfies the following conditions
(2.1) For all x, y ∈ G, max{f(xy), 1−k

2 } ≥ min{f(x), f(y)} and
(2.2) For all x ∈ G, max{f(x−1), 1−k

2 } ≥ f(x).

Proof. (1) ⇒ (2) Assume that condition-(2) is not true and for condition-(2.1) as-
sume that there exists some a, b ∈ G such that max{f(ab), 1−k

2 } < min{f(a), f(b)}
implies there exists some t ∈ ( 1−k

2 , 1] such that

max{f(ab),
1− k

2
} < t ≤ min{f(a), f(b)}.

Case-1 : If max{f(ab), 1−k
2 } = f(ab), then f(ab) < t ≤ min{f(a), f(b)} which

implies that f(ab) < t and t ≤ min{f(a), f(b)}. Hence (ab)∈ft and t ≤ f(a)(if
f(a) < f(b)) or t ≤ f(b)(if f(b) < f(a)) implies that a or b ∈ ft. Since ft is
a subgroup of G. It follows that if a, b ∈ ft ⇒ ab ∈ ft that is f(ab) ≥ t, a
contradiction. Therefore for all x, y ∈ G

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)}.

Case-2 : If max{f(ab), 1−k
2 } = 1−k

2 , then f(ab) < 1−k
2 < t ≤ min{f(a), f(b)} which

implies that 1−k
2 < t ≤ f(a)(if f(a) < f(b)) or 1−k

2 < t ≤ f(b)(if f(b) < f(a)) implies
that f(ab) < t and t ≤ f(a) or t ≤ f(b) =⇒ (ab)∈ft and a, b ∈ ft =⇒ ab ∈ ft. Since
ft is a subgroup of G. It follows that f(ab) ≥ t, a contradiction. Therefore for all
x, y ∈ G

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)}.

Now (2.2) Assume that there exists some a ∈ G implies a−1 ∈ G such that

max{f(a−1), 1−k
2 } < f(a)
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implies there exists some t ∈ ( 1−k
2 , 1] such that

max{f(a−1),
1− k

2
} < t ≤ f(a).

Case-1 : If max{f(a−1), 1−k
2 } = f(a−1), then f(a−1) < t ≤ f(a) implies a−1∈ftand

a ∈ ft.
Case-2 : If max{f(a−1), 1−k

2 } = 1−k
2 , then f(a−1) < 1−k

2 < t ≤ f(a) which
implies that f(a−1) < t ≤ f(a) ⇒ a−1∈ft and a ∈ ft, which is a contradiction.
Thus for all x ∈ G

max{f(x−1),
1− k

2
} ≥ f(x).

Conversely, f satisfies conditions (2.1) and (2.2). Let t ∈ ( 1−k
2 , 1] such that ft 6= ∅

and x ∈ ft. Then, f (x) ≥ t and so max{f(x−1), 1−k
2 } ≥ f(x) ≥ t by (2.2). Since

t ∈ ( 1−k
2 , 1], it follows that

f
(
x−1

) ≥ t =⇒ x−1 ∈ ft.

Let x, y ∈ ft using (2.1), we have

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{t, t} = t >

1− k

2
and thus f (xy) ≥ t =⇒ (xy) ∈ ft. Consequently, ft is a subgroup of G for all
t ∈ ( 1−k

2 , 1]. ¤

The following Corollary is particular case of Theorem 3.6. If k = 0, then the
following corollary obtain. This mean that Theorem 3.6 is a generalization.

Corollary 3.7. Let f be a fuzzy subset of a group G. Then (1) ⇔ (2)
(1) (t ∈ (0.5, 1] implies ft 6= ∅ is a subgroup of G).
(2) f satisfies the following conditions
(2.1) For all x, y ∈ G, max{f(xy), 0.5} ≥ min{f(x), f(y)} and
(2.2) For all x ∈ G, max{f(x−1), 0.5} ≥ f(x).

Proof. The proof follows from Theorem 3.6. ¤

Theorem 3.8. For any fuzzy subset f of G the following are equivalent;
(1) . f is an (∈,∈ ∨ qk)-fuzzy subgroup of G.
(2) (For all t ∈ ( 1−k

2 , 1] implies ft 6= ∅ is a subgroup of G).

Proof. (1) ⇒ (2) Assume that f is an (∈,∈ ∨ qk)-fuzzy subgroup of G and let
t ∈ ( 1−k

2 , 1] such that ft 6= ∅. Let x, y ∈ ft,using theorem 3.4(1) we have

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{t, t} = t >

1− k

2
.

Thus, f (xy) ≥ t =⇒ (xy) ∈ ft. Let x ∈ ft then f (x) ≥ t and by using theorem
3.4(2). Then

max{f(x−1),
1− k

2
} ≥ f(x) ≥ t.

Since t ∈ ( 1−k
2 , 1], it follows that f

(
x−1

) ≥ t so that x−1 ∈ ft. Consequently, ft is
a subgroup of G for all t ∈ ( 1−k

2 , 1].
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Conversely, assume that (2) is valid. Let (xy)min{t,r} ∈f implies f (xy) < min{t, r}.
Then,

If f (xy) = max{f (xy) , 1−k
2 } then min{t, r} > f (xy) = max{f (xy) , 1−k

2 } ≥
min{f(x), f(y)} which implies that min{t, r} > min{f(x), f(y)} ⇒ min{f(x), f(y)} <
t or min{f(x), f(y)} < r which implies that f(x) < t (if f (x) < f (y)) or f(y) < r
(if f (y) < f (x)), so xt∈f or yr∈f ⇒ xt∈∨qkf or yr∈∨qkf. Also, if max{f(xy), 1−k

2 } =
1−k
2 , then

min{f(x), f(y)} ≤ 1− k

2
⇒ f(x) ≤ 1− k

2
or f(y) ≤ 1− k

2
.

Let xt ∈ f ⇒ t ≤ f(x) and f(x) + t + k ≤ 1−k
2 + 1−k

2 + k = 1. Then, xtqkf =⇒
xt∈ ∨ qkf or let yr ∈ f =⇒ r ≤ f(y) and f(y) + t + k ≤ 1−k

2 + 1−k
2 + k = 1. Then,

yrqkf =⇒ yr∈ ∨ qkf .
So xt∈ ∨ qkf or yr∈ ∨ qkf . Let assume that for some x−1 ∈ G and t ∈ ( 1−k

2 , 1].
Then,

(x−1)t∈f ⇒ f(x−1) < t.

