Annals of Fuzzy Mathematics and Informatics Volume 9, No. 6, (June 2015), pp. 843–851 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

I-statistically pre-Cauchy sequences of fuzzy numbers

SARITA OJHA, P. D. SRIVASTAVA

Received 1 September 2014; Revised 27 October 2014; Accepted 11 December 2014

ABSTRACT. In this paper, we have introduced the concept of *I*-statistically pre-Cauchy sequences of fuzzy numbers. It is shown that an *I*-statistically convergent sequence of fuzzy numbers is *I*-statistically pre-Cauchy. The converse of this result is also true under some condition. We have also derived a necessary and sufficient condition for a sequence of fuzzy numbers to be a pre-Cauchy sequence.

2010 AMS Classification: 46S40, 03E72

Keywords: Sequence of fuzzy numbers, Statistical convergence, I-convergence.

Corresponding Author: Sarita Ojha (sarita.ojha89@gmail.com)

1. INTRODUCTION

The concept of fuzzy set is first introduced by Zadeh [22]. Later on, the sequences of fuzzy numbers is discussed by several mathematicians such as Matloka [11], Nanda [12], Savas [14] and others. They have introduced the sequence spaces of fuzzy numbers. The concepts such as statistical convergence, summability etc. are generalized for fuzzy numbers by Nuray and Savas [13].

As the set of all real numbers can be embedded in the set of all fuzzy numbers, so statistical convergence in reals can be considered as a special case of the fuzzy numbers. However since the set of all fuzzy numbers is partially ordered and does not carry a group structure (In general $X + (-X) \neq \bar{0}$ for the case of fuzzy numbers), most of the results known for the sequences of real numbers may not be valid in fuzzy setting. Therefore, the theory is not a trivial extension of what has been known in real case.

The concept of statistical convergence is introduced by Steinhaus and Fast [8] and later on, is reintroduced by Schoenberg independently. Savas [14] has introduced and studied λ -statistical convergence of sequence of fuzzy real numbers which has been further investigated and generalized by several authors such as Nuray [13], Colak and Mursaleen [1], Srivastava and Ojha [21] etc. The idea of statistical convergence is extended to *I*-convergence in case of reals by using the notion of ideals of \mathbb{N} . More investigations in this direction and more applications of ideals of \mathbb{N} can be found in [2], [4], [3]. In an analogous way, Savas [20, 18, 19, 17, 16], Savas and Das [15] used ideals to introduce the concept of *I*-statistical convergence for reals which have extended the notion of statistical convergence. These authors have also studied some basic properties of this more general convergence. The notion of *I*-statistically pre-Cauchy sequences are also introduced by them.

In the present paper, we have extended these results to introduce the concept of *I*-statistically pre-Cauchy sequences for the sequence of fuzzy numbers.

2. Definition and Preliminaries

Definition 2.1 ([9]). A non-empty family $I \in 2^{\mathbb{N}}$ is said to be an ideal of \mathbb{N} (set of all natural numbers) if

(a) $A, B \in I$ imply $A \cup B \in I$, and

(b) $A \in I$, $B \subset A$ imply $B \in I$ hold.

Definition 2.2 ([9]). A proper ideal I is said to be admissible if $\{n\} \in I$ for each $n \in \mathbb{N}$.

Note: Throughout this paper, I stands for a proper admissible ideal of \mathbb{N} .

Definition 2.3 ([8]). A sequence $x = (x_k)$ of real numbers is said to be statistically convergent to a number l if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |x_k - l| \ge \varepsilon\}| = 0$$

where the vertical bars $|\cdot|$ indicate the cardinality of the enclosed set.

Definition 2.4 ([9]). A sequence (x_n) of real numbers is said to be *I*-convergent to $L \in R$ if for each $\varepsilon > 0$, the set $A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\} \in I$.

Definition 2.5 ([15]). A sequence (x_n) of real numbers is said to be *I*-statistically convergent to *L* or S(I)-convergent to *L* if, for each $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : |x_k - L| \ge \varepsilon\}| \ge \delta\right\} \in I$$

and is denoted as $x_k \to L(S(I))$. The class of all *I*-statistically convergent sequences is denoted by S(I).

