Annals of Fuzzy Mathematics and Informatics Volume 9, No. 6, (June 2015), pp. 1019–1027

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

http://www.kyungmoon.com

Some aspects of fuzzy \tilde{e} -closed set

V. SEENIVASAN, K. KAMALA

Received 9 November 2014; Revised 18 December 2014; Accepted 14 January 2015

ABSTRACT. In this paper, a new class of fuzzy sets called fuzzy \tilde{e} -closed sets is introduced and its properties are studied. Also the concepts of fuzzy \tilde{e} -continuous, fuzzy \tilde{e} -irresolute maps and fuzzy \tilde{e} -homeomorphism are studied and their properties are investigated with the help of fuzzy \tilde{e} -open sets.

2010 AMS Classification: 54A40

Keywords: Fuzzy \tilde{e} -closed sets, Fuzzy \tilde{e} -continuous, Fuzzy \tilde{e} -closed, Fuzzy \tilde{e} -closed, Fuzzy \tilde{e} -irresolute maps, Fuzzy \tilde{e} -homeomorphism, Fuzzy \tilde{e} -connectedness.

Corresponding Author: K. Kamala (krsaut@gmail.com)

1. Introduction

The concept fuzzy has invaded almost all branches of mathematics with the introduction of fuzzy sets by Zadeh[8] of 1965. The theory of fuzzy topological spaces was introduced and developed by Chang[3]. The concept of fuzzy e-open sets and fuzzy e-continuity and separations axioms and their properties were defined by Seenivasan etal[6]. In this paper the notion of fuzzy \tilde{e} -closed sets is introduced and its properties are studied. Also the fuzzy \tilde{e} -continuous, fuzzy \tilde{e} -irresolute maps, fuzzy \tilde{e} -homeomorphism and fuzzy \tilde{e} - connectedness and their properties are investigated with the help of fuzzy \tilde{e} -open sets.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, ρ) (or simply X, Y and Z) represent non-empty fuzzy topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let A be subset of a space X. The fuzzy closure of A, fuzzy interior of A, fuzzy δ -closure of A and the fuzzy δ -interior of A are denoted by $\mathrm{cl}(A)$, $\mathrm{int}(A)$, $cl_{\delta}(A)$, $\mathrm{int}_{\delta}(A)$ respectively.

Definition 2.1. A subset A of space X is called fuzzy regular open [2](resp.fuzzy regular closed) if $A = \operatorname{int}(cl(A))$ (resp. $A = cl(\operatorname{int}(A))$.

Definition 2.2. The fuzzy δ - interior of subset A of X is the union of all fuzzy regular open sets contained in A.

Definition 2.3. A subset A is called fuzzy δ -open[7] if $A = \operatorname{int}_{\delta}(A)$. The complement of fuzzy δ -open set is called fuzzy fuzzy δ -closed (i.e, $A = cl_{\delta}(A)$).

Definition 2.4. A subset A of a space X is called fuzzy δ -preopen [1](resp. fuzzy δ -semi open[4], fuzzy e-open[6]) if $A \leq int (cl_{\delta}(A))$ (resp. $A \leq cl (int_{\delta}(A)) \vee int (cl_{\delta}(A))$.

Definition 2.5. The complement of a fuzzy δ -preopen set (resp. fuzzy δ -semiopen set, fuzzy e-open) is called fuzzy δ -preclosed (resp.fuzzy δ -semiclosed, fuzzy e-closed).

Definition 2.6. The intersection of all fuzzy e-closed sets containing A is called fuzzy e-closure of A and is denoted by ecl(A) and the union of all fuzzy e-open sets contained in A is called fuzzy e-interior of A and is denoted by $e \operatorname{int}(A)$.

Definition 2.7. A mapping $f: X \to Y$ is said to be a fuzzy e-continuous[6] (resp. fuzzy e-irresolute) if $f^{-1}(\lambda)$ is fuzzy e-open in X for every fuzzy open (resp. fuzzy e-open) set λ in Y.

Definition 2.8. A fuzzy set μ is quasi-coincident[5] with a fuzzy set λ denoted by $\mu q \lambda$ iff there exist $x \in X$ such that $\mu(x) + \lambda(x) > 1$. If μ and λ are not quasi-coincident then we write $\mu \bar{q} \lambda$. Note that $\mu \leq \lambda \Leftrightarrow \mu \bar{q} (1 - \lambda)$.

Definition 2.9. A fuzzy point x_p is quasi-coincident[5] with a fuzzy set λ denoted by $x_p q \lambda$ iff there exist $x \in X$ such that $p + \lambda(x) > 1$.

