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1. INTRODUCTION

Fuzzy set was defined by Zadeh [8]. Kramosil and Michalek [6] introduced fuzzy
metric space, George and Veermani [2] modified the notion of fuzzy metric spaces
with the help of continuous t-norms. Many researchers have obtained common fixed
point theorems for mappings satisfying different types of commutativity conditions.
The study of fixed point theorems, involving four single-valued maps, began with the
assumption that all of the maps are commuted. Sessa [7] weakened the condition of
commutativity to that of pairwise weakly commuting. Jungck generalized the notion
of weak commutativity to that of pairwise compatible [3] and then pairwise weakly
compatible maps [4]. Jungck and Rhoades [5] introduced the concept of occasionally
weakly compatible maps.

Abbas and Rhoades [1] generalized the concept of weak compatibility in the set-
ting of single and multi-valued maps by introducing the notion of occasionally weakly
compatible (owc).

This paper presents some common fixed point theorems for more general commu-
tative condition i.e. occasionally weakly compatible mappings in fuzzy metric space.
The aim of this paper is to obtain some common fixed point theorems for owc maps
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to hybrid pairs of single and multi-valued maps using a symmetric § derived from
an ordinary symmetric d in fuzzy metric space.

2. PRELIMINARY NOTES
Definition 2.1. A fuzzy set A in X is a function with domain X and values in [0,1].

Definition 2.2. A binary operation * : [0,1] x [0, 1] — [0, 1] is a continuous ¢-norms
if * is satisfying conditions:

(i) * is an commutative and associative;

(ii) = is continuous;

(iii) ax1=a for all a € [0,1];

(iv) axb < cx*d whenever a < cand b <d and a,b,c,d € [0, 1].

Definition 2.3. A 3-tuple (X, M, «) is said to be a fuzzy metric space if X is an
arbitrary set, * is a continuous t-norm and M is a fuzzy set on X2 x (0, c0) satisfying
the following conditions, for all z,y,z € X,s,t > 0,

(i) M(z,y,t) > 0;

(i) M(z,y,t) =11if and only if z = y;

(111) M(‘Tv Y, t) = M(y> T, t);

(iv) M(z,y,t)« M(y,z,8) < M(z,z,t+ s);

(v) M(z,y,-):(0,00) — (0,1] is continuous.

Then M is called a fuzzy metric on X. Then M (z,y, t) denotes the degree of nearness
between x and y with respect to t.

Example 2.4. Let (X, d) be a metric space. Denote a b = ab for all a,b € [0,1]
and let M, be fuzzy sets on X? x (0, 00) defined as follows:

_ t

Ct+d(z,y)

Then (X, My, *) is a fuzzy metric space. We call this fuzzy metric induced by a
metric d as the standard intuitionistic fuzzy metric.

My

Throughout the paper X will represent the fuzzy metric space (X, M,x) and
CB(X), the set of all non empty closed and bounded sub-sets of X. For A, B €
CB(X) and for every ¢ > 0, denote

H(A,B,t) = sup{M(a,b,t);a eAbe B}
and dp7(A, B,t) = inf {M(a,b,t);a cAbe B}.
If A consist of a single point a, we write dys (A, B,t) = dn(a, B,t). If B also consists
of a single point b, we write dp(A, B,t) = M(a,b,t).
It follows immediately from definition that
oM (A, Byt) =6y (B, At) >0
0m(A,B,t) =1 A= B=1{a} forall A, Be CB(X).

Lemma 2.5. Let (X, M, x) be a fuzzy metric space. If there exists ¢ € (0,1) such
that M(x,y,qt) > M(z,y,t) for all z,y € X and t > 0, then x = y.
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Definition 2.6. A point z € X is called a coincidence point (resp. fixed point) of
A: X —> X, B: X - CB(X) if Az € Bz (resp. © = Ax € Bx).

Definition 2.7. Maps f : X — X and T : X — CB(X) are said to be weakly
compatible if they commute at their coincidence points, that is fx € Tz for some
x € X then fTe =T fx.

Definition 2.8. Maps f: X — X and T : X — C'B(X) are said to be occasionally
weakly compatible (owc) if and only if there exist some point = in X such that
freTxand fTx CTfx.

Example 2.9. Let (X, F, %) be a fuzzy metric space, where X = [0, 00) with axb =
min{a, b} and

—t  ift >0
— ) Ty ! ’
M(@,y,7) { 0, if ¢ = 0.

Let A: X - X & B: X — CB(X) be single valued and set-valued maps defined
by

[0, ifx=0 [ {0}, ifz=0;
Alz) = { 2%, ifxz € (0,00). B(X) = { {3z}, ifz € (0,00).