Case-1 : If max{f(x−1), 1−k
2 } = f(x−1), then t > f(x−1) ≥ f(x) which implies that

f(x) < t, so xt∈f =⇒ xt∈ ∨ qkf .
Case-2 : If max{f(x−1), 1−k

2 } = 1−k
2 , so f(x) ≤ 1−k

2 , let xt ∈ f ⇒ t ≤ f(x) which
implies that f(x) + t + k ≤ 1−k

2 + 1−k
2 + k = 1 and xtqkf ⇒ xt∈ ∨ qkf . Hence f is

an (∈,∈ ∨ qk)-fuzzy subgroup of G. ¤

The following Corollary is particular case of Theorem 3.8. If k = 0, then the
following corollary obtain. This mean that Theorem 3.8 is a generalization.

Corollary 3.9. For any fuzzy subset f of G the following are equivalent;
(1) f is an (∈,∈ ∨ q)-fuzzy subgroup of G.
(2) (For all t ∈ (0.5, 1] implies ft 6= ∅ is a subgroup of G).

Proof. The proof follows from Theorem 3.8. ¤

Theorem 3.10. Let f be an (∈,∈ ∨ qk)- fuzzy subgroup of a group G. Then for all
(t ∈ (0, 1−k

2 ] and k ∈ [0, 1)) implies

(Qk (f, t) = {x ∈ G | xqkf implies f (x) + t ≥ 1− k} 6= ∅ is a subgroup of G).

Proof. Let x, y ∈ Qk (f, t) that is xtqkf and ytqkf , for some t ∈ (0, 1−k
2 ], which

implies that f (x) + t ≥ 1 − k and f (y) + t ≥ 1 − k ⇒ f (x) ≥ 1 − k − t and
f (y) ≥ 1− k − t. Now using theorem 3.4(1), we have

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{1− k − t, 1− k − t} = 1− k − t

Since t ≤ 1−k
2 , so only possibility is that f (xy) ≥ 1−k−t ⇒ f (xy)+t ≥ 1−k implies

(xy)t qkf ⇒ (xy) ∈ Qk (f, t). Now, if x ∈ Qk (f, t) ⇒ xtqkf which implies that
f (x) + t ≥ 1− k ⇒ f (x) ≥ 1− k − t. Now using theorem 3.4(2) Then

max{f(x−1),
1− k

2
} ≥ f(x) ≥ 1− k − t ⇒ max{f(x−1),

1− k

2
} ≥ 1− k − t
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Only possibility is that f(x−1) ≥ 1− k − t ⇒ f(x−1) + t ≥ 1− k implies x−1
t qkf ⇒

x−1 ∈ Qk (f, t) . Hence both conditions of Subgroups are satisfied for Qk (f, t). So
Qk (f, t) 6= ∅ is subgroup of G. ¤

The following Corollary is particular case of Theorem 3.10. If k = 0, then the
following corollary obtain. This mean that Theorem 3.10 is a generalization.

Corollary 3.11. Let f be an (∈,∈ ∨ q)- fuzzy subgroup of a group G. Then for all
(t ∈ (0, 0.5]) implies

(Q (f, t) = {x ∈ G | xqf implies f (x) + t ≥ 1} 6= ∅ is a subgroup of G).

Proof. The proof follows from Theorem 3.10. ¤

Theorem 3.12. Let f be a fuzzy subset of G. Then (1)⇔ (2);
(1) f satisfies the following conditions
(a) For all x, y ∈ G, max{f(xy), 1−k

2 } ≥ min{f(x), f(y)} and
(b) For all x ∈ G, max{f(x−1), 1−k

2 } ≥ f(x). (It can also say as f is an (∈,
∈ ∨ qk)-fuzzy subgroup of G)

(2) (For all t ∈ (0, 1] implies Uk (f ; t) 6= ∅ is a subgroup of G).

Proof. (1) ⇒ (2) : Let x, y ∈ Uk (f ; t). We have to show that xy ∈ Uk (f ; t) and
x−1, y−1 ∈ Uk (f ; t). Then we can consider the following four cases, (a′) x, y ∈ ft

that is; f (x) ≥ t and f (y) ≥ t.
(b′)x, y ∈ Qk (f ; t) that is; f (x) + t ≥ 1− k and f (y) + t ≥ 1− k
(c′)x ∈ ft and y ∈Qk(f ; t) that is; f (x) ≥ t and f (y) + t ≥ 1− k
(d′)x ∈Qk(f ; t) and y ∈ ft that is; f (x) + t ≥ 1− k and f (y) ≥ t.
We have

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} −→ (A)

Now using (A) and (a′),

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{t, t} = t

implies max{f(xy),
1− k

2
} ≥ t

Since, if t ≥ 1−k
2 , then only possibility is that f (xy) ≥ t ⇒ (xy) ∈ ft ⊆ Uk (f ; t) ⇒

(xy) ∈ Uk (f ; t). Now using (A) and (b′). Then,

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{1− k − t, 1− k − t} = 1− k − t

Which implies that max{f(xy), 1−k
2 } ≥ 1 − k − t. If t ≤ 1−k

2 , then only possibility
is that

f (xy) ≥ 1− k − t =⇒ (xy) ∈ Qk (f ; t) ⊆ Uk (f ; t) =⇒ (xy) ∈ Uk (f ; t) .

Now using (A) and (c′),

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{t, 1− k − t} = 1− k − t
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Which implies that max{f(xy), 1−k
2 } ≥ 1 − k − t. If t ≤ 1−k

2 , then only possibility
is that

f (xy) ≥ 1− k − t =⇒ (xy) ∈ Qk (f ; t) ⊆ Uk (f ; t) =⇒ (xy) ∈ Uk (f ; t) .

Now using (A) and (d′),

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} ≥ min{1− k − t, t} = 1− k − t

Which implies that max{f(xy), 1−k
2 } ≥ 1 − k − t. If t ≤ 1−k

2 , then only possibility
is that

f (xy) ≥ 1− k − t ⇒ (xy) ∈ Qk (f ; t) ⊆ Uk (f ; t)
Which implies that (xy) ∈ Uk (f ; t). All above cases shows us that Uk (f ; t) is closed.

Now if x ∈ Uk (f ; t) , then x ∈ ft ∪ Qk (f ; t) ⇒ x ∈ ft or x ∈ Qk (f ; t) which
implies that f (x) ≥ t or f (x) + t ≥ 1− k.As given max{f(x−1), 1−k

2 } ≥ f(x), so

max{f(x−1),
1− k

2
} ≥ f(x) ≥ t ⇒ max{f(x−1),

1− k

2
} ≥ t

Since if t ≥ 1−k
2 , then only possibility is that

f
(
x−1

) ≥ t ⇒ x−1 ∈ ft ⊆ Uk (f ; t) ⇒ x−1 ∈ Uk (f ; t) .

Or f (x) + t ≥ 1− k ⇒ f (x) ≥ 1− k − t, which implies that

max{f(x−1),
1− k

2
} ≥ f(x) ≥ 1− k − t

implies that max{f(x−1),
1− k

2
} ≥ 1− k − t

Since if t ≤ 1−k
2 , then only possibility is that

f
(
x−1

) ≥ 1− k − t ⇒ x−1 ∈ Qk (f ; t) ⊆ Uk (f ; t) ⇒ x−1 ∈ Uk (f ; t) .