Definition 2.6 ([4]). A sequence (x_k) of real numbers is said to be *I*-statistically pre-Cauchy if, for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : |x_j - x_k| \ge \varepsilon\}| \ge \delta, j, k \le n\right\} \in I.$$

Definition 2.7 ([4]). Let I be an admissible ideal of \mathbb{N} and let $x = (x_n)$ be a real sequence. Let, $A_x = \{a \in \mathbb{R} : \{k : x_k < a\} \notin I\}$. Then the *I*-limit inferior of x is given by,

$$I - \liminf x = \begin{cases} \inf A_x, \text{ if } A_x \neq \emptyset\\ \infty, \text{ if } A_x = \emptyset. \end{cases}$$
844

It is known that [7] $I - \liminf x = \alpha$ (finite) iff for arbitrary $\varepsilon > 0$,

 $\{k: x_k < \alpha + \varepsilon\} \notin I \text{ and } \{k: x_k < \alpha - \varepsilon\} \in I$

Sequences of fuzzy numbers and their properties are first developed by Matloka [11]. Later on, Nanda [12] introduced l_p^F spaces of sequences of fuzzy numbers.

A fuzzy real number $X : \mathbb{R} \to [0,1]$ is a fuzzy set which satisfies the following conditions:

(i) normal i.e. X(t) = 1 for some $t \in \mathbb{R}$.

(ii) fuzzy convex i.e. $X(t) \ge \min\{X(s), X(r)\}$ where s < t < r.

(iii) X is upper semicontinuous.

(iv) $X^0 = \overline{\{t \in \mathbb{R} : X(t) > 0\}}$ is compact.

The set of all fuzzy numbers satisfying (i)-(iv) is denoted by L(R). Clearly, \mathbb{R} is embedded in L(R) in this way: for each $r \in \mathbb{R}$, $\overline{r} \in L(R)$ is defined as,

$$\overline{r}(t) = \begin{cases} 1, & t = r \\ 0, & t \neq r \end{cases}$$

For, $0 < \alpha \leq 1$, α -cut of a fuzzy number X is defined by $X^{(\alpha)} = \{t \in \mathbb{R} : X(t) \geq \alpha\}$. Now for any two fuzzy numbers X, Y, Matloka [11] has introduced,

$$\overline{d}(X^{(\alpha)}, Y^{(\alpha)}) = \max\{|\underline{X}^{(\alpha)} - \underline{Y}^{(\alpha)}|, |\overline{X}^{(\alpha)} - \overline{Y}^{(\alpha)}|\}$$

where $\underline{X}^{(\alpha)}$ and $\overline{X}^{(\alpha)}$ are the lower and upper bound of the α -cut and

(2.1)
$$d(X,Y) = \sup_{0 \le \alpha \le 1} \overline{d}(X^{(\alpha)}, Y^{(\alpha)})$$

and showed that d is a metric on the set L(R).

Definition 2.8 ([10]). A sequence $X = (X_k)$ of fuzzy numbers is said to be *I*-convergent to X_0 or S_I^F -convergent if for each $\varepsilon > 0$,

$$\left\{k \in \mathbb{N} : d(X_k, X_0) \ge \varepsilon\right\} \in I$$

Definition 2.9 ([5, 6]). A sequence $X = (X_k)$ of fuzzy numbers is said to be *I*-statistically convergent if for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} |\{k \le n : d(X_k, X_0) \ge \varepsilon\}| \ge \delta\right\} \in I.$$

Note: Throughout the paper, small and capital alphabets will be used to denote real and fuzzy numbers respectively and d is the metric defined on the set of all fuzzy numbers L(R) by equation (2.1).

3. Main results

We now define the concept of I-statistical pre-Cauchy sequence of fuzzy numbers as follows.