Here, 0 and 3 are two coincidence points of A and B. That is A0 = {0} € B(0), A(3) =
{9} € B(3), but AB(0) = {0} = BA(0), AB(3)eqBA(3). Thus A and B are owc but
not weakly compatible.

3. MAIN RESULTS

Theorem 3.1. Let (X, M, ) be a fuzzy metric space with t xt =t for all t € [0, 1].
Let A,B : X — X and S,T : X — CB(X) be single valued and multi valued
mappings respectively such that {A, S} and {B,T} are owc. If there exist g € (0,1)
such that

on(Sz, Ty, qt) = min{ M (Ax, By, t), H(Ax, Sz, t), H(By, Ty, 1),
(3.1) H(Az,Ty,t),H(By, Sz,t)}

forallx,y € X. Then A, B,S and T have a unique common fixed point.

Proof. Since the pairs {A,S} & {B, T} are owc, therefore, there exist two elements

u,v € X such that Au € Su, ASu C SAu and Bv € Tv, BTv C T Bv.

First we prove that Au = Buv.

As Au € Suso AAu C ASu C SAu, Bv € Tv so BBv C BTv C T Bv and hence

M (A%u, B*v,t) > 6p(SAu, TBuv,t) and if §y;(SAu, TBv,t) < 1. Using (3.1) for
893
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x = Au,y = Bv

Sar(SAu, TBv, qt) > min{ M (AAu, BBv,t), H(A%*u, SAu,t), H(BBv, T Buv,t),
H(A%*u,TBv,t), H(BBv, SAu,t)}
> min{ M (AAu, BBv,t), M(A*u, SAu,t), M(BBv,TBu,t),
M (A?u, TBu,t), M(BBv, SAu,t)}
> min{ M (A%u, B?v,t),1,1, M(A?u, TBv,t), M(BBv, SAu,t)}
> min{dp (SAu, TBv,t),1,1,55(SAu, TBv,t), 00 (SAu, TBv,t)}
= dp(SAu, TBv,t), a contradiction.

Hence Au = Bw.

Also, M (A?u, Bu,t) > 0y (S Au, Tu, t)
M(A%u, Tu,t) > Spr(SAu, Tu, t).

Now we claim that Au = u. If not, then dy;(SAu, Tu,t) < 1.
Considering (3.1) for Au =z, y=u

Sar(SAu, Tu, qt) > min{ M (AAu, Bu,t), H(A*u, SAu,t), H(Bu, Tu,t),
H(A?u,Tu,t), H(Bu, SAu,t)}
> min{M (AAu, Bu,t), M(A*u, SAu,t), M(Bu, Tu,t),
M(A%*u, Tu,t), M(Bu, SAu,t)}
> min{dp (SAu, Tu,t),1,1,00 (SAu, Tu,t), 5 (S Au, Tu, t)}
= oy (SAu, Tu, t), which is again a contradiction and hence Au=u.
Similarly, we can get Bv = v.

Thus A, B, S & T have a common fixed point.
For uniqueness let u # u’ be another fixed point of A, B, S & T, then (3.1) gives

M (Su, Tu, gt) > min{M (Au, Bu', t), H(Au, Su,t), H(Bul, Tu, t), H(Au, Tu, t),
H(Bu', Su,t)}
> min{ M (Au, Bu,t), M(Au, Su,t), M(Bu',Tu',t), M(Au,Tu ,t),
M(Bu', Su,t)}
> min{da (Su, Tu',t),1,1, 60 (Su, Tu',t), 6as (Su, Tu , 1)}
= 0p(Su, T, t), a contradiction.
Hence Su=Tu'. i.e., u=1u'

Thus, A, B, S & T have a unique common fixed point. O
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tExample 3.1.1. Let X = [0, 4] with the metric d defined by d(z,y) =] x —y | and
for each ¢ € [0, 1], define

b i > 0;
=] Ty ! ’
M(z,y,%) { 0, ift =0

for all z,y € X. Clearly (X, F,*) be a fuzzy metric space, where X = [0, 00) with
a*b = min{a,b}. Define the single-valued maps S,T : X — X and set-valued maps
A,B: X — CB(X) defined by

({2}, fo<z<2 fa if0<2<
A(x)_{ {0}, f2<z<4. S(X) 3, if2<z<A4.