Hence Uk (f ; t) is a subgroup of G.
(2) ⇒ (1) : Assume that condition (1) is not true and for condition (a) Assume

that there exist some a, b ∈ G such that max{f(ab), 1−k
2 } < min{f(a), f(b)}, then

max{f(ab),
1− k

2
} < t ≤ min{f(a), f(b)} for some t ∈ (

1− k

2
, 1].

Case-1 : If max{f(ab), 1−k
2 } = f(ab), then

f(ab) < t ≤ min{f(a), f(b)} implies that f(ab) < t and t ≤ min{f(a), f(b)}
which shows (ab)∈ft and t ≤ f(a)(if f(a) < f(b)) or t ≤ f(b)(if f(b) < f(a)), then
a, b ∈ ft ⇒ a, b ∈ Uk (f ; t) and so (ab) ∈ Uk (f ; t) that is (ab) ∈ ft or (ab) ∈ Qk (f ; t).
Since Uk (f ; t) is a subgroup of G. It follows that f(ab) ≥ t or f(ab) ≥ 1− k − t, a
contradiction. Therefore for all x, y ∈ G,

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)}.

Case-2 : If max{f(ab), 1−k
2 } = 1−k

2 , then f(ab) < 1−k
2 ≤ t ≤ min{f(a), f(b)} which

implies that f(ab) < 1−k
2 ≤ t and 1−k

2 ≤ t ≤ f(a)(if f(a) < f(b)) or 1−k
2 ≤

t ≤ f(b)(if f(b) < f(a)) implies f(ab) < t and t ≤ f(a) or t ≤ f(b) and hence
f (ab) ≤ 1−k−t ≤ 1−k

2 ≤ t and a ∈ ft or b ∈ ft which implies that f (ab) ≤ 1−k−t ⇒
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f (ab)+t ≤ 1−k =⇒ (ab)t qkf . As (ab)t ∈f and (ab)t qkf ⇒ (ab)t ∈∧qkf =⇒ (ab) /∈
Uk (f ; t) . As a, b ∈ Uk (f ; t) implies (ab) ∈ Uk (f ; t) implies (ab) ∈ ft ∪ Qk (f ; t)
implies (ab) ∈ ft or (ab) ∈ Qk (f ; t) . It follows that f(ab) ≥ t or f (ab) + t ≥ 1− k,
a contradiction. Therefore for all x, y ∈ G

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)}.

Now for (b) assume that there exists some a ∈ G implies a−1 ∈ G such that
max{f(a−1), 1−k

2 } < f(a) implies there exists some t ∈ ( 1−k
2 , 1] such that

max{f(a−1),
1− k

2
} < t ≤ f(a).

Case-1 : If max{f(a−1), 1−k
2 } = f(a−1), then 1−k

2 < f(a−1) < t ≤ f(a) ⇒ a−1∈ft

and a ∈ ft.
Case-2 : If max{f(a−1), 1−k

2 } = 1−k
2 , then f(a−1) < 1−k

2 ≤ t ≤ f(a) ⇒ f(a−1) <

t ≤ f(a) which implies that a−1∈ft and a ∈ ft or f(a−1) < 1−k
2 ≤ t and hence

f(a−1) ≤ 1− k− t < 1−k
2 ≤ t implies that f(a−1) ≤ 1− k− t ⇒ f(a−1) + t ≤ 1− k,

so a−1
t qkf. As a−1

t ∈f and a−1
t qkf implies a−1

t ∈ ∧ qkf or a−1∈ft ∧ a−1∈Qk (f ; t)
implies a−1 /∈ Uk (f ; t). Which is a contradiction to our supposition. Since Uk (f ; t)
is a subgroup of G so for any a ∈ Uk (f ; t) =⇒ a−1 ∈ Uk (f ; t) . Thus for all x ∈ G.

max{f(x−1),
1− k

2
} ≥ f(x).

This completes the proof. ¤

The following Corollary is particular case of Theorem 3.12. If k = 0, then the
following corollary obtain. This mean that Theorem 3.12 is a generalization.

Corollary 3.13. Let f be a fuzzy subset f of G. Then, (1)⇔(2);
(1) f satisfies the following conditions
(a) For all x, y ∈ G, max{f(xy), 0.5} ≥ min{f(x), f(y)} and
(b) For all x ∈ G, max{f(x−1), 0.5} ≥ f(x). (It can also be say as f is an

(∈,∈ ∨ q)-fuzzy subgroup of G)
(2) (For all t ∈ (0, 1] implies U (f ; t) 6= ∅ is a subgroup of G).

Proof. The proof follows from Theorem 3.12. ¤

Theorem 3.14. A non-empty subset S of a group G is a subgroup of G if and only
if its characteristic function Cs is an (∈,∈ ∨ qk)-fuzzy subgroup of G.

Proof. Suppose S is a subgroup of G and x, y ∈ G. Also suppose that x /∈ S and
y /∈ S implies min{Cs(x), Cs(y)} = 0. So

max{Cs(xy),
1− k

2
} ≥ min{Cs(x), Cs(y)}.

Now, if x ∈ S and y ∈ S, then (xy) ∈ S. Since S is a subgroup of G.

min{Cs(x), Cs(y)} = 1 = max{Cs(xy),
1− k

2
}.
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If x ∈ S and y /∈ S or x /∈ S and y ∈ S, then min{Cs(x), Cs(y)} = 0. So

max{Cs(xy),
1− k

2
} ≥ min{Cs(x), Cs(y)}.

Hence in either case

max{Cs(xy),
1− k

2
} ≥ min{Cs(x), Cs(y)}.

Now, for second Condition suppose x /∈ S implies Cs(x) = 0 so

max{Cs(x−1),
1− k

2
} ≥ Cs(x).

If x ∈ S implies x−1 ∈ S because S is subgroup of G. So Cs (x) = 1 implies
Cs

(
x−1

)
= 1 implies

max{Cs(x−1),
1− k

2
} ≥ Cs(x).

Hence both conditions are satisfied so Cs is an (∈,∈ ∨ qk)-fuzzy subgroup of G.
Conversely, suppose that characteristic function Cs is an (∈,∈ ∨ qk)-fuzzy sub-

group of G. To prove S is subgroup of G. Let x, y ∈ S, then min{Cs(x), Cs(y)} = 1.
Since

max{Cs(xy),
1− k

2
} ≥ min{Cs(x), Cs(y)} = 1

We have Cs(xy) = 1 implies (xy) ∈ S.
Suppose x ∈ S then f (x) = 1. Since

max{Cs(x−1),
1− k

2
} ≥ Cs(x) = 1

which implies that Cs(x−1) = 1 =⇒ x−1 ∈ S.