Definition 3.1. A sequence $X = (X_k)$ of fuzzy numbers is said to be *I*-statistically pre-Cauchy if for any $\varepsilon > 0$ and $\delta > 0$,

$$\left\{n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| \ge \delta\right\} \in I.$$

845

Theorem 3.2. If a sequence $X = (X_k)$ of fuzzy numbers is *I*-statistically convergent, then it is *I*-statistically pre-Cauchy.

Proof. Let (X_k) is *I*-statistically convergent to X_0 . So, for any $\varepsilon, \delta > 0$, let,

$$A = \left\{ n \in \mathbb{N} : \frac{1}{n} | \{ k \le n : d(X_k, X_0) \ge \varepsilon/2 \} | \ge \delta \right\} \in I.$$

Then for all $n \in A^c$ (complement of A), we have

$$\frac{1}{n}|\{k \le n : d(X_k, X_0) \ge \varepsilon/2\}| < \delta$$
 which implies $\frac{1}{n}|\{k \le n : d(X_k, X_0) < \varepsilon/2\}| > 1 - \delta$.

Assume $A_n = \{k \le n : d(X_k, X_0) < \varepsilon/2\}$. Then,

$$(3.1)\qquad \qquad \frac{1}{n}|A_n| > 1 - \delta$$

So, for all $j, k \in A_n$

$$d(X_k, X_j) \le d(X_k, X_0) + d(X_j, X_0) < \varepsilon$$

$$\Rightarrow A_n \times A_n \subseteq \{(j,k) : d(X_k, X_j) < \varepsilon, j, k \le n\}$$

$$\Rightarrow \frac{|A_n \times A_n|}{n^2} = \frac{[|A_n|]^2}{n^2} \le \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) < \varepsilon, j, k \le n\}|$$

$$\Rightarrow \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) < \varepsilon, j, k \le n\}| \ge \left[\frac{|A_n|}{n^2}\right]^2 > (1-\delta)^2 \text{ [from 3.1]}$$

So, we have

$$\frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| < 1 - (1 - \delta)^2.$$

For any given $\delta_1 > 0$, we choose $\delta > 0$ in such a way that $1 - (1 - \delta)^2 < \delta_1$. Now, for all $n \in A^c$,

$$\frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| < \delta_1$$

.
$$\left\{ n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| \ge \delta_1 \right\} \subset A \in I$$

 $\Rightarrow (X_k)$ is *I*-statistically pre-Cauchy.

·

The following theorem gives a necessary and sufficient condition for a bounded sequence of fuzzy numbers to be *I*-statistically pre-Cauchy. The boundedness of a sequence of fuzzy numbers (X_k) we mean, there exists a real number M > 0 such that $d(X_k, \overline{0}) \leq M \ \forall \ k \in \mathbb{N}$.

Theorem 3.3. Let $X = (X_k)$ be a bounded sequence of fuzzy numbers. Then (X_k) is *I*-statistically pre-Cauchy iff

(3.2)
$$I - \lim \frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) = 0$$
846

Proof. (Necessary condition) Suppose (3.2) holds. For any $\varepsilon > 0, n \in \mathbb{N}$, we have,

$$\frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) = \frac{1}{n^2} \sum_{\substack{j,k \le n \\ d(X_k, X_j) < \varepsilon}} d(X_k, X_j) + \frac{1}{n^2} \sum_{\substack{j,k \le n \\ d(X_k, X_j) \ge \varepsilon}} d(X_k, X_j)$$
$$\geq \varepsilon \left(\frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| \right).$$

