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Abstract. In this paper, a common fixed point theorem is proved by
using the idea of fuzzy c-distance in fuzzy cone metric space. This theorem
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1. Introduction

In last few years different types of generalized metric spaces have been developed
by different authors in different approach. Some generalized metric spaces are D-
metric space [7], Cone metric space [13] etc. The idea of cone metric space was
introduced by H.Long-Guang et al.[13]. The definition of cone normed linear space
is introduced by T.K.Samanta et al.[15] and M.Eshaghi Gordji et al. [8]. In earlier
papers [2, 3], the author introduced the idea of fuzzy cone metric space as well as
fuzzy cone normed linear space and studied some basic results. The study of common
fixed points of mappings satisfying certain contractive conditions is now a vigorous
research activity. Different authors developed more results regarding common fixed
point theorem by using different types of contractive conditions for noncommuting
mappings in metric spaces as well as in cone metric spaces ( for references please
see [1, 5, 6, 10, 11]). Recently Shenghua Wang et al. [16] have been developed a
distance called c-distance on a cone metric space and prove a new common fixed
point theorem by using this concept.

In this paper, following the idea of c-distance on a metric space [16], an idea of
fuzzy c-distance in fuzzy cone metric space is introduced in [4] and by using this
concept, one common fixed point theorem is established in such space.There is an
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advantage to use fuzzy c-distance to establish common fixed point theorem, since it
is not required that contraction mapping be weakly compatible.

The organization of the paper is as follows:
Section 1, comprises some preliminary results which are used in this paper.
In Section 2, some properties of fuzzy c-distance are studied. One common fixed
point theorem is established in Section 3.

2. Preliminaries

A fuzzy number is a mapping x : R → [0 , 1] over the set R of all reals.
A fuzzy number x is convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r.
If there exists t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 < α ≤
1, α-level set of an upper semi continuous convex normal fuzzy number ( denoted by
[η]α) is a closed interval [aα , bα], where aα = −∞ and bα = +∞ are admissible.
When aα = −∞, for instance, then [aα , bα] means the interval (−∞ , bα]. Similar
is the case when bα = +∞.
A fuzzy number x is called non-negative if x(t) = 0, ∀t < 0.
Kaleva ( Felbin ) denoted the set of all convex, normal, upper semicontinuous fuzzy
real numbers by E ( R(I)) and the set of all non-negative, convex, normal, upper
semicontinuous fuzzy real numbers by G(R∗(I)).

A partial ordering ” ¹ ” in E is defined by η ¹ δ if and only if a1
α ≤ a2

α and
b1
α ≤ b2

α for all α ∈ (0 , 1] where [η]α = [a1
α , b1

α] and [δ]α = [a2
α , b2

α]. The
strict inequality in E is defined by η ≺ δ if and only if a1

α < a2
α and b1

α < b2
α for each

α ∈ (0 , 1].
Fuzzy real number 0̄ is defined as 0̄(t) = 1 if t = 0 and 0̄(t) = 0 otherwise.
According to Mizumoto and Tanaka [14] , the arithmetic operations ⊕, ª on

E × E are defined by
(x⊕ y)(t) = Sups∈Rmin {x(s) , y(t− s)}, t ∈ R
(xª y)(t) = Sups∈Rmin {x(s) , y(s− t)}, t ∈ R

Proposition 2.1 ([14]). Let η , δ ∈ E(R(I)) and [η]α = [a1
α, b1

α], [δ]α = [a2
α, b2

α], α ∈
(0, 1]. Then

[η
⊕

δ]α = [a1
α + a2

α , b1
α + b2

α]
[η ª δ]α = [a1

α − b2
α , b1

α − a2
α]

[η ¯ δ]α = [a1
αa2

α , b1
αb2

α]

Definition 2.2 ([12]). A sequence {ηn} in E is said to be convergent and converges
to η denoted by lim

n→∞
ηn = η if lim

n→∞
an

α = aα and lim
n→∞

bn
α = bα where [ηn]α =

[an
α, bn

α] and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.3 ([12]). If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).

Note 2.4 ([12]). For any scalar t, the fuzzy real number tη is defined as tη(s) = 0
if t=0 otherwise tη(s) = η( s

t ).