{2} if0<z<2 2 i0<a<y
B(x){ (4, ift2<e<4a  TE=(e paca<a

Clearly all the conditions of the above theorem are satisfied. That is,

S(2) = {2} € A(2) and SA(2) = {2} = AS(2),
T(2) = {2} € B(2) and TB(2) = {2} = BT(2),

So, A and S as well as B and T are owc maps. Also 2 is the unique common fixed
point of A, B, S and T

Theorem 3.2. Let (X, M, *) be a fuzzy metric space with t xt =t for all t € [0,1].
Let A,B : X — X and S,T : X — CB(X) be single valued and multi valued
mappings respectively such that {A, S} and {B,T} are owc. If there exist g € (0,1)
such that

dr (Sz, Ty, gt) > min {M(Aac, By,t),H(Ax, Sx,t), H(By, Ty,t),

H(Az,Ty,t) + H(By, Sz,t) }

(3.2) .

forallz,y € X. Then A, B,S and T have a unique common fized point.

Proof. Since the pairs {A,S} & {B, T} are owc, therefore, there exist two elements

u,v € X such that Au € Su, ASu C SAu and Bv € Tv, BTv C T Bv.

First we prove that Au = Buv.

As Au € Suso AAu C ASu C SAu, Bv € Tv so BBv C BTv C T Bv and hence

M (A%u, B*v,t) > 6p(SAu, TBuv,t) and if §y;(SAu, TBv,t) < 1. Using (3.2) for
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x = Au, y = Bv

831 (SAu, TBv, qt) > min {M(AAu, BBu,t), H(A*u, SAu,t), H(BBv, TBu, ),
H(A?u,TBv,t) + H(BBv, SAu,t) }
2
> min {M(AAu, BBu,t), M(A%u, SAu,t), M(BBv, TBv,t),
M (A%u, TBo,t) + M(BBv, SAu,t) }
2

M(A?u, TBv,t) + M(BBv, SAu,t) }
2
Op (SAu, TBu,t) + 5y (SAu, TBu, t) }
2

> min {M(AZU, B0, 1),1,1,

> min {5M(5Au, TBuv,t),1,1,
= 6y (SAu, TBu,t), a contradiction.

Hence Au = Bw.

Also, M(A%u, Bu,t) > x5 (S Au, Tu, t)
M(A%u, Tu,t) > Spr(SAu, Tu, t).

Now we claim that Au = u. If not, then dy;(SAu, Tu,t) < 1.

Considering (3.2) for Au =2z, y =u

S01(SAu, Tu, qt) > min {M(AAu, Bu,t), H(A%u, S Au, t), H(Bu, Tu, t),

H(A%u,Tu,t) + H(Bu, SAu,t) }
2
> min {M(AAu7 Bu,t), M(A?u, SAu,t), M(Bu, Tu,t),

M (A%u, Tu,t) + M(Bu, SAu,t) }
2

> min {5M(5Au, Tu,t),1,1,
= oy (SAu, Tu,t),

On (SAu, Tu, t) + dpr (SAu, Tu, t) }
2

which is again a contradiction and hence Au = wu.
Similarly, we can get Bv = v. Thus A, B, S & T have a common fixed point.
For uniqueness let uequ’ be another fixed point of A, B, S & T, then (3.2) gives
896
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Onr(Su, Tu/7 gt) > min {M(Au7 Bu/7 t), H(Au, Su,t), H(Bu,, Tu/7 t),

H(Au,Tu ,t) + H(Bu', Su,t) }
2
> min {M(Au7 Bul7 t), M(Au, Su,t), M(Bu/,Tul, t),

M (Au, Tu' ,t) + M(Bu', Su,t) }
2

: T T
> min {5M(Su,Tu 1), 1,1, On (Su, Tu ,t)—;—(SM(Su, Y ’t)}

= o (Su, Tu/7 t), a contradiction.

Hence Su=Tu'. i.e., u=1u'
Thus, A, B, S & T have a unique common fixed point. a

Corollary 3.3. Let (X, M, *) be a fuzzy metric space with txt =1t for allt € [0,1].
Let A)B : X — X and S,T : X — CB(X) be single valued and multi valued
mappings respectively such that {A,S} and {B,T} are owc. If there exist g € (0,1)
such that

H(Ax,Sx,t H(By,Ty,t

dn(Sz, Ty, qt) > min{M(Ax,By,t), (4z, Sz, )—; (By, Ty, ),
H(Az,Ty,t) + H(By, Sz,t) }
2

forallz,y € X. Then A, B,S and T have a unique common fized point.

(3.3)

Proof. Clearly the result immediately follows from Theorem 3.2. g

Corollary 3.4. Let (X, M, ) be a fuzzy metric space with txt =t for all t € [0, 1].
Let AAB: X — X and S,T : X — CB(X) be single valued and multi valued
mappings respectively such that {A, S} and {B,T} are owc. If there exist g € (0,1)
such that

6 (S, Ty, qt) > hmin { M(Az, By, ), H(Axz, Sz, ), H(By, Ty, 1),

H(Az,Ty,t) + H(By, Sz,t) }
2

for all z,y € X, h € [0,1) and t > 0. Then A,B,S and T have a unique common
fixed point.

