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Abstract. In this paper, we consider a queuing system with multiple
servers that its interarrival times and service times are presented by random
fuzzy variables. Here a new theorem concerning the average chance of event
”all of k-servers are busy at time t” is proved. We simulate of average
chance by fuzzy simulation method and solve some application examples.
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1. Introduction

Queuing systems with multiple servers are important for analysis of computer
systems and networks. Zheng and Buckley [13] used both fuzzy optimization and
normal simulation methods to solve fuzzy web planning model problems, which are
queuing system problems for designing web servers. Zhang and Phillis [12] consider
the problem of optimal control of queuing systems with heterogeneous servers using
fuzzy logic techniques. The system objective is to assign customers dynamically
to idle servers in order to minimize the average cost of holding customers. Jain,
Maheshwari and Baghel [2] develop queuing model for the performance prediction of
flexible manufacturing systems (FMSs) with a multiple discrete material-handling
devices (MHD). Chen [1] proposed a procedure for constructing the membership
functions of the performance measures in finite-capacity queuing systems with the
arrival rate and service rate being fuzzy numbers. Kreimer [3] studied a real-time
multiserver system with homogeneous servers (such as unmanned air vehicles or
machine controllers) and several nonidentical channels (such as surveillance regions
or assembly lines) working under maximum load regime. Rahmati [11] proposed
a novel multi-objective location model within multi-server queuing framework, in
which facilities behave as M/M/m queues. Yang and Chang [15] investigated the



Behrouz Fathi-Vajargah et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 6, 871–879

F-policy queue using fuzzy parameters, in which the arrival rate, service rate, and
start-up rate are all fuzzy numbers. The F-policy deals with the control of arrivals
in a queuing system, in which the server requires a start-up time before allowing
customers to enter. Yamashiro and Yuasa [14] studied M/M/2 and M/M/3 machine
repair problems in which the number of repairmen changes depending on the number
of failed machines in the system.
Here, we simulate the average chance of event random fuzzy queuing system is busy
at time t when the queuing system has k-servers. We estimate the average chance
of event ”all of k-servers are busy at time t” in which all servers work independently
and interarrival times and service times are random fuzzy variables.

In section 2, we state some concepts of fuzzy set theory, fuzzy variable, random
fuzzy variable. In section 3, we describe a queuing system with multiple servers with
random fuzzy interarrival times and service times and estimate the average chance
of event ”all of k-servers are busy at time t”. In section 4, is considered the fuzzy
simulation method and section 5, provided some application examples.

2. Definitions and preliminaries

Credibility theory introduced by Liu [6] in 2004 and refined by Liu [8] in 2015, is
a branch of mathematics for studying the behavior of fuzzy phenomena. Many peo-
ples studied about credibility theory. In [10] solve the multiple objective minimum
cost fllow problem with fuzzy data using credibility approach. The emphasis in this
section is mainly on credibility measure, credibility space, fuzzy variable, member-
ship function, credibility distribution, expected value, random fuzzy variable and its
expected value, independence, identical distribution.
Let Θ be a nonempty set, and P the power set of Θ (i.e., the largest σ- algebra
over Θ). Each element in P is called an event. In order to present an axiomatic
definition of credibility, it is necessary to assign to each event A a number Cr{A}
which indicates the credibility that A will occur. In order to ensure that the number
Cr{A} has certain mathematical properties which we intuitively expect a credibility
to have, we accept the following four axioms: Axiom 1. (Normality) Cr{Θ} = 1.

Axiom 2. (Monotonicity)Cr{A} ≤ Cr{B} for A ⊂ B.
Axiom 3. (Self-Duality) Cr{A}+ Cr{Ac} = 1 for any event A.
Axiom 4. (Maximality) C{∪iAi} = supi Cr{Ai} for any events {Ai} with

supi Cr{Ai} < 0.5.

Definition 2.1. (Liu and Liu [7]) The set function Cr is called a credibility measure
if it satisfies the normality, monotonicity, self-duality, and maximality axioms. Then
the triplet (Θ, P, Cr) is called a credibility space.
Product credibility measure may be defined in multiple ways. We accept the follow-
ing axiom.

