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1. Introduction

Fuzzy topology, as an important research field in fuzzy set theory, has been
developed into a quite nature discipline [4]-[6], [9], [10], [15]. In contrast to classical
topology, fuzzy topology is endowed with richer structure, to a certain extent, which
is manifested with different ways to generalize certain classical concepts. So far,
according to Ref. [5], the kind of topologies defined by Chang [1] and Goguen [2] is
called the topologies of fuzzy subsets, and further is naturally called L-topological
spaces if a lattice L of membership values has been chosen. Loosely speaking, a
topology of fuzzy subsets (resp. an L-topological space) is a family τ of fuzzy subsets
(resp. L-fuzzy subsets) of nonempty set X, and τ satisfies the basic conditions of
classical topologies [8].

On the other hand, the authors of [7], [11] proposed the terminologies I-fuzzy
topologies (if the set of membership values is chosen to be the unit interval [0,1])
and L-fuzzy topologies (if the corresponding set of membership values is chosen to
be lattice L). More specifically, an I-fuzzy toplogy (resp. an L-fuzzy topology) is a
(resp. an L-) fuzzy family τ over P (X), where P (X) denotes the class of all crisp
subsets of nonempty set X. They were defined and extensively studied by Höhle,
ŝostak, Kubiak, Radabaugh and others [3], [7], [9], [10], [11].

In general, L-fuzzy topologies are investigated and described with algebraic and
analytic methods.
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In 1991, Ying [16]-[19] used the semantic method of continuous valued logic to
propose the so-called fuzzifying topology as a preliminary of the research on bifuzzy
topology and elementally develop topology in the theory of fuzzy sets from com-
pletely different direction. Briefly speaking, a fuzzifying topology on a set X assigns
each crisp subset of X to a certain degree of being open, other than being definitely
open or not. In a way, fuzzifying topologies are analogous to I-fuzzy topologies, but
the former appeal to some semantical experssions of Lukasiewicz logic as a basic tool,
and thus can be viewed as an alternative approach to fuzzy topology. Particularly, as
the author [16]-[19] indicated, by investigating fuzzifying topology we may partially
answer an important question proposed by Rosser and Turquette [12] in 1952, which
asked wether there are many valued theories beyond the level of predicates calculus.

Roughly speaking, the semantical analysis approach transforms formal statements
of interest, which are usually expressed as implication formulas in logical language,
into some inequalities in the truth value set by truth valuation rules, and then
these inequalities are demonstrated in an algebraic way and the semantic validity
of conclusions is thus established. So far, there has been significant research on
fuzzifying topologies [14, 19]. For example, Ying [19] introduced the concepts of
compactness and establised a generalization of Tychonoff’s theorem in the framework
of fuzzifying topology. In [14] the concepts of fuzzifying e-open set and fuzzifying e-
continuity were introduced and studied and also introduced and studied the concept
of fuzzifying e-separation axioms.

In [13] the concepts of e-irresolute function and e-compactness for fuzzy topolog-
ical spaces were introducted. In this paper we introduce and study the concept of
e-irresolute function between fuzzifying topological spaces. Furthermore, we intro-
duce and study the concept of e-compactness in the framework of fuzzifying topology.
We use the finite intersection property to give a characterization of the fuzzifying
e-compact spaces.

2. Preliminaries

In this section, we offer some concepts and results in fuzzifying topology, which
will used in the sequel. For the details, we refer to [14], [16]-[19]. First, we display
the Lukasiewicz logic and corresponding set theoretical notations used in this paper.
For any formula ϕ, the symbol [ϕ] means the truth value of ϕ, where the set of truth
values is the unit interval [0, 1]. We write |= ϕ if [ϕ] = 1 for any interpretation. By
|=w ϕ (ϕ is feebly valid) we mean that for any valuation it always holds that [ϕ] > 0,
and ϕ |=ws ψ we mean that [ϕ] > 0 implies [ψ] = 1. The original formulae of fuzzy
logical and corresponding set theoretical notations are:

(1) [α] = α(α ∈ [0, 1]); [ϕ ∧ ψ] :=min([ϕ], [ψ]); [ϕ → ψ] :=min(1, 1− [ϕ] + [ψ]).
(2) If Ã ∈ =(X), where =(X) is the family of all fuzzy sets of X, then

[x ∈ Ã] := Ã(x).
(3) If X is the universe of discourse, then [∀xϕ(x)] := inf

x∈X
[ϕ(x)]. In addition

the following derived formulae are given,
(1) [¬ϕ] := [ϕ → 0] := 1− [ϕ];
(2) [ϕ ∨ ψ] := [¬(¬ϕ ∧ ¬ψ)] := max([ϕ], [ψ]);
(3) [ϕ ↔ ψ] := [(ϕ → ψ) ∧ (ψ → ϕ)];
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(4) [ϕ ∧
.

ψ] := [¬(ϕ → ¬ψ)] := max(0, [ϕ] + [ψ]− 1);

(5) [∃xϕ(x)] := [¬∀x¬ϕ(x)] := sup
x∈X

[ϕ(x)];

(6) If Ã, B̃ ∈ =(X), then

[Ã ⊆ B̃] :=
[∀x(x ∈ Ã → x ∈ B̃)

]
:= inf

x∈X
min

(
1, 1− Ã(x) + B̃(x)

)
;

where =(X) is the family of all fuzzy sets in X.
Often we do not distinguish the connectives and their truth value functions and

state strictly our results on formalization as Ying [16]-[19] did.
Second, we give some definitions and results in fuzzifying topology.

Definition 2.1 ([16]). Let X be a universe of discourse, τ ∈ =(P (X)) satisfy the
following condition:

(1) τ(X) = 1, τ(φ) = 1;
(2) for any A,B, τ(A ∩B) ≥ τ(A) ∧ τ(B);
(3) for any {Aλ : λ ∈ Λ}, τ(

⋃
λ∈Λ

Aλ) ≥ ∨
λ∈Λ

τ(Aλ).

Then τ is called a fuzzifying topology and (X, τ) is a fuzzifying topological space.

Definition 2.2 ([16]). The family of all fuzzifying closed sets, denoted by F ∈
=(P (X)), is defined as follows: A ∈ F := (X − A) ∈ τ , where X − A is the
complement of A.

Definition 2.3 ([16]). The fuzzifying neighbourhood system of a point x ∈ X is
denoted by Nx ∈ =(P (X)) and defined as follows: Nx(A) = sup

x∈B⊆A
τ(B).