So S is subgroup of G. Hence proved. ¤

Theorem 3.15. Let I be a subgroup of G. Define a fuzzy subset f of G as follows,

f (x) =
{

< 1−k
2 for x /∈ I,

1 Otherwise.

Then f is an (∈,∈ ∨ qk)- fuzzy subgroup of G.

Proof. Let x, y ∈ G and t, r ∈ (0, 1] such that

(xy)min{t,r} ∈f =⇒ f (xy) < min{t, r}

which implies that f (xy) 6= 1 implies f (xy) <
1− k

2
implies (xy) /∈ I ⇒ x /∈ I or y /∈ I

hence f (x) <
1− k

2
or f (y) <

1− k

2
.

Case-1 : If min{t, r} > 1−k
2 , then

f (x) <
1− k

2
< min{t, r} or f (y) <

1− k

2
< min{t, r}

which implies that f (x) < t or f (y) < r implies xt∈f or yr∈f

implies xt∈ ∨ qkf or yr∈ ∨ qkf .
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Case-2: If min{t, r} ≤ 1−k
2 , then t ≤ 1−k

2 or r ≤ 1−k
2 which implies that f (x)+t+k <

1−k
2 + 1−k

2 + k = 1 or f (y) + r + k < 1−k
2 + 1−k

2 + k = 1

implies that xtqkf ⇒ xt∈ ∨ qkf or yrqkf ⇒ yr∈ ∨ qkf

Hence first condition satisfied.
Now for second condition let for x−1 ∈ G and t ∈ (0, 1] such that x−1

t ∈f then
f

(
x−1

)
< t implies f

(
x−1

) 6= 1

implies f
(
x−1

)
<

1− k

2
implies x−1 /∈ I so x /∈ I.

Case-1: If t > 1−k
2 , then f (x) < 1−k

2 < t which implies that

f (x) < t implies that xt∈f ⇒ xt∈ ∨ qkf .

Case-2: If t ≤ 1−k
2 , then f (x) + t + k < 1−k

2 + 1−k
2 + k = 1 which implies that

f (x) + t + k < 1 implies f (x) + t < 1 − k implies xtqkf ⇒ xt∈ ∨ qkf . So second
condition also satisfied. Hence f is an (∈,∈ ∨ qk)-fuzzy subgroup of G. ¤

Theorem 3.16. Let f be an (∈,∈ ∨ qk)- fuzzy subgroup of G. Then, (1) If there
exist x ∈ G such that f (x) ≥ 1−k

2 then f (e) ≥ 1−k
2 .

Proof. (1) Suppose that f (x) ≥ 1−k
2 for some x ∈ G, then

max{f(x−1),
1− k

2
} ≥ f(x) ≥ 1− k

2
Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G implies f(x−1) ≥ 1−k

2 and so

max{f(e),
1− k

2
} = max{f(xx−1),

1− k

2
} ≥ min{f (x) , f

(
x−1

)}

≥ min{1− k

2
,
1− k

2
} =

1− k

2

=⇒ max{f(e),
1− k

2
} ≥ 1− k

2
=⇒ f (e) ≥ 1− k

2
.

This completes the proof. ¤

The following Corollary is particular case of Theorem 3.16. If k = 0, then the
following corollary obtain. This mean that Theorem 3.16 is a generalization.

Corollary 3.17. Let f be an (∈,∈ ∨ q)-fuzzy subgroup of G. (1) If there exist
x ∈ G such that f (x) ≥ 0.5 then f (e) ≥ 0.5.

Proof. The proof follows from Theorem 3.16. ¤

Theorem 3.18. Let G be a group of prime order. Then, if f is an (∈,∈ ∨ qk)-fuzzy
subgroup of G such that f (a) ≥ 1−k

2 for some element a (6= e) ∈ G, then f(x) ≥ 1−k
2

for all x ∈ G.

Proof. Let x ∈ G and assume that there exists an element a ( 6= e) ∈ G such that

f (a) ≥ 1− k

2
.

Then G =< a >, and so x = ap for some positive prime integer p.
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Since f is an (∈,∈ ∨ qk)-fuzzy subgroup of G, then

max{f(a2),
1− k

2
} = max{f(aa),

1− k

2
} ≥ min{f(a), f(a)}

≥ min{1− k

2
,
1− k

2
} =

1− k

2

Which implies max{f(a2),
1− k

2
} ≥ 1− k

2
=⇒ f(a2) ≥ 1− k

2
.

And also we have

max{f(a3),
1− k

2
} = max{f(a2a),

1− k

2
} ≥ min{f(a2), f(a)}

≥ min{1− k

2
,
1− k

2
} =

1− k

2
Which implies max{f(a3), 1−k

2 } ≥ 1−k
2 =⇒ f(a3) ≥ 1−k

2 . Similarly f(a5) ≥ 1−k
2

and so on. Generally we get f(ap) ≥ 1−k
2 for every positive prime integer p.

Thus f(x) ≥ 1−k
2 for all x ∈ G, where G be a group of prime order. ¤

The following Corollary is particular case of Theorem 3.18. If k = 0, then the
following corollary obtain. This mean that Theorem 3.18 is a generalization.

Corollary 3.19. Let G be a group of prime order. Then, if f is an (∈,∈∨ q)-fuzzy
subgroup of G such that f (a) ≥ 0.5 for some element a (6= e) ∈ G, then f(x) ≥ 0.5
for all x ∈ G.

Proof. The proof follows from Theorem 3.18. ¤
Theorem 3.20. Let f be an (∈,∈ ∨ qk)-fuzzy subgroup of G and let x, y ∈ G such
that f (x) < f (y) , then

(1) f (xy) < 1−k
2 or f (yx) < 1−k

2 implies f (x) < 1−k
2 for all x, y ∈ G.

(2) f (xy) ≥ 1−k
2 implies f (xy) ≥ f (x) or f (yx) ≥ 1−k

2 implies f (yx) ≥ f (x) .

Proof. (1) If f (xy) < 1−k
2 implies that (xy)∈f 1−k

2
. Since f 1−k

2
is a subgroup of G,

it follows that

x∈f 1−k
2

or y∈f 1−k
2
⇒ f (x) <

1− k

2
or f (y) <

1− k

2
for x, y ∈ G. So

f (xy) <
1− k

2
=⇒ f (x) <

1− k

2
because (f (x) < f (y)) .

Similarly for f (yx) < 1−k
2 implies f (x) < 1−k

2 .

(2) Suppose that f (xy) ≥ 1−k
2 , so by definition

max{f(xy),
1− k

2
} ≥ min{f(x), f(y)} =⇒ f (xy) ≥ f (x) .

Similarly for f (yx) ≥ 1−k
2 , so by definition

max{f(yx),
1− k

2
} ≥ min{f(y), f(x)} =⇒ f (yx) ≥ f (x) .