Definition of fuzzy norm on a linear space as introduced by C. Felbin is given
below.

Definition 2.5 ([9]). Let X be a vector space over R.
Let || || : X → R∗(I) and let the mappings
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L,U : [0 , 1] × [0 , 1] → [0 , 1] be symmetric, nondecreasing in both arguments
and satisfy
L(0 , 0) = 0 and U(1 , 1) = 1.
Write
[||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X, x 6= 0,
there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ;
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s + t ≤ ||x + y||11,

||x + y||(s + t) ≥ L(||x||(s) , ||y||(t)),
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s + t ≥ ||x + y||11,

||x + y||(s + t) ≤ U(||x||(s) , ||y||(t))
Remark 2.6 ([9]). Felbin proved that,
if L =

∧
(Min) and U =

∨
(Max) then the triangle inequality (iii) in the Definition

1.3 is equivalent to
||x + y|| ¹ ||x|| ⊕ ||y||.

Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1]. In that case we
simply denote (X , || ||).
Definition 2.7 ([2]). Let (E, || ||) be a fuzzy real Banach space ( Felben sense )
where || || : E → R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 2.8 ([2]). A subset of F of E∗(I) is said to be fuzzy closed if for any
sequence {ηn} such that lim

n→∞
ηn = η implies η ∈ F.

Definition 2.9 ([2]). A subset P of E∗(I) is called a fuzzy cone if
(i) P is fuzzy closed, nonempty and P 6= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P ;
(iii) η ∈ P and −η ∈ P ⇒ η = 0̄.
Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤ with respect to P by

η ≤ δ iff δ ª η ∈ P and η < δ indicates that η ≤ δ but η 6= δ while η ¿ δ will stand
for δ ª η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
η, δ ∈ E∗(I),
with 0̄ ≤ η ≤ δ implies η ¹ Kδ. The least positive number satisfying above is called
the normal constant of P.
The fuzzy cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is if {ηn} is a sequence such that η1 ≤ η2 ≤ ........ ≤
ηn ≤ .... ≤ η for some η ∈ E∗(I), then there is δ ∈ E∗(I) such that ηn → δ as
n →∞.
Equivalently, the fuzzy cone P is regular if every decreasing sequence which is

883



T. Bag/Ann. Fuzzy Math. Inform. 9 (2015), No. 6, 881–890

bounded below is convergent. It is clear that a regular fuzzy cone is a normal
fuzzy cone.

In the following we always assume that E is a fuzzy real Banach ( Felbin sense )
space, P is a fuzzy cone in E with IntP 6= φ and ≤ is a partial ordering with respect
to P.

Definition 2.10 ([2]). Let X be a nonempty set. Suppose the mapping
d : X ×X → E∗(I) satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;
(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;
(Fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Definition 2.11 ([2]). Let (X, d) be a fuzzy cone metric space. Let{xn} be a
sequence in X and x ∈ X. If for every c ∈ E with 0̄ ¿ ||c|| there is a positive integer
N such that for all n > N, d(xn, x) ¿ ||c||, then {xn} is said to be convergent and
converges to x and x is called the limit of {xn}. We denote it by lim

n→∞
xn = x.

Lemma 2.12 ([2]). Let (X, d) be a fuzzy cone metric space and P be a normal fuzzy
cone with normal constant K. Let{xn} be a sequence in X. If {xn} is convergent
then its limit is unique.

Definition 2.13 ([2]). Let (X, d) be a fuzzy cone metric space and {xn} be a
sequence in X. If for any c ∈ E with 0̄ << ||c||, there exists a natural number N
such that ∀m, n > N, d(xn, xm) ¿ ||c||, then {xn} is called a Cauchy sequence in
X.

Definition 2.14 ([2]). Let (X, d) be a fuzzy cone metric space. If every Cauchy
sequence is convergent in X, then X is called a complete fuzzy cone metric space.

Definition 2.15 ([1]). Let f and g be self mappings defined on a set X. If w =
f(x) = g(x) for some x ∈ X, then x is called a coincidence point of f and g and w
is called a point of coincidence of f and g.