Definition 2.4 ([16], Lemma 5.2.). The closure Ā of A is defined as Ā(x) = 1 −
Nx(X − A). In Theorem 5.3 [16], Ying proved that the closure − : P (X) → =(X)
is a fuzzifying closure operator (see Definition 5.3 [16]) because its extension − :

=(X) → =(X), Ã =
⋃

α∈[0,1]

αÃα, Ã ∈ =(X), where Ãα = {x : Ã(x) ≥ α} is the

α-cut of Ã and αÃ(x) = α∧ Ã(x) satisfied the following kuratowski closure axioms:
(1) |= φ̄ = φ;

(2) for any Ã ∈ =(X), |= Ã ⊆ Ã;

(3) for any Ã, B̃, ∈ =(X), |= Ã ∪ B̃ ≡ Ã ∪ B̃; (4) for any Ã, B̃ ∈ =(X),

|= (Ã) ⊆ Ã.

Definition 2.5 ([17]). For any A ⊆ X, the fuzzy set of interior points of A is called
the interior of A, and given as follows: A◦(x) := Nx(A). From Lemma 3.1 [16] and
the definitions of Nx(A) and A◦ we have τ(A) = inf

x∈A
A◦(x).

Definition 2.6 ([14]). For any Ã ∈ =(X), |= (Ã)◦ ≡ X − (X − Ã).

Lemma 2.7 ([14]). If [Ã ⊆ B̃] = 1, then (1)|= Ã ⊆ B̃ (2)|= (Ã)◦ ⊆ (B̃)◦.

Definition 2.8 ([14]). Let (X, τ) be a fuzzifying topological space.
855
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(1) The family of all fuzzifying e-open sets, denoted by τe ∈ =(P (X)), is defined
as follows:
A ∈ τe := ∀x(x ∈ A → x ∈ A−◦δ ∪A◦−δ ), i.e.,

τe(A) = inf
x∈A

max
(
A−◦δ (x), A◦−δ(x)

)
.

(2) The family of all fuzzifying e-closed sets, denoted by Fe ∈ =(P (X)), is
defined as follows:

A ∈ Fe := (X −A) ∈ τe.

(3) The fuzzifying e-neighborhood system of a point x ∈ X is denoted by Ne
x ∈

=(P (X)), is defined as follows:
Ne

x(A) = sup
x∈B⊆A

τe(B).

(4) The fuzzifying e-closure of a set A ∈ P (X) is denoted by Cle ∈ =(X), is
defined as follows:

Cle(A)(x) = 1−Ne
x(X −A).

(5) Let (X, τ) and (Y, σ) be two fuzzifying topological spaces and let f ∈ Y X .
A unary fuzzy predicate Ce ∈ =(Y X), called fuzzifying e-continuity, is given
as follows

Ce(f) := ∀B(B ∈ σ → f−1(B) ∈ τe).

Definition 2.9 ([14]). Let Ω be the class of all fuzzifying topological spaces. The
unary fuzzy predicate T e

2 (fuzzifying e-Hausdorff) ∈ =(Ω) is defined as follows:
T e

2 (X, τ) := ∀x∀y
(
(x ∈ X ∧ y ∈ X ∧ x 6= y) → ∃B∃C(

B ∈ Ne
x ∧ C ∈ Ne

x ∧
B ∩ C = φ)

)
.

Definition 2.10 ([19]). Let X be a set. If Ã ∈ =(X) such that the support sup pÃ =
{x ∈ X : Ã(x) > 0} of A is finite, then Ã is said to be finite and we write F (Ã). A
unary fuzzy predicate FF ∈ =(=(X)), called fuzzy finiteness, is given as FF (Ã) :=
(∃B̃)

(
F (B̃)∧ (Ã ≡ B̃)

)
= 1− inf{α ∈ [0, 1] : F (Ãα)} = 1− inf{α ∈ [0, 1] : F (Ã[α])},

where Ãα = {x ∈ X : Ã(x) ≥ α} and Ã[α] = {x ∈ X : Ã(x) > α}.
Definition 2.11 ([19]). Let X be a set.

(1) A binary fuzzy predicate K ∈ =(=(P (X))×P (X)
)
, called fuzzifying cover-

ing, is given as follows:
K(<, A) := ∀x(

x ∈ A → ∃B(B ∈ < ∧ x ∈ B)
)
.

(2) Let (X, τ) be a fuzzifying topological space. A binary fuzzy predicate K◦ ∈
=(=(P (X))× P (X)), called fuzzifying open covering, is given as follows:

K◦(<, A) := K(<, A) ∧
.

(< ⊆ τ).

Definition 2.12 ([19]). Let Ω be the class of all fuzzifying topological spaces. A
unary fuzzy predicate Γ ∈ =(Ω), called fuzzifying compactness, is given as follows:

(X, τ) ∈ Γ := (∀<)
(
K◦(<, X) → (∃℘)

(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

))
,

where ℘ ≤ < means that for any M ∈ P (X), ℘(M) ≤ <(M).
856
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Definition 2.13 ([19]). Let X be a set. A unary fuzzy predicate fI ∈ =(=(P (X))
)
,

called fuzzifying finite intersection property, is given as follows:

fI(<) := (∀B)
(
(B ≤ <) ∧ FF (B) → (∃x)(∀B)

(
(B ∈ B) → (x ∈ B)

))
.

Theorem 2.14 ([14]). Let (X, τ) be a fuzzifying topological space. Then, we have
(1) |= τ ⊆ τe

(2) |= F ⊆ Fe

(3) |= Fe(
⋂

λ∈Λ

Aλ) ≥ ∧
λ∈Λ

Fe(Aλ).

Theorem 2.15 ([14]). The mapping Ne : X → =N (P (X)), x 7→ Ne
x, where

=N (P (X)) is the set of all normal fuzzy subset of P (X), has the following prop-
erties:

(1) |= A ∈ Ne
x → x ∈ A;

(2) |= A ⊆ B → (A ∈ Ne
x → B ∈ Ne

x);
(3) |= A ∈ Ne

x ∧B ∈ Ne
x → A ∩B ∈ Ne

x .

Conversely, if a mapping Ne
x satisfies (2) and (3), then Ne

x assigns a fuzzifying
topology on X which is denoted by τe ∈ =(P (X)) and defined as

A ∈ τe := ∀x(x ∈ A → A ∈ Ne
x).(

i.e., τe(A) = inf
x∈A

Ne
x(A)

)

3. Fuzzifying e-irresolute functions

Definition 3.1. Let (X, τ) and (Y, σ) be two fuzzifying topological spaces and let
f ∈ Y X . A unary fuzzy predicate Ie ∈ =(Y X), called fuzzifying e-irresolute, is given
as follows: Ie(f) := ∀B(B ∈ σe → f−1(B) ∈ τe). Intuitively, the degree to which f
is fuzzifying e-irresolute function is

[Ie(f)] = inf
B⊆Y

min
(
1, 1− σe(B) + τe

(
f−1(B)

))

Theorem 3.2. Let (X, τ) and (Y, σ) be two fuzzifying topological spaces and let
f ∈ Y X . Then

|= f ∈ Ie → f ∈ Ce.