This completes the proof. ¤
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Definition 3.21. Let f be a fuzzy subset of a group G. We define the upper part
f+ as follows, f+ (x) = f (x) ∨ 1−k

2 .

Theorem 3.22. Let f be an (∈,∈ ∨ qk)-fuzzy subgroup of a group G, then f+ is an
(∈,∈ ∨ qk)-fuzzy subgroup of G.

Proof. Let x, y ∈ G =⇒ x−1, y−1 ∈ G. Then

max{
(

f ∨ 1− k

2

)
(xy),

1− k

2
} =

((
f ∨ 1− k

2

)
(xy)

)
∨ 1− k

2

=
(

f (xy) ∨ 1− k

2

)
∨ 1− k

2

≥ (f(x) ∧ f(y)) ∨ 1− k

2
(since f is subgroup)

≥
(

f (x) ∨ 1− k

2

)
∧

(
f (y) ∨ 1− k

2

)

≥ min{f(x) ∨ 1− k

2
, f(y) ∨ 1− k

2
}

≥ min{
(

f ∨ 1− k

2

)
(x),

(
f ∨ 1− k

2

)
(y)}.

So

max{
(

f ∨ 1− k

2

)
(xy),

1− k

2
} ≥ min{

(
f ∨ 1− k

2

)
(x),

(
f ∨ 1− k

2

)
(y)}.

Now let

max{
(

f ∨ 1− k

2

)
(x−1),

1− k

2
} =

((
f ∨ 1− k

2

) (
x−1

)) ∨ 1− k

2

=
(

f
(
x−1

) ∨ 1− k

2

)
∨ 1− k

2

≥ f(x) ∨ 1− k

2
=

(
f ∨ 1− k

2

)
(x)

Hence max{
(

f ∨ 1− k

2

)
(x−1),

1− k

2
} ≥

(
f ∨ 1− k

2

)
(x)

Hence f+ is an (∈,∈ ∨ qk)-fuzzy subgroup of G. ¤

Lemma 3.23. Let A and B be non-empty subsets of a group G. Then the following
holds.

(1) (CA ∧ CB)+ = C+
A∩B

(2) (CA ∨ CB)+ = C+
A∪B

(3) (CA ◦ CB)+ = C+
AB
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Proof. (1) Let a be any element of G. Suppose a ∈ A ∩B. Then a ∈ A and a ∈ B.
So

(CA ∧ CB)+ (a) = (CA ∧ CB) (a) ∨ 1− k

2

= (CA (a) ∧ CB (a)) ∨ 1− k

2

=
((

CA (a) ∨ 1− k

2

)
∧

(
CB (a) ∨ 1− k

2

))

=
((

1 ∨ 1− k

2

)
∧

(
1 ∨ 1− k

2

))

= (1 ∧ 1) = 1

Thus (CA ∧ CB)+ (a) = C+
A∩B (a) .

If a /∈ A ∩B. Then a /∈ A or a /∈ B.
So

(CA ∧ CB)+ (a) = (CA ∧ CB) (a) ∨ 1− k

2

= (CA (a) ∧ CB (a)) ∨ 1− k

2

= 0 ∨ 1− k

2
=

1− k

2
Thus (CA ∧ CB)+ (a) = C+

A∩B (a) .

(2) Let a ∈ A ∪B. Then a ∈ A or a ∈ B. So

(CA ∨ CB)+ (a) = (CA ∨ CB) (a) ∨ 1− k

2

= CA (a) ∨ CB (a) ∨ 1− k

2
= 1

Thus (CA ∨ CB)+ (a) = C+
A∪B (a)

If a /∈ A ∪B. Then a /∈ A and a /∈ B. So

(CA ∨ CB)+ (a) = (CA ∨ CB) (a) ∨ 1− k

2

= CA (a) ∨ CB (a) ∨ 1− k

2

=
1− k

2
= C+

A∪B (a) .
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(3) Let a be any element of G. Suppose a ∈ AB. Then a = xy for some x ∈ A
and y ∈ B. Thus.

(CA ◦ CB)+ (a) = (CA ◦ CB) (a) ∨ 1− k

2

= (∨a=uv{CA (u) ∧ CB (v)}) ∨ 1− k

2

≥ {CA (x) ∧ CB (y)} ∨ 1− k

2

≥ {1 ∧ 1} ∨ 1− k

2

≥ {
(

1 ∨ 1− k

2

)
∧

(
1 ∨ 1− k

2

)
}

≥ 1 ∧ 1 = 1
And so (CA ◦ CB)+ (a) = 1.

Since a ∈ AB, C+
AB (a) = 1. So (CA ◦ CB)+ (a) = C+

AB (a). Now if a /∈ AB, then
a 6= xy for all x ∈ A and y ∈ B. If a = uv for some u, v ∈ G. Then,

(CA ◦ CB)+ (a) = (CA ◦ CB) (a) ∨ 1− k

2

= (∨a=uv{CA (u) ∧ CB (v)}) ∨ 1− k

2

= 0 ∨ 1− k

2
=

1− k

2
= C+

AB (a) .

Thus (CA ◦ CB)+ (a) = C+
AB (a) .

¤

4. Generalization of (∈,∈ ∨ q)-level subsets

Let t ∈ (0, 1] and k ∈ [0, 1). For a fuzzy point xt and a fuzzy subset f of a set
G,then

(1) xt∈ f if f (x) < t.
(2) xtqf if f (x) + t ≤ 1.
(3) xtqkf if f (x) + t + k ≤ 1 or f (x) + t ≤ 1− k.
(4) xtqf if f (x) + t < 1.
(5) xtqkf if f (x) + t + k < 1 or f (x) + t < 1− k.
(6) xt∈ ∨ qk f if xt∈ f or xtqkf .
(7) xtαf if xtαf does not hold such that α ∈ {∈, q, qk, q, qk}.

Definition 4.1. Let f be a fuzzy subset of a set G and t ∈ (0, 1] and k ∈ [0, 1).
Then the set

ft = {x ∈ G | f (x) < t} is called the ∈-Level subset of G.
Q (f ; t) = {x ∈ G | f (x) + t ≤ 1} = {x ∈ G | xtqf} is called the q-Level subset

of G.
Q (f ; t) = {x ∈ G | f (x) + t < 1} = {x ∈ G | xtqf} is called the q-Level subset

of G.
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Qk (f ; t) = {x ∈ G | f (x) + t + k ≤ 1} = {x ∈ G | xtqkf} is called the qk-Level
subset of G.

Qk (f ; t) = {x ∈ G | f (x) + t + k ≥ 1} = {x ∈ G | xtqkf} is called the qk-Level
subset of G.

U (f ; t) = {x ∈ G | xt∈ ∨qf or xt∈ ∧ qf} = ft ∪Q (f ; t) = ft ∩ Q (f ; t) is called
(∈ ∨q)-Level subset or (∈ ∧ q)-Level subset of G.