Proposition 2.16 ([1]). Let f and g be weakly compatible self-mappings of a set X.
If f and g have a unique point of coincidence w = f(x) = g(x), then w is the unique
common fixed point of f and g.

Definition 2.17 ([4]). Let (X , d) be a fuzzy cone metric space. Then the mapping
Q : X × X → E∗(I) is called a c-fuzzy distance on X if the following conditions
hold:
(Q1) 0̄ ≤ Q(x, y) ∀x, y ∈ X;
(Q2) Q(x, z) ≤ Q(x, y)⊕Q(y, z) ∀x, y, z ∈ X;
(Q3) ∀x ∈ X, if Q(x, yn) ≤ η for some η = η(x) ∈ P, n ≥ 1,
then Q(x, y) ≤ η whenever {yn} is a sequence in X converging to a point y ∈ X;
(Q4) ∀c ∈ E with 0̄ ¿ ||c||, ∃e ∈ E with 0̄ ¿ ||e|| such that Q(z, x) ¿ ||e|| and
Q(z, y) ¿ ||e|| imply d(x, y) ¿ ||c||.

3. Some results of fuzzy c-distance on fuzzy cone metric space

Observation 3.1. If Q be a fuzzy c-distance on a fuzzy cone metric space (X, d)
then
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(A) Q(x, y) = Q(y, x) does not necessarily hold ∀x, y ∈ X.
(B) Q(x, y) = 0̄ is not necessarily equivalent to x = y ∀x, y ∈ X.

Proof. To justify the above results we consider the following Example. ¤
Example 3.2. Let E=R ( set of real numbers ).
Define || || : E → R∗(I) by

||x||(t) =





|x|
t if t ≥ |x|, x 6= θ
1 if t = |x| = 0
0 otherwise

Then (E, || ||) is a complete fuzzy normed linear space ( Felbin’s sense )
where [||x||]α = [|x|, |x|α ] ∀α ∈ (0, 1] ( please see Example 3.4[2] ).
Let X = [0,∞) and P = {x ∈ E : ||x|| º 0̄}.
Define a mapping d : X ×X → E∗(I) by d(x, y) = ||x− y|| ∀x, y ∈ X.
If we chose the ordering ≤ of E w.r.t. P as ¹ then (X, d) is a fuzzy cone metric
space with normal cone P.
Now define a mapping Q : X ×X → E∗(I) by Q(x, y) = ||y|| ∀x, y ∈ X. Then Q is
a fuzzy c-distance on (X, d).
In fact, (Q1)-(Q2) are obvious. Let {yn} be a sequence in X converging to a point
y ∈ X.
We have, x ∈ X, Q(x, yn) ¹ η(x), η ∈ P implies ||yn|| ¹ η(x).
Now ||y|| ¹ ||y − yn|| ⊕ ||yn||
⇒ ||y||iα ≤ ||y − yn||iα + ||yn||iα for i = 1, 2 and α ∈ (0, 1]
⇒ ||y||iα ≤ lim

n→∞
||yn||iα ≤ ηi

α for i = 1, 2 and α ∈ (0, 1]

⇒ ||y|| ¹ η
⇒ Q(x, y) ¹ η ∀x ∈ X.
So (Q3) holds.
Let ||e|| Â 0̄ be given where e ∈ E. Set ||c|| = ||e||