Proof. From Theorem 2.14 we have σ(B) ≤ σe(B) and the result holds. ¤

Definition 3.3. Let (X, τ) and (Y, σ) be two fuzzifying topological spaces and let
f ∈ Y X . we define the unary fuzzy predicates ej ∈ =(Y X) where j = 1, . . . , 5 as
follows:

(1) f ∈ e1 := ∀B(B ∈ FY
e → f−1(B) ∈ FX

e ), where FX
e and FY

e are the fuzzi-
fying e-closed subsets of X and Y , respectively;

(2) f ∈ e2 := ∀x∀u(u ∈ NeY

f(x) → f−1(u) ∈ NeX

x ), where NeX

and NeY

are the
family of fuzzifying e-neighborhood systems of X and Y , respectively;

(3) f ∈ e3 := ∀x∀u
(
u ∈ NeY

f(x) → ∃v(
f(v) ⊆ u → v ∈ NeX

x

))
;
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(4) f ∈ e4 := ∀A
(
f
(
ClXe (A)

) ⊆ ClYe
(
f(A)

))
;

(5) f ∈ e5 := ∀B
(
ClXe

(
f−1(B)

) ⊆ f−1
(
ClYe (B)

))
.

Theorem 3.4. |= f ∈ Ie ↔ f ∈ ej , for j = 1, . . . , 5.

Proof. (a) We will prove that |= f ∈ Ie ↔ f ∈ e1.

[f ∈ e1] = inf
B∈P (Y )

min
(
1, 1−FY

e (B) + FX
e (f−1(B)

))

= inf
B∈P (Y )

min
(
1, 1− σe(Y −B) + τe

(
X − f−1(B)

))

= inf
B∈P (Y )

min
(
1, 1− σe(Y −B) + τe

(
f−1(Y −B)

))

= inf
u∈P (Y )

min
(
1, 1− σe(u) + τe

(
f−1(u)

))

= [f ∈ Ie].
(b) We will prove that |= f ∈ Ie ↔ f ∈ e2. First, We prove that [f ∈ e2] ≥ [f ∈

Ie]. If NeY

f(x)(u) ≤ NeX

x (f−1(u)), then min
(
1, 1 − NeY

f(x)(u) + NeX

x

(
f−1(u)

))
= 1 ≥

[f ∈ Ie]. Suppose NeY

f(x)(u) > NeX

x (f−1(u)). It is clear that, if f(x) ∈ A ⊆ u, then
x ∈ f−1(A) ⊆ f−1(u). Then,

NeY

f(x)(u)−NeX

x (f−1(u)) = sup
f(x)∈A⊆u

σe(A)− sup
x∈B⊆f−1(u)

τe(B)

≤ sup
f(x)∈A⊆u

σe(A)− sup
f(x)∈A⊆u

τe

(
f−1(A)

)

≤ sup
f(x)∈A⊆u

(
σe(A)− τe

(
f−1(A)

))
.

So
1−NeY

f(x)(u) + NeX

x

(
f−1(u)

) ≥ inf
f(x)∈A⊆u

(
1− σe(A) + τe

(
f−1(A)

))
,

Therefore
min

(
1, 1−NeY

f(x)(u)+NeX

x

(
f−1(u)

)) ≥ inf
f(x)∈A⊆u

min
(
1, 1−σe(A)+τe

(
f−1(A)

))

≥ inf
v∈P (Y ))

min
(
1, 1− σe(v) + τe

(
f−1(v)

))
= [f ∈ Ie].

Hence

inf
x∈X

inf
u∈P (Y )

min
(
1, 1−NeY

f(x)(u) + NeX

x

(
f−1(u)

)) ≥ [f ∈ Ie].

Second, we prove that [f ∈ Ie] ≥ [f ∈ e2]. From Theorem 2.15, we have
[f ∈ Ie] = inf

u∈P (Y )
min

(
1, 1− σe(u) + τe

(
f−1(u)

))

≥ inf
u∈P (Y )

min
(
1, 1− inf

f(x)∈u
NeY

f(x)(u) + inf
x∈f−1(u)

NeX

x

(
f−1(u)

))

≥ inf
u∈P (Y )

min
(
1, 1− inf

x∈f−1(u)
NeY

f(x)(u) + inf
x∈f−1(u)

NeX

x

(
f−1(u)

))

≥ inf
x∈X

inf
u∈P (Y )

min
(
1, 1−NeX

f(x)(u) + NeX

x

(
f−1(u)

))
= [f ∈ e2].

(c) We prove that [f ∈ e2] = [f ∈ e3]. From Theorem 2.15 we have,
858
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[f ∈ e3] = inf
x∈X

inf
u∈P (Y )

min
(
1, 1−NeY

f(x)(u) + sup
v∈P (X),f(v)⊆u

NeX

x (v)
)

≥ inf
x∈X

inf
u∈P (X)

min
(
1, 1−NeY

f(x)(u) + NeX

x

(
f−1(u)

))
= [f ∈ e2].

(d) We prove that [f ∈ e4] = [f ∈ e5]. First, since for any fuzzy set Ã we have
[f−1(f(Ã)) ⊇ Ã] = 1, then for any B ∈ P (Y ) we have

[
f−1

(
f
(
ClXe (f−1(B))

)) ⊇
ClXe

(
f−1(B)

)]
= 1. Also, since [f(f−1(B)) ⊆ B] = 1, then we have that

[
ClXe

(
f(f−1(B))

) ⊆ ClYe (B)
]

= 1.

We have[
ClXe

(
f−1(B)

) ⊆ f−1
(
ClYe (B)

)] ≥
[
f−1

(
f(ClXe

(
f−1(B)

))) ⊆ f−1(ClYe (B)
)]

.

≥
[
f−1

(
f
(
ClXe

(
f−1(B)

))) ⊆ f−1
(
ClYe (f(f−1(B)))

)]
.

≥
[
f
(
ClYe

(
f−1(B)

)) ⊆ ClYe

(
f
(
f−1(B)

))]
.

Therefore
[f ∈ e5] = inf

B∈P (Y )

[
ClXe (f−1(B)) ⊆ f−1

(
ClYe (B)

)]

≥ inf
B∈P (Y )

[
f
(
ClXe

(
f−1(B)

)) ⊆ ClYe

(
f(f−1(B))

)]

≥ inf
A∈P (X)

[
f
(
ClXe (A)

) ⊆ ClYe
(
f(A)

)]
= [f ∈ e4].

Second, for each A ∈ P (X), there exists B ∈ P (Y ) such that f(A) = B and
f−1(B) ⊇ A. Hence, we have

[f ∈ e4] = inf
A∈P (X)

[
f
(
ClXe (A)

) ⊆ ClYe
(
f(A)

)]

≥ inf
A∈P (Y )

[
f
(
ClXe (A)

) ⊆ f
(
f−1(ClYe (f(A)

)))]

≥ inf
A∈P (Y )

[
ClXe (A) ⊆ f−1

(
ClYe

(
f(A))

)]

≥ inf
B∈P (Y ),B=f(A)

[
ClXe (f−1(B)) ⊆ f−1

(
ClYe (B)

)]

≥ inf
B∈P (Y )

[
ClXe

(
f−1(B)

) ⊆ f−1(ClYe (B)
)]

= [f ∈ e5].