Uk (f ; t) = {x ∈ G | xt∈ ∨qk f or xt∈ ∧ qkf} = ft ∪Qk (f ; t) = ft ∩ Qk (f ; t) is
called (∈ ∨qk)-Level subset or (∈ ∧ qk)-Level subset of G.

Uk (f ; t) = {x ∈ G | xt ∈ ∨qk f} = ft ∪Qk (f ; t) is called
(∈ ∨qk

)
-Level subset of

G.

Note: Uk (f ; t) ⊆ U (f ; t) ⊆ ft for any t ∈ (0, 1] and k ∈ [0, 1), where f are fuzzy
subsets of G. However, the reverse inclusion may not be true.

Example 4.2. Let f be a fuzzy subset of a set G = {g, h, i, j, k, l} defined by

f =
(

g h i j k l
0.7 0.3 0.8 0.2 0.5 0.6

)

Then we get for t = 0.55 ∈ (0, 1] and k = 0.23 ∈ [0, 1).

f0.55 = {x ∈ G|f (x) < 0.55} = {h, j, k},

Q (f ; 0.55) = {x ∈ G|f (x) + 0.55 ≤ 1} = {x ∈ G|f (x) ≤ 1− 0.55 = 0.45} = {h, j}.
From here we noted that Q (f ; 0.55) ⊆ f0.55. Hence for all t ∈ (0, 1] we have Q (f ; t) ⊆
ft. Now for some k = 0.23 ∈ [0, 1)

Q0.23 (f ; 0.55) = {x ∈ G|f (x) + 0.55 ≤ 1− 0.23}
= {x ∈ G|f (x) ≤ 1− 0.23− 0.55 = 0.22} = {j}.

From above results it is clear that Q0.23 (f ; 0.55) ⊆ Q (f ; 0.55) ⊆ f0.55, that is; for
all t ∈ (0, 1] and k ∈ [0, 1), we have

Qk (f ; t) ⊆ Q (f ; t) ⊆ ft.

And now we find U (f ; t) and Uk (f ; t) for above values, then

U (f ; t) = U (f ; 0.55) = f0.55 ∩Q (f ; 0.55) = {h, j, k} ∩ {h, j} = {h, j}.
And now

Uk (f ; t) = U0.23 (f ; 0.55) = f0.55 ∩Q0.23 (f ; 0.55) = {h, j, k} ∩ {j} = {j}.
Hence from the above results we proved that

Uk (f ; t) ⊆ U (f ; t) ⊆ ft

for all t = 0.55 ∈ (0, 1] and k = 0.23 ∈ [0, 1). Note that if m < n then fm ⊆ fn but
Qk (f ; n) ⊆ Qk (f ; m) where m,n ∈ (0, 1] and k ∈ [0, 1).

Proposition 4.3. Let f be a fuzzy subset of a set G. For any m,n ∈ [0, 1) where
m < n, we have for all t ∈ (0, 1], Un (f ; t) ⊆ Um (f ; t) .
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Proof. If we take m < n that is; 0.23 < 0.4 and let for t = 0.55. By using above
example then that f0.55 = {x ∈ G | f (x) < 0.55} = {b, d, e} and

Q0.23 (f ; 0.55) = {x ∈ G|f (x) + 0.55 ≤ 1− 0.23}
= {x ∈ G|f (x) ≤ 1− 0.23− 0.55 = 0.22} = {j}

And

Q0.4 (f ; 0.55) = {x ∈ G|f (x) + 0.55 ≤ 1− 0.4}
= {x ∈ G|f (x) ≤ 1− 0.4− 0.55 = 0.05} = {}

Un (f ; t) = U0.4 (f ; 0.55) = f0.55 ∩Q0.4 (f ; 0.55) = {h, j, k} ∩ {} = {}.
And now

Um (f ; t) = U0.23 (f ; 0.55) = f0.55 ∩Q0.23 (f ; 0.55) = {h, j, k} ∩ {j} = {j}.
Hence For any m, n ∈ [0, 1) where m < n, we have for all t ∈ (0, 1].we have Un (f ; t) ⊆
Um (f ; t) . ¤

Note that if t, r ∈ (0, 1] where t > r; then Uk (f ; t) may or may not be a subset
of Uk (f ; r) for some k ∈ [0, 1). From above example it can find, because 0.55 > 0.11
and k = 0.23 so

U0.23 (f ; 0.55) = f0.55 ∩Q0.23 (f ; 0.55) = {h, j, k} ∩ {j} = {j}.
And now

U0.23 (f ; 0.11) = f0.11 ∩Q0.23 (f ; 0.11)
= {x ∈ G|f (x) < 0.11} ∩ {x ∈ G|f (x) + 0.11 ≤ 1− 0.23}
= {} ∩ {x ∈ G|f (x) ≤ 1− 0.23− 0.11 = 0.66}
= {} ∩ {h, j, k, l} = {}.

So U0.23 (f ; 0.55) * U0.23 (f ; 0.11) and if let take 0.55 > 0.44 then

U0.23 (f ; 0.44) = f0,44 ∩Q0.23 (f ; 0.44)
= {x ∈ G|f (x) < 0.44} ∩ {x ∈ G|f (x) + 0.44 ≤ 1− 0.23}
= {h, j} ∩ {x ∈ G|f (x) ≤ 1− 0.23− 0.44 = 0.33}
= {h, j} ∩ {h, j} = {h, j}.

But here U0.23 (f ; 0.55) ⊆ U0.23 (f ; 0.44) .

Proposition 4.4. Let f , g and h be fuzzy subsets of a set G, and t ∈ (0, 1] and
k ∈ [0, 1). Then

(1) Uk (f ∪ g; t) = Uk (f ; t) ∪ Uk (g; t)
(2) Uk (f ∩ g; t) = Uk (f ; t) ∩ Uk (g; t)
(3) Uk (f ∪ (g ∩ h); t) = Uk (f ∪ g; t) ∩ Uk (f ∪ h; t)
(4) Uk (f ∩ (g ∪ h); t) = Uk (f ∩ g; t) ∪ Uk (f ∩ h; t) .
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Proof. (1) Let

x ∈ Uk (f ∪ g; t) ⇐⇒ xt∈ ∨qk(f ∪ g)
⇐⇒ xt∈ ∧ qk(f ∪ g) ⇐⇒ xt∈(f ∪ g) and xtqk(f ∪ g)
⇐⇒ (f ∪ g)(x) < t and (f ∪ g)(x) + t ≤ 1− k

⇐⇒ [f (x) < t or g (x) < t] and [f (x) + t ≤ 1− k or g (x) + t ≤ 1− k]
⇐⇒ [f (x) < t and f (x) + t ≤ 1− k] or [g (x) < t and g (x) + t ≤ 1− k]
⇐⇒ [xt∈f and xtqkf ] or [xt∈g and xtqkg]
⇐⇒ [xt∈ ∧ qkf ] or [xt∈ ∧ qkg]
⇐⇒ xt∈ ∨qkf or xt∈ ∨qkg

⇐⇒ x ∈ Uk (f ; t) or x ∈ Uk (g; t)

⇐⇒ x ∈ Uk (f ; t) ∪ Uk (g; t) .