Then for any $\delta > 0$, the set

$$\left\{ n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon, j, k \le n\}| \ge \delta \right\}$$
$$\subset \left\{ n \in \mathbb{N} : \frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) \ge \delta \varepsilon \right\} \in I$$

because of (3.2). Therefore (X_k) is *I*-statistically pre-Cauchy. (Sufficient condition) Let (X_k) is *I*-statistically pre-Cauchy. Since (X_k) is bounded, so $\exists M > 0$ such that $d(X_k, \overline{0}) \leq M$ for all $k \in \mathbb{N}$. Then for any $\varepsilon > 0$ and $n \in \mathbb{N}$,

$$\frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) = \frac{1}{n^2} \sum_{\substack{j,k \le n \\ d(X_k, X_j) < \varepsilon/2}} d(X_k, X_j) + \frac{1}{n^2} \sum_{\substack{j,k \le n \\ d(X_k, X_j) \ge \varepsilon/2}} d(X_k, X_j) \\
\leq \frac{1}{n^2} \cdot n^2 \cdot \frac{\varepsilon}{2} + 2M \cdot \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon/2, j, k \le n\}|$$

Since (X_k) is *I*-statistically pre-Cauchy, for $\delta > 0$,

$$A = \left\{ n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon/2, j, k \le n\}| \ge \delta \right\} \in I$$

Then for all $n \in A^c$,

$$\frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon/2, j, k \le n\}| < \delta$$

$$\therefore \quad \frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) \le \frac{\varepsilon}{2} + 2M\delta$$

Let $\delta_1 > 0$ be chosen such that $\frac{\varepsilon}{2} + 2M\delta < \delta_1$. Then for all $n \in A^c$,

$$\frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) < \delta_1$$

$$\therefore \quad \left\{ n \in \mathbb{N} : \frac{1}{n^2} \sum_{j,k \le n} d(X_k, X_j) \ge \delta_1 \right\} \subset A \in I$$

This completes the proof.

Theorem 3.4. Let a sequence of fuzzy numbers $X = (X_k)$ is I-statistically pre-Cauchy. If X has a subsequence (X_{p_k}) which converges to X_0 and

$$0 < I - \liminf \frac{1}{n} |\{p_k \le n : k \in \mathbb{N}\}| < \infty,$$

then X is I-statistically convergent to X_0 .

Proof. Let $\varepsilon > 0$. Since $X_{p_k} \to X_0$, we can choose $n_0 \in \mathbb{N}$ such that $d(X_{p_k}, X_0) < \varepsilon/2 \forall p_k > n_0$. Let $A = \{p_k : p_k > n_0, k \in \mathbb{N}\}$ and $A(\varepsilon) = \{k : d(X_k, X_0) \ge \varepsilon\}$. Now,

$$\begin{aligned} \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon/2, j, k \le n\}| \ge \frac{1}{n^2} \sum_{j,k \le n} \chi_{A(\varepsilon) \times A}(j,k) \\ &= \frac{1}{n} |\{p_k \le n : p_k \in A\}| \cdot \frac{1}{n} |\{k \le n : d(X_k, X_0) \ge \varepsilon\}| \end{aligned}$$

Since X is I-statistically pre-Cauchy, so for $\delta > 0$,

$$B = \left\{ n \in \mathbb{N} : \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge \varepsilon/2, j, k \le n\}| \ge \delta \right\} \in I.$$

Thus for all $n \in B^c$,

$$\frac{1}{n^2}|\{(j,k): d(X_k,X_j) \ge \varepsilon/2, j,k \le n\}| < \delta$$

Again, since, $I - \liminf \frac{1}{n} |\{p_k \le n : k \in \mathbb{N}\}| = p > 0$ (say), then the set

$$C = \left\{ n \in \mathbb{N} : \frac{1}{n} | \{ p_k \le n : k \in \mathbb{N} \} | < \frac{p}{2} \right\} \in I$$

and so, for all $n \in C^c$, we have

$$\frac{1}{n}|\{p_k \le n : k \in \mathbb{N}\}| \ge \frac{p}{2}$$

 \therefore For all $n \in B^c \cap C^c = (B \cup C)^c$, we get

$$\frac{1}{n}|\{k \le n : d(X_k, X_0) \ge \varepsilon\}| < \frac{2\delta}{p}$$

Choose $\delta_1 > 0$ such that $\frac{2\delta}{p} < \delta_1$. Now, for all $n \in (B \cup C)^c$, we have

$$\begin{split} & \frac{1}{n} |\{k \leq n : d(X_k, X_0) \geq \varepsilon\}| < \delta_1 \\ \text{which implies,} & \left\{n \in \mathbb{N} : \frac{1}{n} |\{k \leq n : d(X_k, X_0) \geq \varepsilon\}| \geq \delta_1 \right\} \subset B \cup C \in I. \end{split}$$

Therefore X is I-statistically convergent to X_0 .