(e) We want to prove that |= f ∈ e2 ↔ f ∈ e5.

[f ∈ e5] = inf
B∈P (Y )

[
ClXe

(
f−1(B)

) ⊆ f−1(ClYe (B)
)]

= inf
B∈P (Y )

inf
x∈X

min
(
1, 1−

(
1−NeX

x (X − f−1(B)
))

+ 1−NeY

f(x)(Y −B)
)

= inf
B∈P (Y )

inf
x∈X

min
(
1, 1−NeY

f(x)(Y −B) + NeX

x

(
f−1(Y −B)

))

= inf
u∈P (Y )

inf
x∈X

min
(
1, 1−NeY

f(x)(u) + NeX

x

(
f−1(u)

))
= [f ∈ e2]. ¤

4. Fuzzifying e-compact space

Definition 4.1. A fuzzifying topological space (X, τ) is said to be e-fuzzifying
topological space if τe(A ∩B) ≥ τe(A) ∧ τe(B).
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Definition 4.2. A binary fuzzy predicate Ke ∈ =
(
=(

P (X)
)×P (X)

)
, called fuzzi-

fying e-open covering, is given as Ke(<, A) := K(<, A) ∧
.

(< ⊆ τe).

Definition 4.3. Let Ω be the class of all fuzzifying topological spaces. A unary
fuzzy predicate Γe ∈ =(Ω), called fuzzifying e-compactness, is given as follows:
(1) (X, τ) ∈ Γe := (∀<)

(
Ke(<, X) → (∃℘)

(
(℘ ≤ <) ∧K(℘,X) ∧

.
FF (℘)

))
;

(2) If A ⊆ X, then Γe(A) := Γe(A, τ/A).

Lemma 4.4. |= K◦(<, A) → Ke(<, A).

Proof. Since from Theorem 2.14 |= τ ⊆ τe, then we have [< ⊆ τ ] ≤ [< ⊆ τe]. So,
[K◦(<, A)] ≤ [Ke(<, A)]. ¤

Theorem 4.5. |= (X, τ) ∈ Γe → (X, τ) ∈ Γ.

Proof. From Lemma 4.4 the proof is immediate. ¤

Theorem 4.6. For any fuzzifying topolopgical spaces (X, τ) and A ⊆ X,

Γe(A) ↔ (∀<)
(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K

(
℘,A) ∧

.
FF (℘)

))
,

Where Ke is related to τ.

Proof. For any < ∈ =(=(X)
)
, we get <̄ ∈ =(=(A)

)
defined as <̄(C) = <(B) with

C = A ∩B, B ⊆ X. Then
K(<̄, A) = inf

x∈A
sup
x∈C

<̄(C) = inf
x∈A

sup
x∈C=A∩B

<(B) = inf
x∈A

sup
x∈B

<(B) = K(<, A),

becaus x ∈ A and x ∈ B if and only if x ∈ A ∩B. Therefore
[<̄ ⊆ τe/A] = inf

c⊆A
min

(
1, 1− <̄(C) + τe/A(C)

)

= inf
c⊆A

min
(
1, 1− sup

C=A∩B,B⊆X
<(B) + sup

C=A∩B,B⊆X
τe(B)

)

≥ inf
c⊆A,C=A∩B,B⊆X

min
(
1, 1−<(B) + τe(B)

)

≥ inf
B⊆X

min
(
1, 1−<(B) + τe(B)

)
= [< ⊆ τe].

For any ℘ ≤ <̄, we define ℘′ ∈ =(
P (X)

)
as follows:

℘′(B) =

{
℘(B) if B ⊆ A

0 otherwise.

Then ℘′ ≤ <, FF (℘′) = FF (℘) and K(℘′, A) = K(℘, A).
Furthermore, we have[
Γe(A) ∧

.
Ke(<, A)

] ≤ [
Γe(A) ∧

.
K ′

e(<̄, A)
]

≤
[
(∃℘)

(
(℘ ≤ <̄) ∧K(℘,A) ∧

.
FF (℘)

)]

≤
[
(∃℘′)((℘′ ≤ <) ∧K(℘′, A) ∧

.
FF (℘′)

)]

≤
[
(∃B)

(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]
.

Then Γe(A) ≤ [
Ke(<, A)

] →
[
(∃B)

(
(B ≤ <) ∧ K(B, A) ∧

.
FF (B)

)]
, where

K ′
e(<̄A) =

[
K(<̄, A) ∧

.
(<̄ ⊆ τe/A)

]
. Therefore
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Γe(A) ≤ inf
<∈=(P (X))

[
Ke(<, A) → (∃B)

(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]

=
[
(∀<)

(
Ke(<, A) → (∃B)

(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

))]
.

Conversely, for any < ∈ =(
P (A)

)
, if

[< ⊆ τe/A

]
= inf

B⊆A
min

(
1, 1 − <(B) +

τe/A(B)
)

= λ, then for any n ∈ N and B ⊆ A, sup
B=A∩C,C⊆X

τe(C) = τe/A(B) >

λ + <(B) − 1 − 1
n , and there exists CB ⊆ X such that CB ∩ A = B and τe(CB) >

λ+<(B)−1− 1
n . Now, we define <̄ ∈ =(

P (X)
)

as <̄(C) = max
B⊆A

(0, λ+<(B)−1− 1
n ).

Then [<̄ ⊆ τe] = 1 and
K(<̄, A) = inf

x∈A
sup

x∈C⊆X
<̄(C) = inf

x∈A
sup
x∈B

<̄(CB) ≥ inf
x∈A

sup
x∈B

(
λ + <(B)− 1− 1

n

)

= inf
x∈A

sup
x∈B

<(B) + λ− 1− 1
n = K(<, A) + λ− 1− 1

n ,

Ke(<̄, A) =
[
K(<̄, A) ∧

.
(<̄ ⊆ τe)

]
=

[
K(<̄, A)

] ≥ max
(
0, K(<, A) + λ− 1− 1

n

)

≥ max
(
0,K(<, A) + λ− 1

)− 1
n = K ′

e(<, A)− 1
n .

For any ℘ ≤ <̄, we set ℘′ ∈ =(
P (A)

)
as ℘′(B) = ℘(CB), B ⊆ A. Then ℘′ ≤ <,

FF (℘′) = FF (℘) and K(℘′, A) = K(℘, A). Therefore[
(∀<)

(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

))]
∧
.

[K ′
e(<, A)]− 1

n

≤
[
(∀<)

(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

))]
∧
.(

[K ′
e(<, A)− 1

n ]
)

≤
[
Ke(<̄, A) → (∃℘)

(
(℘ ≤ <̄) ∧K(℘,A) ∧

.
FF (℘)

)]
∧
.