2 .
If Q(z, x) = ||x|| ≺ ||c|| and Q(z, y) = ||y|| ≺ ||c|| then
d(x, y) = ||x− y|| ¹ ||x|| ⊕ ||y|| ≺ 2||c|| = ||e||.
Thus (Q4) holds and hence Q is a fuzzy c-distance.
Choose x0, y0 ∈ X where x0 6= y0. So |x0| 6= |y0| and hence ||x0|| 6= ||y0||.
Now, Q(x, y0) = ||y0|| ∀x ∈ X. So in particular Q(x0, y0) = ||y0||.
Similarly Q(y0, x0) = ||x0||. So Q(x0, y0) 6= Q(y0, x0).
Since x0, y0 ∈ X are arbitrary, thus Q(x, y) = Q(y, x) does necessarily hold ∀x, y ∈
X.
So (A) is proved.
Again Q(x, y) = 0̄ = ||θ|| ∀x, y ∈ X
⇒ y = θ ∀x ∈ X
⇒ x 6= y ∀x ∈ X(x 6= θ) (3.2.1).
Next suppose x0 = y0 ∈ X.
If x0 = y0 = θ then Q(x0, y0) = ||y0|| = 0̄.
If x0 = y0 6= θ then Q(x0, y0) = ||y0|| 6= 0̄.
Thus x = y ∀x, y ∈ X does not imply Q(x, y) = 0̄ (3.2.2).
From (3.2.1) and (3.2.2) (B) is proved.
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Proposition 3.3. Let (X, d,≤′) be a fuzzy cone metric space and Q be a fuzzy c-
distance on X and {xn} be a sequence in X. Suppose that {||un||} is a sequence in
P ( un ∈ E) converging to 0̄. If Q(xn, xm) ≤ ||un|| ∀m > n, then {xn} is a Cauchy
sequence in X.

Proof. Let c ∈ E with 0̄ ¿ ||c||.
Then ∃ a positive δ such that ||c|| ª ||x|| ∈ intP for any x ∈ E with ||x|| ≺ δ̄.
For, 0̄ ¿ ||c|| ⇒ ||c|| ª 0̄ = ||c|| ∈ intP.
Now, ||x|| = ||c|| ª (||c|| ª ||x||) ≺ δ̄
⇒ ||c|| ª ||x|| ∈ intP.
Since {||un||} to 0̄, there exists a positive integer N such that ||un|| ≺ δ̄ ∀n ≥ N
⇒ ||un|| = ||c|| ª (||c|| ª ||un||) ≺ δ̄ ∀n ≥ N
⇒ ||c|| ª ||un|| ∈ intP ∀n ≥ N
⇒ ||un|| ¿ ||c|| ∀n ≥ N.
By the hypothesis, Q(xn, xm) ≤ ||un|| ¿ ||c|| ∀m > n with n ≥ N.
This implies that Q(xn, xn+1) ≤ ||un|| ¿ ||c|| and Q(xn, xm+1) ≤ ||un|| ¿ ||c|| ∀m >
n with n ≥ N.
From (Q4), for e ∈ E with ||e|| = ||c||, it follows that
d(xn+1, xm+1) ¿ ||c|| ∀m > n with n ≥ N.
This implies that {xn} is a Cauchy sequence in X. ¤

4. Common fixed point theorem in fuzzy cone metric spaces

In this Section a common fixed point theorem is proved by using the idea of fuzzy
c-distance in fuzzy cone metric space.

Theorem 4.1. Let (X, d,≤′) be a fuzzy cone metric space and P be a fuzzy normal
cone with normal constant K. Let Q : X × X → E∗(I) be a fuzzy c-distance on
X and S, T : X → X be two mappings such that T (X) ⊂ S(X) and S(X) be a
complete subspace of X. Suppose that there exist mappings β, γ, δ, µ : X → [0, 1] such
that the following conditions hold:
1. β(Tx) ≤ β(Sx), γ(Tx) ≤ γ(Sx), δ(Tx) ≤ δ(Sx) and µ(Tx) ≤ µ(Sx) ∀x ∈ X;
2. (β + γ + δ + µ)(x) < 1 ∀x ∈ X;
3. Q(Tx, Ty) ≤′ β(Sx)Q(Sx, Sy)⊕ γ(Sx)Q(Sx, Ty)⊕ δ(Sx)Q(Sx, Tx)