So
Uk (f ∪ g; t) = Uk (f ; t) ∪ Uk (g; t) .

(2) Let

x ∈ Uk (f ∩ g; t) ⇐⇒ xt∈ ∨qk(f ∩ g)
⇐⇒ xt∈ ∧ qk(f ∩ g) ⇐⇒ xt∈(f ∩ g) and xtqk(f ∩ g)
⇐⇒ (f ∩ g)(x) < t and (f ∩ g)(x) + t ≤ 1− k

⇐⇒ [f (x) < t and g (x) < t] and [f (x) + t ≤ 1− k and g (x) + t ≤ 1− k]
⇐⇒ [f (x) < t and f (x) + t ≤ 1− k] and [g (x) < t and g (x) + t ≤ 1− k]
⇐⇒ [xt∈f and xtqkf ] and [xt∈g and xtqkg]
⇐⇒ [xt∈ ∧ qkf ] and [xt∈ ∧ qkg]
⇐⇒ xt∈ ∨qkf and xt∈ ∨qkg

⇐⇒ x ∈ Uk (f ; t) and x ∈ Uk (g; t)

⇐⇒ x ∈ Uk (f ; t) ∩ Uk (g; t) .

So
Uk (f ∩ g; t) = Uk (f ; t) ∩ Uk (g; t) .

(3) Let

x ∈ Uk (f ∪ (g ∩ h); t) ⇐⇒ x ∈ Uk (f ; t) ∪ Uk (g ∩ h; t)

⇐⇒ x ∈ Uk (f ; t) or x ∈ Uk (g ∩ h; t)

⇐⇒ x ∈ Uk (f ; t) or {x ∈ Uk (g; t) ∩ Uk (h; t)}
⇐⇒ x ∈ Uk (f ; t) or {x ∈ Uk (g; t) and x ∈ Uk (h; t)}
⇐⇒ [x ∈ Uk (f ; t) or x ∈ Uk (g; t)] and [x ∈ Uk (f ; t) or x ∈ Uk (h; t)]

⇐⇒ [x ∈ Uk (f ; t) ∪ Uk (g; t)] and [x ∈ Uk (f ; t) ∪ Uk (h; t)]

⇐⇒ [x ∈ Uk (f ∪ g; t)] and [Uk (f ∪ h; t)]

⇐⇒ x ∈ Uk (f ∪ g; t) ∩ Uk (f ∪ h; t) .

So
Uk (f ∪ (g ∩ h); t) = Uk (f ∪ g; t) ∩ Uk (f ∪ h; t) .
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(4) Let

x ∈ Uk (f ∩ (g ∪ h); t) ⇐⇒ x ∈ Uk (f ; t) ∩ Uk (g ∪ h; t)

⇐⇒ x ∈ Uk (f ; t) and x ∈ Uk (g ∪ h; t)

⇐⇒ x ∈ Uk (f ; t) and {x ∈ Uk (g; t) ∪ Uk (h; t)}
⇐⇒ x ∈ Uk (f ; t) and {x ∈ Uk (g; t) or x ∈ Uk (h; t)}
⇐⇒ [x ∈ Uk (f ; t) and x ∈ Uk (g; t)] or [x ∈ Uk (f ; t) and x ∈ Uk (h; t)]

⇐⇒ [x ∈ Uk (f ; t) and x ∈ Uk (g; t)] or [x ∈ Uk (f ; t) and x ∈ Uk (h; t)]

⇐⇒ [x ∈ Uk (f ∩ g; t)] or [Uk (f ∩ h; t)]

⇐⇒ x ∈ Uk (f ∩ g; t) ∪ Uk (f ∩ h; t) .

So
Uk (f ∩ (g ∪ h); t) = Uk (f ∩ g; t) ∪ Uk (f ∩ h; t) .

¤

The following Corollary is particular case of Proposition 4.4. If k = 0, then the
following corollary obtain. This mean that Proposition 4.4 is a generalization.

Corollary 4.5. Let f, g and h be fuzzy subsets of a set G, and t ∈ (0, 1] and k = 0
then

(1) U (f ∪ g; t) = U (f ; t) ∪ U (g; t) .
(2) U (f ∩ g; t) = U (f ; t) ∩ U (g; t) .
(3) U (f ∪ (g ∩ h); t) = U (f ∪ g; t) ∩ U (f ∪ h; t) .
(4) U (f ∩ (g ∪ h); t) = U (f ∩ g; t) ∪ U (f ∩ h; t) .

Proof. The proof follows from Proposition 4.4. ¤

Proposition 4.6. For a fuzzy subset f of a set G, the following holds Uk (f ; t) ⊆
Q (f c; t) ∪ f c

t+k, where f c denotes the compliment of f , that is, f c (x) = 1 − f (x)
for all x ∈ G.

Proof. We get

x ∈ Uk (f ; t) ⇒ xt ∈ ∨qk ⇒ xt ∈ f or xtqkf ⇒ f (x) ≥ t or f (x) + t + k > 1
⇒ f c (x) = 1− f (x) ≤ 1− t or f c (x) = 1− f (x) < t + k

⇒ f c (x) + t ≤ 1 or xt+k∈f c ⇒ xtqf
c or x ∈ f c

t+k

⇒ x ∈ Q (f c; t) or x ∈ f c
t+k ⇒ x ∈ Q (f c; t) ∪ f c

t+k.

So
Uk (f ; t) ⊆ Q (f c; t) ∪ f c

t+k.

¤

Proposition 4.7. For a fuzzy subset f of a set G, the following holds Uk (f ; t) ⊆
f c
1−t ∪ f c

t+k, Where f c denotes the compliment of f , that is f c (x) = 1− f (x) for all
x ∈ G.

1014



S. Abdullah et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 6, 991–1018

Proof. We get

x ∈ Uk (f ; t) ⇒ xt ∈ ∨qkf ⇒ xt ∈ f or xtqkf

⇒ f (x) ≥ t or f (x) + t + k > 1
⇒ fc (x) = 1− f (x) ≤ 1− t or f c (x) = 1− f (x) < t + k

⇒ x1−t∈f c or xt+k∈f c

⇒ x ∈ f c
1−t or x ∈ fc

t+k

⇒ x ∈ f c
1−t ∪ fc

t+k.

So
Uk (f ; t) ⊆ f c

1−t ∪ f c
t+k.