[
Ke(<̄, A)

]

≤
[
(∃℘)

(
(℘ ≤ <̄) ∧K(℘,A) ∧

.
FF (℘)

)]

≤
[
(∃℘′)((℘′ ≤ <) ∧K(℘′, A) ∧

.
FF (℘′)

)]

≤
[
(∃B)

(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]
.

Let n →∞. We obtain[
(∀<)

(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

))]
∧
.

[
K ′

e(<, A)
] ≤[

(∃B)
(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]
.

Then[
(∀<)

(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

))]

≤
[
K ′

e(<, A) → (∃B)
(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]

≤ inf
<∈=(P (X))

[
K ′

e(<, A) → (∃B)
(
(B ≤ <) ∧K(B, A) ∧

.
FF (B)

)]

= Γe(A). ¤

Theorem 4.7. Let (X, τ) be a fuzzifying topological space.

π1 := (∀<)
((< ∈ =(

P (X)
)) ∧ (< ⊆ Fe) ∧

.
fI(<) → (∃x)(∀A)(A ∈ < → x ∈ A)

)
;
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π2 := (∀<)(∃B)
((

(< ⊆ Fe) ∧ (B ∈ τe)
)∧

.

(∀℘)
(
(℘ ≤ <) ∧

.
FF (℘) → ¬(∩℘ ⊆ B)

) → ¬(∩< ⊆ B)
)
.

Then |= Γe(X, τ) ↔ πi, i = 1, 2.

Proof. (a) We prove Γe(X, τ) = [π1]. For any < ∈ =(P (X)), we set Rc(X − A) =
<(A). Then

[< ⊆ τe] = inf
A∈P (X)

min
(
1, 1−<(A) + τe(A)

)

= inf
X−A∈P (X)

min
(
1, 1−<c(X −A) + Fe(X −A)

)
= [<c ⊆ Fe],

FF (<) = 1− inf{α ∈ [0, 1] : F (Rα)} = 1− inf{α ∈ [0, 1] : F (Rc
α)} = FF (<c)

and

B ≤ <c ⇔ B(M) ⇔ Bc(X −M) ≤ <(X −M) ⇔ Bc ≤ <.

Therefore
Γe(X, τ) =

[
(∀<)

(
Ke(<, A) → (∃℘)

(
(℘ ≤ <) ∧K(℘,X) ∧

.
FF (℘)

))]

=
[
(∀<)

(
(< ⊆ τe) ∧

.
K(<, X) → (∃℘)

(
(℘ ≤ <) ∧K(℘,X) ∧

.
FF (℘)

))]

=
[
(∀<)

(
(< ⊆ τe) →

(
K(<, X)(∃℘)

(
(℘ ≤ <) ∧K(℘,X) ∧

.
FF (℘)

)))]

=
[
(∀<)

(
(<c ⊆ Fe) →

(
(∀x)(∃A)(A ∈ < ∧ x ∈ A) →

(∃℘)
(
(℘ ≤ <) ∧K(℘,A) ∧

.
FF (℘)

)))]

=
[
(∀<)

(
(<c ⊆ Fe) →

(
(∀x)(∃A)(A ∈ < ∧ x ∈ A) →

(∃Bc)
(
(Bc ≤ <) ∧K(Bc, A) ∧

.
FF (Bc)

)))]

=
[
(∀<)

(
(<c ⊆ Fe) →

(
(∀x)(∃A)(A ∈ < ∧ x ∈ A) →

(∃B)
(
(B ≤ <c) ∧ FF (B) ∧

.
K(Bc, X)

)))]

=
[
(∀<)

(
(<c ⊆ Fe) →

(
(∀x)(∃A)(A ∈ < ∧ x ∈ A) →

(∃B)
(
(B ≤ <c) ∧ FF (B) ∧

.
(∀x)(∃B)(B ∈ Bc ∧ x ∈ B)

)))]

=
[
(∀<)

(
<c ⊆ Fe →

(¬(
(∃B)(B ≤ <c ∧ FF (B)∧

.

(∀x)(∃B)(B ∈ Bc ∧ x ∈ B)
) → ¬(

(∀x)(∃A)(A ∈ < ∧ x ∈ A)
))))]

=
[
(∀<)

((<c ⊆ Fe

) →
(
fI(<c) → ¬(

(∀x)(∃B)(A ∈ < ∧ x ∈ A)
)))]

=
[
(∀<)

(
(<c ⊆ Fe) ∧

.
fI(<c) → (∃x)(∀A)(A ∈ <c → x ∈ A)

)]
= [π1].

(b) We prove [π1] = [π2]. Let X −B ∈ P (X). For any < ∈ =(P (X)).[
(< ⊆ Fe) ∧ (B ∈ τe)

]
=

[
(< ⊆ Fe) ∧ (X −B ∈ Fe)

]
= inf

A∈P (X)
min

(
1, 1−<(A) + Fe(A)

) ∧ Fe(X −B)

= inf
A∈P (X)

min
(
1, 1−<(A) + Fe(A)

) ∧ inf
A∈P (X)

min
(
1, 1− [A ∈

{X −B}] + Fe(A)
)
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= inf
A∈P (X)

min
(
1, 1−

[(< ∪ {X −B})(A)
]

+ Fe(A)
)

=
[(< ∪ {X −B}) ⊆ Fe

]
.

Therefore, for any B ∈ =(
P (X)

)
, let ℘ = B\{X −B} ∈ =(

P (X)
)
.

℘(A) =

{
B(A), if A 6= X −B

0, A = X −B

Then ℘ ≤ B, ℘ ∪ {X −B} ≥ B,
[
FF (℘)

]
=

[
FF (B)

]
,

[℘ ≤ <] =
[B ≤ (< ∪ {X −B})]

and[
(∀℘)

(
(℘ ≤ <) ∧

.
FF (℘) → (∃x)(∀A)

(
A ∈ (℘ ∪ {X −B}) → (x ∈ A)

))]

= inf
℘≤<

min
(
1, 1− [

FF (℘)
]
+ sup

x∈X
inf

A∈P (X)

(
(℘ ∪ {X −B})(A) → A(x)

))

≤ inf
B≤(<∪{X−B})

min
(
1, 1− [

FF (B)
]
+ sup

x∈X
inf

A∈P (X)

(B(A) → A(x)
))

= fI
(< ∪ {X −B}).

Furthermore, we have
π1 ∧

.

[(
(< ⊆ Fe) ∧ (B ∈ τe)

) ∧
.

(∀℘)
(
(℘ ≤ <) ∧

.
FF (℘) → ¬(∩℘ ⊆ B)

)]

= π1 ∧
.

[(< ∪ {X −B} ⊆ Fe

) ∧
.

(∀℘)[
(℘ ≤ <) ∧

.
FF (℘) → (∃x)(∀A)

(
A ∈ (℘ ∪ {X −B}) → x ∈ A

)]

= π1 ∧
.