⊕ µ(Sx)Q(Sy, Ty) ∀x, y ∈ X;
4. For some α0 ∈ (0, 1],
inf{Q1

α0
(Tx, y) + Q1

α0
(Sx, y) + Q1

α0
(Sx, Tx) : x ∈ X} > 0, ∀y ∈ X with y 6= Ty or

y 6= Sy. Then S and T have a common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point. Since T (X) ⊂ S(X), ∃x1 ∈ X such that
Tx0 = Sx1.
By induction, we construct a sequence {xn} in X such that Sx0 = Txn−1, for n ≥ 1
From (1) and (3) we have,
Q(Sxn, Sxn+1) = Q(Txn−1, Txn)
≤′ β(Sxn−1)Q(Sxn−1, Sxn)⊕γ(Sxn−1)Q(Sxn−1, Txn)⊕δ(Sxn−1)Q(Sxn−1, Txn−1)
⊕µ(Sxn−1)Q(Sxn, Txn)
= β(Txn−2)Q(Sxn−1, Sxn)⊕γ(Txn−2)Q(Sxn−1, Sxn+1)⊕δ(Txn−2)Q(Sxn−1, Sxn)
⊕µ(Txn−2)Q(Sxn, Sxn+1)
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≤′ β(Sxn−2)Q(Sxn−1, Sxn)⊕γ(Sxn−2)Q(Sxn−1, Sxn+1)⊕δ(Sxn−2)Q(Sxn−1, Sxn)
⊕µ(Sxn−2)Q(Sxn, Sxn+1)
....................................................................................
i.e. Q(Sxn, Sxn+1) ≤′ β(Sx0)Q(Sxn−1, Sxn)⊕ γ(Sx0)Q(Sxn−1, Sxn+1)
⊕δ(Sx0)Q(Sxn−1, Sxn) ⊕µ(Sx0)Q(Sxn, Sxn+1)
≤′ β(Sx0)Q(Sxn−1, Sxn)⊕ γ(Sx0)[Q(Sxn−1, Sxn)⊕Q(Sxn, Sxn+1)]
⊕δ(Sx0)Q(Sxn−1, Sxn)⊕ µ(Sx0)Q(Sxn, Sxn+1)
= [β(Sx0) + γ(Sx0) + δ(Sx0)]Q(Sxn−1, Sxn)⊕ [γ(Sx0) + µ(Sx0)]Q(Sxn, Sxn+1)
⇒ Q(Sxn, Sxn+1) ≤′ β(Sx0)+γ(Sx0)+δ(Sx0)

1−γ(Sx0)−µ(Sx0)
Q(Sxn−1, Sxn) ∀n ≥ 1 (4.1.1).

Let k = β(Sx0)+γ(Sx0)+δ(Sx0)
1−γ(Sx0)−µ(Sx0)

< 1 by (2).
By repeating (4.1.1) we get,
Q(Sxn, Sxn+1) ≤′ knQ(Sx0, Sx1) (4.1.2).
Now for m > n ≥ 1, from (4.1.2) we have,
Q(Sxn, Sxm) ≤′ Q(Sxn, Sxn+1)⊕Q(Sxn+1, Sxn+2)⊕ .....⊕Q(Sxm−1, Sxm)
≤′ knQ(Sx0, Sx1)⊕ kn+1Q(Sx0, Sx1)⊕ .....⊕ km−1Q(Sx0, Sx1)
= km

1−kQ(Sx0, Sx1)
Q(Sxn, Sxm) ≤′ km

1−kQ(Sx0, Sx1) (4.1.3).
Since P is a normal cone with normal constant K, we have from (4.1.3),
Q(Sxn, Sxm) ¹ K km

1−kQ(Sx0, Sx1)
⇒ Qi

α(Sxn, Sxm) ¹ K km

1−kQi
α(Sx0, Sx1), α ∈ (0, 1], i = 1, 2

⇒ lim
m,n→∞

Qi
α(Sxn, Sxm) = 0 α ∈ (0, 1], i = 1, 2

⇒ lim
m,n→∞

Q(Sxn, Sxm) = 0̄.

Thus {Sxn} is a Cauchy sequence in S(X). Since S(X) is complete, ∃ a point z ∈ S(X)
such that
Sxn → z as n →∞.
Again from (3.1.4) and (Q3), we have
Q(Sxn, z) ≤′ kn

1−kQ(Sx0, Sx1) ∀n ≥ 1.
Since P is a normal cone with normal constant K we have,
Q(Sxn, z) ¹ K( kn

1−k )Q(Sx0, Sx1) ∀n ≥ 1 (4.1.4)
⇒ Qi

α(Sxn, z) ≤ K( kn

1−k )Qi
α(Sx0, Sx1) ∀n ≥ 1, α ∈ (0, 1], i = 1, 2. (4.1.5)