Theorem 3.5. Let
$$X = (X_k)$$
 be a sequence of fuzzy numbers and $X_k^{(\alpha)} = [\underline{X_k}^{(\alpha)}, \overline{X_k}^{(\alpha)}]$. Let (p,q) is an open interval of real numbers such that for all $k, \underline{X_k}^{(\alpha)}, \overline{X_k}^{(\alpha)} \notin (p,q)$ for all $\alpha \in (0,1]$. Write $A_{\alpha} = \{k : \underline{X_k}^{(\alpha)} \leq p\}$ and $B_{\alpha} = \{k : \overline{X_k}^{(\alpha)} \geq q\}$ and further assume that,

(3.3)
$$\limsup D_n(A_\alpha) - \liminf D_n(B_\alpha) \le \eta$$

for some $0 \le \eta \le 1$. Then if X is I-statistically pre-Cauchy, either

$$I - \lim_{n} D_n(A_\alpha) = 0 \text{ or } I - \lim_{n} D_n(B_\alpha) = 0$$

for each $\alpha \in (0,1]$ where $D_n(A_\alpha) = \frac{1}{n} |\{k \le n : k \in A_\alpha\}|.$

Proof. Clearly, $B_{\alpha} = \mathbb{N} - A_{\alpha}$, therefore $D_n(A_{\alpha}) = 1 - D_n(B_{\alpha}) \forall n \in \mathbb{N}$. So, it is left to prove $I - \lim_n D_n(A_{\alpha}) = 0$ or 1. Let r = |p - q|. Now,

$$A_{\alpha} \times B_{\alpha} \subset \{(j,k) : d(X_k, X_j) \ge r\}$$

So, $I - \lim_{n} \frac{1}{n^2} |\{(j,k) : d(X_k, X_j) \ge r, j, k \le n\}| = I - \lim_{n} D_n(A_{\alpha}) D_n(\mathbb{N} - A_{\alpha})$
 $= I - \lim_{n} D_n(A_{\alpha}) [1 - D_n(A_{\alpha})]$

Since X is I-statistically pre-Cauchy, so L.H.S=0. Therefore,

(3.4)
$$I - \lim_{n} D_n(A_{\alpha})[1 - D_n(A_{\alpha})] = 0$$

Using the definition of I-convergence and from the relation (3.4), we get,

$$\left\{n \in \mathbb{N} : D_n(A_\alpha)[1 - D_n(A_\alpha)] \ge \frac{1}{9}\right\} \in I$$

i.e.
$$\left\{n \in \mathbb{N} : D_n(A_\alpha)[1 - D_n(A_\alpha)] < \frac{1}{9}\right\} \in S \text{ (say)} \in F(I)$$

This shows that for all $n \in S$, either $D_n(A_\alpha) < \frac{1}{3}$ or $D_n(A_\alpha) > \frac{2}{3}$. If $D_n(A_\alpha) < \frac{1}{3} \forall n \in S_0 \subset S$ for some $S_0 \in F(I)$, then for any $\varepsilon, 0 < \varepsilon < \frac{1}{3}$, from the definition of *I*-convergence, we get,

$$\left\{n \in \mathbb{N} : D_n(A_\alpha)[1 - D_n(A_\alpha)] < \varepsilon^2\right\} \in S_1 \text{ (say)} \in F(I)$$