[(< ∪ {X −B} ⊆ Fe

) ∧
.

fI(< ∪ {X −B})
]

≤
[
(∃x)(∀A)

(
A ∈ (< ∪ {X −B}) → x ∈ A

)]
=

[¬(∩< ⊆ B)
]
.

Therefore
π1 ≤ inf

<∈=(P (X))
sup

B⊆X

(
(< ⊆ Fe ∧B ∈ τe

) ∧
.

(∀℘)
(
(℘ ≤ <) ∧

.
FF (℘) →

¬(∩℘ ⊆ B)
) → ¬(∩< ⊆ B)

)
= π2.

Conversely,
π2∧

.

[
(< ⊆ Fe)∧

.
fI(<)

]
= π2∧

.

[(
(<\{B})∪{B}) ⊆ Fe

]
∧
.

[
fI

(
(<\{B})∪{B})

]

= π2 ∧
.

[
(<′ ⊆ Fe) ∧ (X −B ∈ τe) ∧

.
(∀℘)

(
(℘ ≤ <′) ∧

.
FF (℘) →

(∃x)(∀A)
(
A ∈ (℘ ∪ {B}) → x ∈ A

))]

= π2 ∧
.

[
(<′ ⊆ Fe) ∧ (X −B ∈ τe) ∧

.
(∀℘)

(
(℘ ≤ <′) ∧

.
FF (℘) →

¬(∩℘ ⊆ X −B)
)]

≤ [¬(∩<′ ⊆ X −B)
]

=
[
(∃x)(∀A)

(
A ∈ (<′ ∪ {B}) → (x ∈ A)

)]

=
[
(∃x)(∀A)

(
A ∈ < → (x ∈ A)

)]
.

Therefore
π2 ≤ inf

<∈=(P (X))

[
(< ⊆ Fe) ∧

.
fI(<) → (∃x)(∀A)

(
A ∈ < → (x ∈ A)

)]
= π1. ¤
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5. Some properties of fuzzifying e-compactness

Theorem 5.1. For any fuzzifying topological space (X, τ) and A ⊆ X,

|= Γe(X, τ) ∧
.

A ∈ Fe → Γe(A).

Proof. For any < ∈ =(P (A)), we define <̄ ∈ =(P (X)) as follows:

<̄(B) =

{
<(B) if B ⊆ A,

0 otherwise.

Then FF (<̄) = 1 − inf
{
α ∈ [0, 1] : F (<̄α)

}
= 1 − inf

{
α ∈ [0, 1] : F (<α)

}
=

FF (<) and
sup
x∈X

inf
x/∈B⊆X

(1− <̄(B)) = sup
x∈X

((
inf

x/∈B⊆A
(1− <̄(B))

) ∧ (
inf

x/∈B A
(1− <̄(B))

))

= sup
x∈X

(
inf

x/∈B⊆A

(
1− <̄(B)

)) ∧ sup
x∈X

(
inf

x/∈B A

(
1− <̄(B)

))

= sup
x∈X

(
inf

x/∈B⊆A

(
1−<(B)

))

= sup
x∈A

(
inf

x/∈B⊆A

(
1−<(B)

)) ∨ sup
x/∈A

(
inf

x/∈B⊆A

(
1−<(B)

))

If x /∈ A, then for any x′ ∈ A we have
inf

x/∈B⊆A

(
1−<(B)

)
= inf

B⊆A

(
1−<(B)

) ≤ inf
x′ /∈B⊆A

(
1−<(B)

)
.

Therefore, sup
x∈X

inf
x/∈B⊆A

(
1− <̄(B)

)
= sup

x∈A
inf

x/∈B⊆A

(
1−<(B)

)
,

[
fI(<̄)

]
=

[
(∀B̄)

(
(B̄ ≤ <̄) ∧ FF (B̄) → (∃x)(∀B)

(
(B ∈ <̄) → (x ∈ B)

))]

= inf
B̄≤<̄

min
(
1, 1− FF (B̄) + sup

x∈X
inf

x/∈B⊆X

(
1− <̄(B)

))

= inf
B≤<

min
(
1, 1− FF (B) + sup

x∈X
inf

x/∈B⊆A

(
1−<(B)

))
= [fI(<)].

We want to prove that Fe(A) ∧
.

[< ⊆ Fe/A

] ≤ [<̄ ⊆ Fe

]
. In fact, from Theorem

2.14 (3)
we have
Fe(A) ∧

.
[< ⊆ Fe/A] = max

(
0,Fe(A) + inf

B⊆A
min

(
1, 1−<(B) + Fe/A(B)

)− 1
)

≤ inf
B⊆A

(
1−<(B)

)
+

(Fe(A) + Fe/A(B)− 1
)

≤ inf
B⊆A

(
1−<(B)

)
+

(Fe(A) ∧ Fe/A(B)
)

= inf
B⊆A

(
1−<(B)

)
+

(Fe(A) ∧ sup
B′∩A=B,B′⊆X

Fe(B′)
)

= inf
B⊆A

(
1−<(B)

)
+ sup

B′∩A=B,B′⊆X

(Fe(A) ∧ Fe(B′)
)

= inf
B⊆A

(
1−<(B)

)
+ sup

B′∩A=B,B′⊆X

(Fe(A ∩B′)
)

= inf
B⊆A

(
1−<(B)

)
+ Fe(B)

= inf
B⊆A

min
(
1, 1−<(B) + Fe(B)

)

= inf
B⊆A

min
(
1, 1− <̄(B) + Fe(B)

)
= [<̄ ⊆ Fe].

Furthermore, from Theorem 4.7 we have
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Γe(X, τ) ∧
.
Fe(A) ∧

.
[< ⊆ Fe/A] ∧

.
fI(<) ≤ Γe(X, τ) ∧

.
[<̄ ⊆ Fe] ∧

.
fI(<̄)

≤ sup
x∈A

inf
x/∈B⊆A

(
1− <̄(B)

)
= sup

x∈A
inf

x/∈B⊆A

(
1−<(B)

)
.

Then
Γe(X, τ) ∧

.
Fe(A) ≤ [< ⊆ Fe/A] ∧

.
fI(<) → sup

x∈X
inf

x/∈B⊆A
(1−<(B)

)

≤ inf
<∈=(P (X))

(
[< ⊆ Fe/A] ∧

.
fI(<) → sup

x∈X
inf

x/∈B⊆A
(1−<(B)

))
= Γe(A). ¤

Theorem 5.2. Let (X, τ) and (Y, σ) be any two fuzzifying topological spaces and
f ∈ Y X is surjection. Then |= Γe(X, τ) ∧

.
Ce(f) → Γ(f(X)).

Proof. For any B ∈ =(P (Y )), we define < ∈ =(P (X)) as follows:

<(A) = f−1(B)(A) = B(f(A)).