If possible that Tz 6= z or Sz 6= z.
Then by hypothesis and form (4.1.4) and (4.1.5) we have for some α0 ∈ (0, 1],
0 < Inf{Q1

α0
(Tx, z) + Q1

α0
(Sx, z) + Q1

α0
(Sx, Tx) : x ∈ X}

≤ Inf{Q1
α0

(Txn, z) + Q1
α0

(Sxn, z) + Q1
α0

(Sxn, Txn) : n ≥ 1}
= Inf{Q1

α0
(Sxn+1, z) + Q1

α0
(Sxn, z) + Q1

α0
(Sxn, Sxn+1) : n ≥ 1}

≤ Inf{K(kn+1

1−k )Q1
α0

(Sx0, Sx1) + K( kn

1−k )Q1
α0

(Sx0, Sx1) + K( kn

1−k )Q1
α0

(Sx0, Sx1) :
n ≥ 1}
= 0 which is a contradiction. Thus z = Sz = Tz.

Theorem 4.1 is justified by the following Example. ¤
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Example 4.2. Let E = R and || || : E → R∗(I) defined by

||x||(t) =





|x|
t if t ≥ |x|, x 6= θ
1 if t = |x| = 0
0 otherwise

Then [||x||]α = [|x|, |x|α ] ∀α ∈ (0, 1].
It can be verified that || || satisfies all the conditions in Definition 1.5 and hence
(E, || ||) is a fuzzy normed linear space ( Felbin’s sense ).
If we choose ¹ as the ordering in E and define P = {η ∈ E∗(I) : η º 0̄} then P is a
cone on E.
Again since for x, y ∈ E, ||x|| ¹ ||y|| ⇔ |x| ≤ |y|, thus P is a normal cone with
normal constant 1.
Take X = [0, 1) and define d : X×X → E∗(I) by d(x, y) = ||x−y|| ∀x, y ∈ X. Then
d is a fuzzy cone metric and (X, d) is a fuzzy cone metric space.
Define Q : X × X → E∗(I) by Q(x, y) = 2d(x, y) ∀x, y ∈ X. Then Q is a c-fuzzy
distance.
(Q1) and (Q2) are obvious.
For (Q3), let {yn} be a sequence in X such that yn → y ∈ X.
Now for x ∈ X, n ≥ 1,
Q(x, yn) ¹ ||u|| for some ||u|| = ||u(x)|| ∈ P
⇒ 2d(x, yn) ¹ ||u||
⇒ 2di

α(x, yn) ≤ ||u||iα for α ∈ (0, 1], i = 1, 2
⇒ 2di

α(x, y) ≤ ||u||iα for α ∈ (0, 1], i = 1, 2
⇒ 2d(x, y) ¹ ||u||
⇒ Q(x, y) ¹ ||u||
So (Q3) holds.
(Q4). Let c ∈ E with 0̄ ¿ ||c|| and put ||e|| = ||c||.
Now for Q(z, x) ¿ ||e|| and Q(z, y) ¿ ||e|| we have,
d(x, y) ¹ d(z, x)⊕ d(z, y) = 1

2Q(z, x)⊕ 1
2Q(z, y) ¿ ||e||

2 ⊕ ||e||
2 = ||e|| = ||c||.

Thus d(x, y) ¿ ||c||. Hence Q is a c-fuzzy distance.
Let S, T : X → X defined by S(x) = x and T (x) = x2

32 ∀x ∈ X.
Take mappings β, γ, δ, µ : X → [0, 1] by
β(x) = γ(x) = x+1

32 , δ(x) = 2x+3
32 and µ(x) = 3x+2

32 ∀x ∈ X.
Now,
(1) β(Tx) = γ(Tx) = 1

32 (x2

32 + 1) ≤ 1
32 (x2 + 1) ≤ x+1

32 = β(Sx) = γ(Sx) ∀x ∈ X.

(2) δ(Tx) = δ(x2

32 ) = 2 x2
32 +3

32 ≤ 1
32 (2x2 + 3) ≤ 2x+3

32 = δ(Sx).