(3.4)

Proof. Clearly the result immediately follows from Theorem 3.2. g

Theorem 3.5. Let (X, M, *) be a fuzzy metric space with t xt =t for all t € [0,1].
Let AAB: X — X and S,T : X — CB(X) be single valued and multi valued
mappings respectively such that {A,S} and {B,T} are owc. If there exist g € (0,1)
such that

oy (Sz, Ty, qt) > aM(Azx, By,t) + fmin (M(Ax, By,t),H(Ax, Sx,t), H(By, Ty, t))

(3.5) + ymin (M (Az, By,t), H(Az,Ty,t), H(By, Sz,t))}
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forallz,y € X andt >0, where a, 3,7 >0 and (o« +F+~) =1. Then A, B, S and
T have a unique common fized point.

Proof. Since the pairs {A, S} and {B, T} are owc, therefore, there exist two elements
u,v € X such that Au € Su, ASu C SAu and Bv € Tv, BTv C T Bv.

First we prove that Au = Buv.

As Au € Su so AAu C ASu € SAu, Bv € Tv so BBv C BTv C TBv and hence
M (A%u, B*v,t) > dp(SAu, TBo,t) and if 67 (SAu, TBv,t) < 1. Using (3.5) for
x = Au, y= Bv

5 (SAu, TBu, qt) > aM(AAu, BBv,t) + fmin (M (AAu, BBv,t), H(Au, SAu, t),
H(BBv,TBv,t)) + ymin (M (AAu, BBu,t), H(A?u, T Bv, t),
H(BBv, SAu,t))}
> aM(AAu, BBv,t) + S min (M(AAu7 BBuw,t), M(A%u, SAu,t),
M (BBv,TBv,t)) +vmin (M(AAu, BBv,t), M(A®u, TBv,t),
M (BBuv, SAu,t))}
> aM(A%u, B?v,t) + fmin (M(AQu, B?v,t),1, 1)
+ v min (M (A%u, B?v,t), M(A*u, TBv,t), M(BBv, SAu,t))}
> adpy (SAu, TBv,t) + S min ((5M(SAu7 TBuv,t),1, 1)
+ ymin (0a(SAu, TBu,t), 6 (SAu, TBv,t), 0 (SAu, TBo,t))}
= (a+ B+ v)0m(SAu, TBu,t),
a contradiction as a + 0 4+ v = 1. Hence Au = Bv.
Also, M (A?u, Bu,t) > 631 (SAu, Tu, t)
M (A?u, Tu,t) > 0p(SAu, Tu,t).

Now we claim that Au = u. If not, then 8y, (SAu, Tu,t) < 1.
Considering (3.5) for Au =2z, y =u

Sm(SAu, Tu, qt) > aM(AAu, Bu,t) + Bmin (M (AAu, Bu,t), H(A*u, SAu,t),

H(Bu,Tu,t)) + ymin (M (AAu, Bu,t), H(A*u,Tu,t),
H(Bu,SAu,t))}

> aM(AAu, Bu,t) + S min (M(AAU7 Bu,t), M(A%*u, SAu,t),
M (Bu, Tu, t)) + v min (M(AAu, Bu,t), M(A?u, Tu,t),
M (Bu, SAu, t))}

> abp (SAu, Tu,t) + Smin (6 (SAu, Tu,t),1,1)

+ ~ min (6M(5Au, Tu,t), 00 (SAu, Tu,t), 00 (SAu, Tu, t))}

=(a+ B+ 7)0pm(SAu, Tu,t),

which is again a contradiction as (o + 8+ ) = 1 and hence Au = wu.
Similarly, we can get Bv = v.
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Thus A, B, S and T have a common fixed point.
For uniqueness let uequ’ be another fixed point of A, B, S and T, then (3.5) gives

(5M(Su,Tul, qt) > aM (Au, Bu/7t)
+ S min (M(Au, Bul, t), H(Au, Su,t), H(Bu/7 Tu/,t))
+ ymin (M (Au, Bu, t), H(Au, T, t), H(Bul,Su, t)}
> aM(Au, Bu ,t)
+ Bmin (M (Au, Bu/, t), M(Au, Su,t), M(Bu/, T, t))
-+ v min (M(Au, Bul, t), (Au, Tul, t), M(Bu/ , Su, t))}
> aéM(Su,Tu/,t) + G min (5M(Su,Tul,t), 1,1)
+ ~min (5M(Su,Tul,t),5M(Su,Tu/,t), 6M(Su,Tul,t))}
= (a4 B+ 7)0n(Su,Tu',t), a contradiction as (a + 4+ ) = 1.

Hence Su = Tw'. i.e., u = v/. Thus, A, B,S and T have a unique common fixed
point. O
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