Then
K(<, X) = inf

x∈X
sup
x∈A

<(A) = inf
x∈X

sup
x∈A

B(f(A))

= inf
x∈X

sup
f(x)∈B

B(B) = inf
y∈f(x)

sup
y∈B

B(B) = K(B, f(X)),

[B ⊆ σ] ∧
.

[Ce(f)] = inf
B⊆Y

min
(
1, 1− B(B) + σ(B)

) ∧
.

inf
B⊆Y

min
(
1, 1− σ(B)+

τe

(
f−1(B)

))

= max
(
0, inf

B⊆Y
min

(
1, 1− B(B) + σ(B)

)
+ inf

B⊆Y
min

(
1, 1− σ(B)+

τe

(
f−1(B)

))− 1
)

≤ inf
B⊆Y

max
(
0,min

(
1, 1−B(B)+σ(B)

)
+min

(
1, 1−σ(B)+τe

(
f−1(B)

))−1
)

≤ inf
B⊆Y

min
(
1, 1− B(B) + τe

(
f−1(B)

))
= inf

A⊆X
inf

f−1(B)=A
min

(
1, 1− B(B)+

τe

(
f−1(B)

))

= inf
A⊆X

inf
f−1(B)=A

min
(
1, 1− B(B) + τe(A)

)
= inf

A⊆X
min

(
1, 1−

sup
f−1(B)=A

B(B) + τe(A)
)

= inf
A⊆X

min
(
1, 1−<(A) + τe(A)

)
= [< ⊆ τe].

For any ℘ ≤ <, we set ℘̄ ∈ =(P (Y )) defined as follows:

℘̄(f(A)) = f(℘)(f(A)) = ℘(A), A ⊆ X.

Then ℘̄(f(A)) = f(℘)(f(A)) ≤ f(<)(f(A)) = f
(
f−1(B)(f(A))

) ≤ B(f(A)),

FF (℘) = 1− inf
{

α ∈ [0, 1] : F (℘[α])
}

= 1− inf
{

α ∈ [0, 1] : F
(
f(℘[α])

)}

FF
(
f(℘)

) ≤ FF (℘̄)
and
K(℘̄, f(X)) = inf

y∈f(X)
sup
y∈B

℘̄(B) = inf
y∈f(X)

sup
y∈B=f(A)

℘(A) ≥ inf
y∈f(X)

sup
f−1(y)∈A

℘(A)

= inf
x∈X

sup
x∈A

℘(A) = K(℘,X).
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Futhermore
[Γe(X, τ)] ∧

.
[Ce(f)] ∧

.

[
K
′
◦
(B, f(X)

)]

= [Γe(X, τ)] ∧
.

[Ce(f)] ∧
.

[
K

(B, f(X)
)] ∧

.
[B ⊆ σ]

≤ [Γe(X, τ)] ∧
.

[< ⊆ τe] ∧
.

[
K(<, X)

]
= [Γe(X, τ)] ∧

.

[
Ke(<, X)

]

≤
[
(∃℘)

(
(℘ ≤ <) ∧K(℘,X

) ∧
.

FF (℘)
)]

≤
[
(∃℘′)((℘′ ≤ <) ∧K(℘′, f(X)

) ∧
.

FF (℘′)
)]

where K
′
is related to σ. Therefore, from Theorem 4.6 we obtain

[Γe(X, τ)] ∧
.

[Ce(f)]

≤ K
′
◦(B, f(X)) → (∃℘′)

(
(℘′ ≤ <) ∧K(℘′, f(X)

) ∧
.

FF (℘′)
)

≤ inf
B∈=(P (X))

(
K
′
◦
(B, f(X)

) → (∃℘′)((℘′ ≤ <) ∧K
(
℘′, f(X)

) ∧
.

FF (℘′)
))

= [Γ(f(X))]. ¤

Theorem 5.3. Let (X, τ) and (Y, σ) be any two fuzzifying topological spaces and
f ∈ Y X is surjection. Then |= Γe(X, τ) ∧

.
Ie(f) → Γ(f(X)).

Proof. From the proof of Theorem 5.2 we have for any B ∈ =(P (Y )) we define
< ∈ =(P (X)) as

<(A) = f−1(B)(A) = B(f(A)).

Then K(<, X) = K(B, f(X)) and [B ⊆ σe] ∧
.

[Ie(f)] ≤ [< ⊆ τe]. For any ℘ ≤ <,

we get ℘̄ ∈ =(P (Y )) defined as ℘̄(f(A)) = f(℘)(f(A)) = ℘(A), A ⊆ X and we have
FF (℘) ≤ FF (℘̄), K(℘̄, f(X)) ≥ K(℘,X). Therefore

[Γe(X, τ)] ∧
.

[Ie(f)] ∧
.

[
K
′
e

(B, f(X)
)]

= [Γe(X, τ)] ∧
.

[Ie(f)] ∧
.

[
K

(B, f(X)
)] ∧

.
[B ⊆ σe]

≤ [Γe(X, τ)] ∧
.

[< ⊆ τe] ∧
.

[
K(<, X)

]
= [Γe(X, τ)] ∧

.

[
K(<, X)

]

≤
[
(∃℘)

(
(℘ ≤ <) ∧K(℘,X

) ∧
.

FF (℘)
)]

≤
[
(∃℘)

(
(℘ ≤ <) ∧K(℘̄, f(X)

) ∧
.

FF (℘̄)
)]

≤
[
(∃℘′)((℘′ ≤ B) ∧K(℘′, f(X)

) ∧
.

FF (℘′)
)]

,

Where K
′
e is related to σ. Therefore, from Theorem 4.6 we obtain

[Γe(X, τ)] ∧
.

[Ie(f)]

≤ K
′
e(B, f(X)) → (∃℘′)((℘′ ≤ B) ∧K(℘′, f(X)

) ∧
.

FF (℘′)
)

≤ inf
B∈=(P (X))

(
K
′
e

(B, f(X)
) → (∃℘′)((℘′ ≤ B) ∧K

(
℘′, f(X)

) ∧
.

FF (℘′)
))

=
[
Γe

(
f(X)

)]
. ¤

Theorem 5.4. Let (X, τ) be any fuzzifying e-topological space and A,B ⊆ X. Then
(1) T e

2 (X, τ) ∧
.

(
Γe(A) ∧ Γe(B)

) ∧A ∩B = φ |=ws T e
2 (X, τ) →
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(∃U)(∃V )
(
(U ∈ τe) ∧ (V ∈ τe) ∧ (A ⊆ U) ∧ (B ⊆ V ) ∧ (U ∩ V = φ)

)
;

(2) T e
2 (X, τ) ∧

.
Γe(A) |=ws T e

2 (X, τ) → A ∈ Fe.