(3) µ(Tx) = µ(x2

32 ) = 1
32 ( 3 x2

32 +2

32 ) ≤ 3x2+2
32 ≤ 3x+2

32 = µ(Sx) ∀x ∈ X.

(4) (β + 2γ + δ + µ)(x) = x+1
32 + 2(x+1)

32 + 2x+3
32 + 3x+2

32 = 8x+8
32 = x+1

4 .

So (β + 2γ + δ + µ)(x) = x+1
4 < 1 ∀x ∈ X.

(5) Q1
α(Tx, Ty) = Q1

α(x2

32 , y2

32 ) = 2d1
α(x2

32 , y2

32 ) = 2|x2

32− y2

32 | = 1
16 |x2−y2| = (x+y)

4
|x−y|

4 .

i.e. Q1
α(Tx, Ty) ≤ (x+1)

4
|x−y|

4 .

Similarly Q2
α(Tx, Ty) ≤ 1

α
(x+1)

4
|x−y|

4 ∀x ∈ X, α ∈ (0, 1].
Now,
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Q1
α(Sx, Sy) = 2d1

α(Sx, Sy) = 2|x−y| ≥ |x−y|
4 (4.2.1)

Q1
α(Sx, Ty) = 2d1

α(Sx, Ty) = 2|x− y2

32 |
≥ 2|x− y

32 | ≥ 2|x−y| = 8 |x−y|
4 ≥ |x−y|

4 (4.2.2)
Q1

α(Sx, Tx) = 2d1
α(Sx, Tx) = 2|x− x2

32 | ≥ 2|x− x
32 | = 2.31

32 |x| ≥ |x−y|
4 (4.2.3)

Q1
α(Sy, Ty) = 2d1

α(Sy, Ty) = 2|y − y2

32 | ≥ 2|y − y
32 | ≥ |y| ≥ |x−y|

4 (4.2.4)
By using (4), (5), (4.2.1), (4.2.2), (4.2.3) and (4.2.4) we get,
Q1

α(Tx, Ty) ≤ β(x)Q1
α(Sx, Sy) + γ(x)Q1

α(Sx, Ty)
+δ(x)Q1

α(Sx, Tx) + µ(x)Q1
α(Sy, Ty) ∀x, y ∈ X, α ∈ (0, 1] (4.2.5).

Similarly we have,
Q2

α(Tx, Ty) ≤ β(x)Q2
α(Sx, Sy) + γ(x)Q2

α(Sx, Ty)
+δ(x)Q2

α(Sx, Tx)+µ(x)Q2
α(Sy, Ty) ∀x, y ∈ X, α ∈ (0, 1] (4.2.6).

From (4.2.5) and (4.2.6) we get,
Q(Tx, Ty) ¹ β(x)Q(Sx, Sy)⊕γ(x)Q(Sx, Ty)⊕δ(x)Q(Sx, Tx)⊕µ(x)Q(Sy, Ty) ∀x, y ∈
X.
Again for α ∈ (0, 1] and for any y 6= Ty ( i.e. y > 0) we get,
Inf{Q1

α(Tx, y) + Q1
α(Sx, y) + Q1

α(Sx, Tx) : x ∈ X}
= Inf{2|x2

32 − y|+ 2|x− y|+ 2|x− x2

32 | : x ∈ X}
= Inf{4|y − y2

32 |} > 0.
Thus all the conditions of the Theorem 4.1 are satisfied. So we can conclude that S
and T have a common fixed point. This common fixed point is x = 0.

5. Conclusion

Following the concept of c-distance in cone metric space introduced by Sheughua
Wang et al., in this paper, an idea of fuzzy c-distance in fuzzy cone metric space
is introduced. By using this concept, common fixed point theorems for contraction
mapping are established in fuzzy cone metric spaces. Generally to establish common
fixed point theorems in cone metric spaces as well as in fuzzy cone metric spaces,
contraction mappings should be weakly compatible. Here fuzzy c-distance is used to
establish common fixed point theorems shown that it is not required that mappings
are weakly compatible. I think that there is a wide scope of research to develop
fixed point results in fuzzy cone metric spaces by using fuzzy c-distance.
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