Axiom 5. (Product Credibility Axiom) Let Θk be nonempty sets on which Crk

are credibility measures, k = 1, 2, ..., n, respectively, and Θ = Θ1 × Θ2 × ... × Θn.
Then

(2.1) Cr{(θ1, θ2, ..., θn)} = Cr1{θ1} ∧ Cr2{θ2} ∧ ... ∧ Crn{θn}
872
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for each (θ1, θ2, ..., θn) ∈ Θ.
Let (θk, Pk, Crk), k = 1, 2, ..., n be credibility spaces, Θ = Θ1 × Θ2 × ... × Θn and
Cr1 ∧ Cr2 ∧ ... ∧ Crn. Then (Θ, P, Cr) is called the product credibility space of
(θk, Pk, Crk), k = 1, 2, ..., n.

Definition 2.2. A fuzzy variable is a measurable function from a credibility space
(Θ, P, Cr) to the set of real numbers.

Definition 2.3. Let ξ be a fuzzy variable defined on the credibility space (Θ, P, Cr).
Then its membership function is derived from the credibility measure by

(2.2) µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ <.

Definition 2.4. Let ξ be a fuzzy variable defined on the credibility space (Θ, P (Θ),
Cr), and α ∈ (0, 1]. Then

(2.3) ξ′α = inf{r|µξ(r) ≥ α}, ξ′′α = sup{r|µξ(r) ≥ α},
are called α-pessimistic value and α-optimistic value of ξ, respectively.

There are many ways to define an expected value operator for fuzzy variables.
The most general definition of expected value operator of fuzzy variable was given by
Liu and Liu [4]. This definition is applicable not only to continuous fuzzy variables
but also for discrete ones.

Definition 2.5. Let ξ be a fuzzy variable. Then the expected value of ξ is defined
by

(2.4) E[ξ] =
∫ ∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}dr,

provided that at least one of the above two integrals is finite.

In particular, if the fuzzy variable ξ is positive (i.e. Cr{ξ ≤ 0} = 0), then

(2.5) E[ξ] =
∫ ∞

0

Cr{ξ ≥ r}dr.

Proposition 2.6. Let ξ be a fuzzy variable defined on the credibility space (Θ, P (Θ),
Cr). Then we have

(2.6) E[ξ] =
1
2

∫ 1

0

[ξ′α + ξ′′α]dα.

Proof. Let ξ is normalized, i.e., there exists a real number r0 such that µξ(r0) = 1
and if r0 > 0, then the equation (2.5) can be rewritten as

E[ξ] =
1
2
[r0 +

∫ +∞

r0

Cr(ξ ≥ r)dr + r0 −
∫ r0

−∞
Cr(ξ ≤ r)dr]

=
1
2

∫ 1

0

(ξ′α + ξ′′α)dα,

the same result can be obtained when r0 < 0. �

Definition 2.7. A random fuzzy variable is a function from the credibility space
(Θ, P, Cr) to the set of random variables.
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Definition 2.8. The expected value of a random fuzzy variable ξ is defined by
(2.7)

E[ξ] =
∫ ∞

0

Cr{θ ∈ Θ|E[ξ(θ)] ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r}Cr{θ ∈ Θ|E[ξ(θ)] ≤ r}dr,

Proposition 2.9. Let ξ be a random fuzzy variable defined on (Θ, P, Cr). Then,
for any θ ∈ Θ, E[ξ(θ)] is a fuzzy variable provided that E[ξ(θ)] is finite for fixed
θ ∈ Θ.

Definition 2.10. The random fuzzy variables ξ and η are said to be identically
distributed if

(2.8) sup
Cr{A}≥α

= inf
θ∈A

{Pr{ξ(θ) ∈ B}} = sup
Cr{A}≥α

= inf
θ∈A

{Pr{η(θ) ∈ B}}

for any α ∈ (0, 1] and Borel set B of real numbers.

Definition 2.11. The random fuzzy variables ξi, i = 1, ..., n are said to be indepen-
dent if
(1) ξi(θ), i = 1, ..., n are independent random variables for each θ ∈ Θ.
(2) E[ξi(.)], i = 1, ..., n are independent fuzzy variables.

Definition 2.12. Let ξ be a random fuzzy variable on the possibility space (Θ,
P (Θ), Pos). Then the average chance of random fuzzy event ξ ≤ 0 is defined as

(2.9) Ch{ξ ≤ 0} =
∫ 1

0

Cr{θ ∈ Θ|Pr{ξ(θ) ≤ 0} ≥ p}dp.