Proof. (1) Assume A∩B = φ and T e
2 (X, τ) = t. Let x ∈ A. Then for any y ∈ B and

λ < t, we have from Theorem 2.15 that
sup

{
τe(P ) ∧ τe(Q) : x ∈ P, y ∈ Q, P ∩Q = φ

}

= sup
{

τe(P ) ∧ τe(Q) : x ∈ P ⊆ U, y ∈ Q ⊆ V,U ∩ V = φ
}

= sup
U∩V =φ

{
sup

x∈P⊆U
τe(P ) ∧ sup

y∈Q⊆V
τe(Q)

}
= sup

U∩V =φ

{
Ne

x(U) ∧Ne
y (V )

}

≥ inf
x 6=y

sup
U∩V =φ

{
Ne

x(U) ∧Ne
y (V )

}
= T e

2 (X, τ) = t > λ, i.e.,

there exist Py, Qy such that x ∈ Py, y ∈ Qy, Py ∩ Qy = φ and τP (Py) > λ,
τP (Qy) > λ. Set B(Qy) = τP (Qy) for y ∈ B. Since [B ⊆ τe] = 1, we have

[Ke(B, B)] = [K(B, B)] = inf
y∈B

sup
y∈C

B(C) ≥ inf
y∈B

B(Qy) = inf
y∈B

τP (Qy) ≥ λ.

On other hand, since T e
2 (X, τ)∧

.

(
Γe(A)∧Γe(B)

)
> 0, then 1−t < Γe(A)∧Γe(B) ≤

Γe(A).
Therefore, for any λ ∈ (

1− Γe(A), t
)
, it holds that

1− λ < Γe(A) ≤ 1− [Ke(B, B)] + sup
℘≤B

{
[K(℘,B)] ∧

.
FF (℘)

}

≤ 1− λ + sup
℘≤B

{
[K(℘,B)] ∧

.
FF (℘)

}
,

i.e.,sup
℘≤B

{
K(℘,B) ∧

.
FF (℘)

}
> 0 and there exists ℘ ≤ B such that K(℘,B) +

FF (℘) − 1 > 0, i.e., 1 − FF (℘) < K(℘,B). Then, inf
{

θ : F (℘θ)
}

< K(℘,B).
Now, there exist θ1 such that θ1 < K(℘, B) and F (℘θ1). Since ℘ ≤ B, we may write
℘θ1 = {Qy1 , . . . , Qyn}. We put Ux = {Py1 ∩ · · · ∩ Pyn}, Vx = {Qy1 ∩ · · · ∩Qyn} and
have Vx ⊇ B, Ux ∩ Vx = φ, τe(Ux) ≥ τe(Py1) ∧ · · · ∧ τe(Pyn) > λ because (X, τ) is
fuzzifying e-topological space. Also, τe(Vx) ≥ τe(Qy1) ∧ · · · ∧ τe(Qyn) > λ. In fact,
inf
y∈B

sup
y∈D

℘(D) = K(℘,B) > θ1, and for any y ∈ B, there exists D such that y ∈ D

and ℘(D) > θ1, D ∈ ℘θ1 . Similarly, if λ ∈
(
1− [

Γe(A)∧Γe(B)
]
, t

)
, then we can find

x1, . . . , xm ∈ A with U◦ = Ux1 ∪ · · · ∪Uxm ⊇ A. By putting V◦ = Vx1 ∩ · · · ∩ Vxm we
obtain V◦ ⊇ B, U◦ ∩ V◦ = φ and

(∃U)(∃V )
(
(U ∈ τe) ∧ (V ∈ τe) ∧ (A ⊆ U) ∧ (B ⊆ V ) ∧ (U ∩ V = φ)

)

≥ τe(U◦) ∧ τe(V◦) ≥ min
i=1,...,n

τe(Uxi) ∧ min
i=1,...,n

τe(Vxi) ≥ λ.

Finally, we let λ → t and complete the proof.
(2) Assume |=ws T e

2 (X, τ) ∧
.

Γe(A). For any x ∈ X −Awe have from (1)

sup
x∈U⊆X−A

τe(U) ≥ sup
{

τe(U) ∧ τe(V ) : x ∈ U,A ⊆ V, U ∩ V = φ
}
≥ [T e

2 (X, τ)].

From Theorem 2.15, we obtain,

Fe(A) = inf
x∈X−A

Ne
x(X −A) = inf

x∈X−A
sup

x∈U⊆X−A
τe(U) ≥ [T e

2 (X, τ)].
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Definition 5.5. Let (X, τ) and (Y, σ) be two fuzzifying topological spaces. A unary
fuzzy predicate Qe ∈ =(Y X), called fuzzifying e-closedness, is given as follows:

Qe(f) := ∀B(
B ∈ FX

e → f−1(B) ∈ FY
e

)
,

where FX
e and FY

e are the fuzzy families of τ , σ-e-closed in X and Y respectively

Theorem 5.6. Let (X, τ) a fuzzifying topological space, (Y, σ) be an e-fuzzifying
topological space and f ∈ Y X . Then |= Γe(X, τ) ∧

.
T e

2 (Y, σ) ∧
.

Ie(f) → Qe(f).

Proof. For any A ⊆ X, we have the following:
(i) From Theorm 5.1 we have

[
Γe(X, τ) ∧

.
FX

e (A)
] ≤ Γe(A);

(ii) Ie(f/A) = inf
U∈P (Y )

min
(
1, 1− σe(U) + τe/A

(
(f/A)−1(U)

))

= inf
U∈P (Y )

min
(
1, 1− σe(U) + τe/A

(
A ∩ f−1(U)

))

= inf
U∈P (Y )

min
(
1, 1− σe(U) + sup

A∩f−1(U)=B∩A

τe(B)
)

≥ inf
U∈P (Y )

min
(
1, 1− σe(U) + τe

(
f−1(U)

))
= Ie(f).

(iii) From Theorem 5.3, we have
[
Γe(A) ∧ Ie(f/A)

]
≤ Γe

(
f(A)

)
.

(iv) From Theorem 5.4(2) we have T e
2 (X, τ)∧

.
Γe(A) |=ws T e

2 (Y, σ) → f(A) ∈ FY
e ,

which implies |= T e
2 (Y, σ) ∧

.
Γe

(
f(A)

) → f(A) ∈ FY
e . By combining (i)-(iv) we have[

Γe(X, τ) ∧
.

T e
2 (Y, σ) ∧

.
Ie(f)

]
≤

[(FX
e (A) → Γe(A)

) ∧
.

Ie(f/A) ∧
.

T e
2 (Y, σ)

]

≤
[(FX

e (A) → (
Γe(A)

) ∧
.

Ie

(
f/A)

) ∧
.

T e
2 (Y, σ)

]

≤
[
FX

e (A) → (
Γe(A)

) ∧
.

T e
2 (Y, σ)

]

≤
[
FX

e (A) → FY
e

(
f(A)

)]
.

Therefore[
Γe(A) ∧

.
T e

2 (X, τ) ∧
.

Ie(f)
]
≤

[
FX

e (A) → FY
e

(
f(A)

)]

≤ inf
A⊆X

([
FX

e (A) → FY
e

(
f(A)

)])
= Qe(f). ¤
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