Taking $S_2 = S_0 \cap S_1$, then $S_2 \in F(I)$ and $D_n(A_\alpha) < \varepsilon$ for all $n \in S_2$. Similarly, if $D_n(A_\alpha) > \frac{2}{3}$ for all $n \in S_3 \subset S$ for some $S_3 \in F(I)$, then using the same arguments, we can show that $I - \lim_n D_n(A_\alpha) = 1$. If neither of them holds then we can find an increasing sequence of integers $\{n_1 < n_2 < n_3 < \cdots\}$ from S such that

$$D_{n_i}(A_{\alpha}) < \frac{1}{3}$$
 when i is odd
and $D_{n_i}(A_{\alpha}) > \frac{2}{3}$ when i is even.

which implies that,

$$\limsup D_n(A_\alpha) - \liminf D_n(B_\alpha) > \frac{1}{3}$$

Similarly, if we take,

$$\left\{n \in \mathbb{N} : D_n(A_\alpha)[1 - D_n(A_\alpha)] < \frac{1}{16}\right\} \in S \text{ (say)} \in F(I)$$

then also we have either $I - \lim_{n \to \infty} D_n(A_\alpha) = 0$ or 1 or neither holds then

$$\limsup D_n(A_\alpha) - \liminf D_n(B_\alpha) > \frac{2}{4}$$

Proceeding in this way, we can see that, this will stop only when we get either $I - \lim_{n \to \infty} D_n(A_{\alpha}) = 0$ or 1. Otherwise, after a finite number of steps, we will have,

$$\limsup D_n(A_\alpha) - \liminf D_n(B_\alpha) > \lim_n \frac{n-2}{n} = 1$$

849

which violates the condition (3.3). This completes the proof.

Remark 3.6. An *I*-statistically pre-cauchy sequence of fuzzy numbers need not be *I*-statistically convergent.

Before giving a counter example in support of remark 3.6, we will first prove the following proposition.

Proposition 3.7. If a sequence of fuzzy numbers $X = (X_k)$ is I-statistically convergent, then it must have a convergent subsequence in usual sense.

Proof. Let (X_k) be *I*-statistically convergent to X_0 . Then taking $\varepsilon = \delta = 1$ in the definition 2.9, we have,

$$A = \left\{ n \in \mathbb{N} : \frac{1}{n} | \{ k \le n : d(X_k, X_0) \ge 1 \} | \ge 1 \right\} \in I.$$

Since I is non-trivial, so $A \neq \mathbb{N}$. Choose $n_1 \in \mathbb{N} - A$ such that

$$\frac{1}{n_1} |\{k \le n_1 : d(X_k, X_0) \ge 1\}| < 1$$

$$\Rightarrow \frac{1}{n_1} |\{k \le n_1 : d(X_k, X_0) < 1\}| > 0$$

Therefore, $\exists k_1 \leq n_1$ such that, $d(X_{k_1}, X_0) < 1$. Now choose, $\varepsilon = \delta = \frac{1}{2}$, we have from definition 2.9,

$$B = \left\{ n \in \mathbb{N} : \frac{1}{n} | \{ k \le n : d(X_k, X_0) \ge \frac{1}{2} \} | \ge \frac{1}{2} \right\} \in I.$$

Since I is admissible, so, $B \cup \{1, 2, ..., 3n_1\} \in I$. Again $N \notin I$, choose $n_2 \in \mathbb{N}$ such that $n_2 \notin B$ and $n_2 > 3n_1$. Then

$$\frac{1}{n_2} |\{k \le n_2 : d(X_k, X_0) \ge \frac{1}{2}\}| < \frac{1}{2} \\ \Rightarrow \frac{1}{n_2} |\{k \le n_2 : d(X_k, X_0) < \frac{1}{2}\}| > \frac{1}{2}$$

Now, if $d(X_k, X_0) \ge \frac{1}{2}$ for all k, where $n_1 < k \le n_2$, then $\frac{1}{n_2} |\{k \le n_2 : d(X_k, X_0) < \frac{1}{2}\}| \le \frac{n_1}{n_2} < \frac{1}{3}$

 $\therefore \exists k, n_1 < k \leq n_2$ such that $d(X_k, X_0) < \frac{1}{2}$. We denote it as k_2 . So, $k_2 > k_1$. Proceeding like this, we get an increasing sequence of natural numbers $\{k_1 < k_2 < k_3 < \cdots\}$ such that $d(X_{k_j}, X_0) < \frac{1}{j}$. So, (X_{k_j}) is convergent to X_0 .