3. Random fuzzy queuing system with k-servers

Consider a stochastic queuing system with k-server, RF/RF/k/FCFS/∞/∞,
where RF denotes that interarrival times and service times are random fuzzy vari-
ables, the queue discipline is first come, first served (FCFS) and the size of source
population is infinite. The interarrival times of customers arriving at the server
are independent and identically distributed random fuzzy variables, ξi ∼ EXP (λi),
where λi are fuzzy variables defined on the credibility space (Θi, P (Θi), Cri), i =
1, 2, ..., and the service times are independent and identically distributed random
fuzzy variables, ηi ∼ EXP (µi), where µi are fuzzy variables defined on credibility
space (Γi, P (Γi), Cr′i), i = 1, 2, ... ξi and ηi are independent.

Here, we discuss on the busy period and idle period. The busy period and idle
period are one of the most important of problems is mentioned, nowadays. We have
obtained the average chance of event ”random fuzzy queuing system is busy at time
t” when the queuing system has k-servers. In [9] is consider this problem when we
have a queuing system with one server.

Set P(t)=Pr{all of k−servers are busy at time t}, and Pi(t)=Pr{the ith server
is busy at time t}, then P(t) and Pi(t) are fuzzy variable and P ′α0

and P ′′α0
are the

α0-pessimistic values and the α0-optimistic values P (t) and E[λ
µ ] < 1. The following

lemma proved in [9].

Lemma 3.1. Assume that, in a random fuzzy queuing system RF/ RF/ k/ FCFS/
∞/ ∞, the fuzzy variable λ has the same α0-pessimistic values and the α0-optimistic
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values λi and the fuzzy variable µ has the same α0-pessimistic values and the α0-
optimistic values µi and are continuous at the point α0, α0 ∈ [0, 1]. Also, let k-servers
work independently, then we have

(3.1) lim
t→∞

P ′iα(t) =
λ′α
µ′′α

,

and

(3.2) lim
t→∞

P ′′iα(t) =
λ′′α
µ′α

.

Theorem 3.2. Assume that, in a random fuzzy queuing system RF/ RF/ k/
FCFS/ K/ ∞, the distributions ξi(θ) and ηi(γ) are nonlattice, and fuzzy variables
λi and µi, i = 1, 2..., are continuous at point α, α ∈ (0, 1]. Also, let k-servers work
independently, then we have

(3.3) lim
t→∞

Ch{all of k − server are busy at time t} = (E[
λ

µ
])k.

Proof. From Definition 2.10 and Proposition 2.6, it follows for ith server, i =
1, 2, ..., k, that

Ch{the ith server is busy at time t}

=
∫ 1

0

Cr{θ ∈ Θ|Pi(t)(θ) ≥ p}dp

=
∫ ∞

0

Cr{θ ∈ Θ|Pi(t)(θ) ≥ p}dp

E[Pi(t)] =
1
2

∫ 1

0

(P ′iα(t) + P ′′iα(t))dp

It follows from the definition of limit that there exist two real numbers t1 and t2
with t1 ≥ 0 and t2 ≥ 0 such that for any t ≥ t1 and t ≥ t2

0 ≤ P ′iα(t) ≤ λ′α
µ′′α

,

0 ≤ P ′′iα(t) ≤ λ′′α
µ′α

.

Therefore, we have for any t ≥ max(t1, t2)

0 ≤ P ′iα(t) + P ′′iα(t) ≤ 2 +
λ′α
µ′′α

+
λ′′α
µ′α

.

Since, E[λ
µ ] is finite, than 2+ λ′

α

µ′′
α

+ λ′′
α

µ′
α

is an integrable function of α. It follows from
Fatou’s lemma that

lim inf
t→∞

∫ 1

0

(P ′iα(t) + P ′′iα(t))dα ≥
∫ 1

0

lim inf
t→∞

(P ′iα(t) + P ′′iα(t))dα,

and

lim sup
t→∞

∫ 1

0

(P ′iα(t) + P ′′iα(t))dα ≤
∫ 1

0

lim sup
t→∞

(P ′iα(t) + P ′′iα(t))dα.
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Since λ′α, λ′′α, µ′α, µ′′α are almost surely continuous at point α, then we have from
Lemma 1,

lim
t→∞

Ch{the ith server is busy at time t}

=
1
2

lim
t→∞

∫ 1

0

(P ′iα(t) + P ′′iα(t))dp =
1
2

∫ 1

0

lim
t→∞

(P ′iα(t) + P ′′iα(t))dp

=
1
2

∫ 1

0

(
λ′α
µ′′α

+
λ′′α
µ′α

)dα

= E[
λ

µ
].