¤

Proposition 4.8. For a fuzzy subset f of a set G, the following holds Uk (f ; t) ⊆
f c
1−t ∩ f c

t+k, Where f c denotes the compliment of f , that is, f c (x) = 1− f (x) , for
all x ∈ G.

Proof. We get

x ∈ Uk (f ; t) ⇒ x /∈ Uk (f ; t) ⇒ xt∈ ∨qkf ⇒ xt∈ ∧ qkf ⇒ xt∈f and xtqkf

⇒ f (x) < t and f (x) + t + k ≤ 1
⇒ f c (x) = 1− f (x) > 1− t and f c (x) = 1− f (x) ≥ t + k

⇒ x ∈ f c
1−t and x ∈ f c

t+k ⇒ x ∈ f c
1−t ∩ fc

t+k.

So
Uk (f ; t) ⊆ f c

1−t ∩ f c
t+k .

¤

Proposition 4.9. For fuzzy subsets f and g of a set G, the following
(Uk (f ∩ g; t))c =

(
Uk (f ; t) ∩ Uk (g; t)

)c ⊆ f c
1−t ∪ gc

1−t ∪ fc
t+k ∪ gc

t+k.

Proof. Let

x ∈ (
Uk (f ; t) ∩ Uk (g; t)

)c ⇒ x /∈ Uk (f ; t) ∩ Uk (g; t)

⇒ x /∈ Uk (f ; t) or x /∈ Uk (g; t)
⇒ x ∈ Uk (f ; t) or x ∈ Uk (g; t)

⇒ x ∈ f c
1−t ∪ f c

t+k or x ∈ gc
1−t ∪ gc

t+k

⇒ x ∈ f c
1−t ∪ f c

t+k ∪ gc
1−t ∪ gc

t+k

⇒ x ∈ f c
1−t ∪ gc

1−t ∪ f c
t+k ∪ gc

t+k.

So (
Uk (f ; t) ∩ Uk (g; t)

)c ⊆ f c
1−t ∪ gc

1−t ∪ f c
t+k ∪ gc

t+k.

¤

Proposition 4.10. For fuzzy subsets f and g of a set G, the following
(Uk (f ∪ g; t))c =

(
Uk (f ; t) ∪ Uk (g; t)

)c ⊆ (f c
1−t ∪ f c

t+k) ∩ (
gc
1−t ∪ gc

t+k

)
.
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Proof. Let

x ∈ (
Uk (f ; t) ∪ Uk (g; t)

)c ⇒ x /∈ Uk (f ; t) ∪ Uk (g; t)

⇒ x /∈ Uk (f ; t) and x /∈ Uk (g; t)
⇒ x ∈ Uk (f ; t) and x ∈ Uk (g; t)

⇒ x ∈ f c
1−t ∪ f c

t+k and x ∈ gc
1−t ∪ gc

t+k

⇒ x ∈ (f c
1−t ∪ f c

t+k) ∩ (gc
1−t ∪ gc

t+k).

So (
Uk (f ; t) ∪ Uk (g; t)

)c ⊆ (f c
1−t ∪ f c

t+k) ∩ (
gc
1−t ∪ gc

t+k

)
.

¤
Proposition 4.11. For fuzzy subsets f and g of a set G, the following hold

Uk (f ∩ g; t) = Uk (f ; t) ∩ Uk (g; t) ⊆ f c
1−t ∩ gc

1−t ∩ f c
t+k ∩ gc

t+k.

Proof. Let

x ∈ Uk (f ; t) ∩ Uk (g; t) ⇒ x ∈ Uk (f ; t) and x ∈ Uk (g; t)
⇒ x ∈ f c

1−t ∩ f c
t+k and x ∈ gc

1−t ∩ gc
t+k

⇒ x ∈ f c
1−t ∩ f c

t+k ∩ gc
1−t ∩ gc

t+k

⇒ x ∈ f c
1−t ∩ gc

1−t ∩ f c
t+k ∩ gc

t+k.

So
Uk (f ∩ g; t) = Uk (f ; t) ∩ Uk (g; t) ⊆ f c

1−t ∩ gc
1−t ∩ f c

t+k ∩ gc
t+k.

¤
Proposition 4.12. For fuzzy subsets f and g of a set G, the following hold

Uk (f ∪ g; t) = Uk (f ; t) ∪ Uk (g; t) ⊆ (f c
1−t ∩ f c

t+k) ∪ (gc
1−t ∩ gc

t+k).

Proof. Let

x ∈ Uk (f ∪ g; t) = Uk (f ; t) ∪ Uk (g; t) ⇒ x ∈ Uk (f ; t) ∪ Uk (g; t)

⇒ x ∈ Uk (f ; t) or x ∈ Uk (g; t)
⇒ x ∈ fc

1−t ∩ f c
t+k or x ∈ gc

1−t ∩ gc
t+k

⇒ x ∈ (f c
1−t ∩ f c

t+k) ∪ (gc
1−t ∩ gc

t+k).

So
Uk (f ∪ g; t) = Uk (f ; t) ∪ Uk (g; t) ⊆ (f c

1−t ∩ f c
t+k) ∪ (gc

1−t ∩ gc
t+k).

¤

5. Conclusions and applications

Our aim is to promote research and development of fuzzy technology by studying
the generalized fuzzy subgroups. It is well know that groups are basic structure in
many applied science. Due to these possibilities of applications, group are currently
widely explored in fuzzy setting. Since the notion of fuzzy subgroup of a group play
a vital role in the study of group structure, by using the idea of quasi-k-coincidence
of a fuzzy point with a fuzzy set, the authors used idea of Jun et al [7]. to group and
defined a new generalization of fuzzy groups. The most important generalization of
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Rosenfeld fuzzy group of type (∈,∈ ∨ qk)-fuzzy subgroups are introduced. The given
concept is a generalization of Bhakat (∈,∈ ∨q)-level subset by using the idea of a
non quasi-k-coincidence of a fuzzy point with a fuzzy set to defined (∈,∈ ∨ qk)-level
subset. Furthermore, the authors give some characterization theorems of (∈,∈ ∨ qk)-
fuzzy subgroups. From these discussion it conclude that the results of this article
are generalization of of results of ordinary fuzzy subgroups and (∈,∈ ∨ q)-fuzzy sub-
groups. There are some results on connection between (∈,∈ ∨ qk)-fuzzy subgroups
and their generalized level subsets. Further the authors studied some basic proper-
ties of generalized level subsets. We hope that the research along this direction can
be continued and in fact, this work would serve as a foundation for further study of
the theory of groups, it will be necessary to carry out more theoretical research to
establish a general framework for the practical applications.

In future our study will be focused on 1) (∈,∈ ∨qk)-fuzzy solvable groups and
(∈,∈ ∨qk)-fuzzy nilpotent groups. 2) (∈,∈ ∨ qk)-fuzzy solvable groups and (∈,∈ ∨ qk)-
fuzzy nilpotent groups.
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