Justification of remark 3.6: Now, we define the sequence (X_k) as follows,

$$X_k = \overline{A_m}, \ A_m = \sum_{i=1}^m i^{-1}, \ \text{where } (m-1)! < k \le m!$$

Then for each $0 < \alpha \leq 1$, the α -cut of (X_k) is given by, $X_k^{\alpha} = A_m$. Now, proceeding in the same way as in [2], we can prove (X_k) is *I*-statistically pre-Cauchy, but not *I*-statistically convergent.

Acknowledgements. Authors are thankful to the referees for their valuable suggestions and comments which have improved the version of the present paper.

References

- R. Colak, Y. Altin and M. Mursaleen, On some sets defierence sequence of fuzzy numbers, Soft Computing 15 (2011) 787–793.
- [2] J. Connor, J. A. Fridy and J. Kilne, Statistically pre-Cauchy sequences, Analysis 14 (1994) 311–317.
- [3] P. Das, E. Savas and S. K. Ghoshal, On generalizatons of certain summability methods via ideals, Applied Mathematics Letters 24 (2011) 1509–1514.
- [4] P. Das and E. Savas, On I-statistically pre-Cauchy Sequences, Taiwanese J. Math. 18(1) (2014) 115–126.
- [5] S. Debnath and J. Debnath, Some generalized statistical convergent sequence spaces of fuzzy numbers via ideals, Mathematical Sciences Letters 2(2) (2013) 151–154.
- [6] S. Debnath, J. Debnath, On *I*-statistically convergent sequence spaces defined by sequences of Orlicz functions using matrix transformation, Proyecciones 33(3) (2014) 277–285.
- 7] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6(2) (2001) 165–172.
- [8] H. Fast, Sur la convergence statistique, Colloquium Math. 2 (1951), 241–244.
- [9] P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000) 669–685.
- [10] V. Kumar and K. Kumar, On the ideal convergence of sequences of fuzzy numbers, Inform. Sci. 178 (2008) 4670–4678.
- [11] M. Matloka, Sequences of fuzzy numbers, Busefal 28 (1986) 28-37.
- [12] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33(1) (1989) 123–126.
- [13] F. Nuray and E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca 45(3) (1995) 269–273.
- [14] E. Savas, On strongly λ -summable sequences of fuzzy numbers, Inform. Sci. 125 (2000) 181–186.
- [15] E. Savas and P. Das, A generalized statistical convergence via ideals, Applied Mathematics Letters 24 (2011) 826–830.
- [16] E. Savas, Some double lacunary *I*-convergent sequence spaces of fuzzy numbers defined by Orlicz function, J. Intell. Fuzzy Systems 23(5) (2012) 249–257.
- [17] E. Savas, A note on double lacunary statistical σ -convergence of fuzzy numbers, Soft Computing 16(4) (2012) 591–595.
- [18] E. Savas, On *I*-asymptotically lacunary statistical equivalent sequences, Advances in Difference Equations, 2013 (2013) 111.
- [19] E. Savas, Some *I*-convergent sequence spaces of fuzzy numbers defined by infinite matrix, Math. Comput. Appl. 18(2) (2013) 84–93.
- [20] E. Savas, On convergent double sequence spaces of fuzzy numbers defined by ideal and Orlicz function, J. Intell. Fuzzy Systems 26(4) (2014) 1869–1877.
- [21] P. D. Srivastava and S. Ojha, λ -Statistical convergence of fuzzy numbers and fuzzy functions of order α , Soft Computing 18 (2014) 1027–1032.
- [22] L. A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965) 338–353.

<u>SARITA OJHA</u> (sarita.ojha89@gmail.com)

Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

<u>P. D. SRIVASTAVA</u> (pds@maths.iitkgp.ernet.in)

Professor, Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India