Now, for k servers that work independently and identically distributed, we have

lim
t→∞

Ch{all of k − server are busy at time t}

=
k∏

i=1

E[
λ

µ
] = (E[

λ

µ
])k,

the proof is completed• �

4. Fuzzy simulation approach

In order to evaluate the expected value of a fuzzy variable, Liu and Liu [5] designed
a fuzzy simulation for both discrete and continuous fuzzy variables.
(i) Discrete fuzzy vector: assume that f is a function, and ξ= (ξ1, ..., ξm) is discrete
fuzzy vector whose joint credibility distribution function is defined by

(4.1) µξ(u) =


µ1, u = u1

µ2, u = u2

...
µn, u = un

where µu = min1≤i≤m µ(i)(ui) and u = (u1, ..., um) ∈ <m and µ(i) are credibility
distribution function of ξi for i = 1, 2, ...,m.
Let ai = f(ui). Without losing of generality, we assume that a1 ≤ a2 ≤ ... ≤ an,
then the expected value is given by

(4.2) E[f(ξ)] =
n∑

i=1

aipi,

where

(4.3) pi =
1
2
(∨n

j=iµj − ∨n+1
j=i+1µj) +

1
2
(∨i

j=1µj − ∨i−1
j=0µj),

where (µ0 = µn+1 = 0) for i = 1, 2, ..., n.
(ii) Continuous fuzzy vector: assume that ξ is a continuous fuzzy vector with a
credibility distribution function µ. In this case, we can estimate the expected value
by formula (4.2).
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5. Experiential results

Now, we consider some examples. We present some practical applications of this
model to show that how using fuzzy simulation method is estimated the average
chance.

Example 5.1. Consider a big market with 10 server (k=10). Let the interarrival
times of customer are fuzzy variables with exponential distribution with parameter
λ = (1/2/3) in minutes and service times are fuzzy variables with exponential distri-
bution with parameter µ = (3/4/5) in minutes for 10-server. We want to calculate
the average chance of ”all of 10-server are busy at time t”. By Theorem 3.1, for esti-
mating the E([λ

µ ])k, we use simulation method in section 4. The simulation results
are shown in Table 1 and Figure 1.
Table 1 and Figure 1 show that the average chance of all of 10-servers are busy at
time t after 30000 times is equal 0.0018 and it remains at 0.0018, level. It equals
with real solution.

Number of iterations 100 500 1000 10000 20000 30000
The average chance 0.0012 0.0014 0.0016 0.0017 0.0018 0.0018

Table 1: The average chance of random fuzzy queuing system is busy at time t
with fuzzy simulation method for example 1

Figure 1. The convergence of fuzzy simulation method for exam-
ple 1
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Example 5.2. Let a bank has 5 servers that service to customers. Let the in-
terarrival times of customer are fuzzy variables with exponential distribution with
parameter λ = (0.5/1/1.5) in minutes and service times are fuzzy variables with
exponential distribution with parameter µ = (1/2/3) in minutes for 5-server. We
calculate the average chance of ”all of 5-server are busy at time t” by Theorem 3.1
and estimate the (E[λ

µ ])k. The simulation results are shown in Table 2 and Figure 2.

Number of iterations 100 500 1000 10000 20000 30000
The average chance 0.0463 0.0497 0.0650 0.0677 0.0736 0.0736

Table 2: The average chance of random fuzzy queuing system is busy at time t
with fuzzy simulation method for example 2

Figure 2. The convergence of fuzzy simulation method for exam-
ple 2

Table 2 and Figure 2 show that the proposed modeling leads to the result the average
chance of all of 5-servers are busy at time t after 30000 times is equal 0.0736 and it
remains at 0.0736, level.
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6. Conclusion

In this paper discussed random fuzzy queuing systems with multiple servers where
interarrival times and service times are random fuzzy variables. Fuzzy simulation
technique was designed to estimate the average chance of event ”all of k-servers are
busy at time t”. Finally, some examples was given to illustrate the effectiveness of
proposed technique. The stated problem is usually used in big markets and bank ,...
that have many servers for servicing the customers. Also, we estimated the average
chance without using α-cuts and simulated the results.
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