3. Fuzzy \widetilde{e} -closed sets

Definition 3.1. A fuzzy set λ in a fuzzy topological space (X, τ) is called

- (a) fuzzy \widetilde{e} closed (briefly $f\widetilde{e}$ -closed) iff $ecl(\lambda) \leq \mu$, whenever $\lambda \leq \mu$ and μ is fuzzy e-open in X.
- (b) fuzzy \widetilde{e} open (briefly f \widetilde{e} -open) iff $\mu \leq e \operatorname{int}(\lambda)$, whenever $\mu \leq \lambda$ and μ is fuzzy e-closed in X.

Theorem 3.2. Every fuzzy closed, fuzzy δ -pre closed, fuzzy δ -semi closed is fuzzy \tilde{e} -closed but, the converse may not be true in general.

Proof. Proof follows immediately from the definition.

Example 3.3. Let $X = \{a, b\}$ and the fuzzy sets u, v, w, h are defined as follows.

$$u(a) = 0.3, \ v(a) = 0.4, \ w(a) = 0.4, \ h(a) = 0.6.$$

 $u(b) = 0.5, \ v(b) = 0, \ w(b) = 0.6, \ h(b) = 0.5.$

Let $\tau = \{0, 1, u\}$ and h is e-open of X. Then v is \widetilde{fe} -closed set for $v \leq w$, $ecl(v) \leq w$, where w is fuzzy e-open, but not fuzzy δ -pre closed.

Example 3.4. Let $X = \{a, b\}$ and the fuzzy sets u, v, w, h are defined as follows.

$$u(a) = 0.5, \ v(a) = 0.1, \ w(a) = 0.5, \ h(a) = 0.6.$$

$$u(b) = 0.1, \ v(b) = 0.3, \ w(b) = 1.0, \ h(b) = 0.3.$$

Let $\tau = \{0, 1, u\}$ and h is fuzzy e-open of X. Then v is \widetilde{ee} -closed set for $v \leq w$, $ecl(v) \leq w$, where w is fuzzy e-open, but not fuzzy δ -semi closed.

Theorem 3.5. If u is fuzzy e-open and \widetilde{fe} -closed in (X, τ) , then u is fuzzy e-closed in (X, τ) .

Proof. Let u be fuzzy e-open and $f\tilde{e}$ -closed set in X. For $u \leq u$, by definition $ecl(u) \leq u$. But $u \leq ecl(u)$, which implies u = ecl(u). Hence u is fuzzy e-closed set in X. \square

Theorem 3.6. Let (X, τ) be a fuzzy topological spaces and u be a fuzzy set of X. Then u is $f\widetilde{e}$ -closed if and only if $u\overline{q}v$ implies $ecl(u)\overline{q}v$ for every fuzzy e-closed set v of X.

Proof. Suppose u be a f \widetilde{e} -closed set of X. Let v be a fuzzy e-closed set in X such that $u\overline{q}v$. Then by definition that implies $u \leq 1-v$ and 1-v is fuzzy e-open set of X. Therefore, $ecl(u) \leq ecl(1-v) \leq 1-v$ as u is f \widetilde{e} -closed. Hence $ecl(u)\overline{q}v$. Conversely, let d be fuzzy e-open set in X such that $u \leq d$. Then by definition $u\overline{q}(1-d)$ and 1-d is fuzzy e-closed set in X. By hypothesis, $ecl(u)\overline{q}(1-d)$, which implies $ecl(u) \leq d$. Hence u is f \widetilde{e} -closed.

Theorem 3.7. Let u be f\vec{e}-closed set in (X, τ) and x_p be a fuzzy point of (X, τ) such that $x_p q(ecl(u))$ then $(ecl(x_p))qu$

Proof. Let u be f\tilde{e}-closed and x_p be a fuzzy point of X. Suppose $ecl(x_p)\overline{q}u$, then by definition $ecl(x_p) \le 1 - u$ which implies $u \le 1 - (ecl(x_p))$. So $ecl(u) \le 1 - (ecl(x_p)) \le 1 - x_p$, because $1 - (ecl(x_p))$ is fuzzy e-open in X and u is f\tilde{e}-closed in X. Hence $x_p\overline{q}(ecl(u))$, which is a contradiction.

Theorem 3.8. If u is fe-closed set in (X, τ) and $u \le v \le ecl(u)$, then v is fe-closed set in (X, τ) .

Proof. Let d be fuzzy e- open set of (X, τ) such that $v \leq d$. Then we get $u \leq d$. Since u is fe-closed, it follows that $ecl(u) \leq d$. Now, $v \leq ecl(u)$ implies $ecl(v) \leq ecl(ecl(u) = ecl(u)$. Thus $ecl(v) \leq d$. This proves that v is also a fe-closed set of (X, τ) .

Theorem 3.9. If u is $f\tilde{e}$ -open set in (X,τ) and e int $(u) \leq v \leq u$ then v is $f\tilde{e}$ -open set in (X,τ) .

4. $f\tilde{e}$ -continuous and $f\tilde{e}$ -irresolute mappings

Definition 4.1. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \widetilde{e} -continuous (briefly, \widetilde{e} -continuous), if $f^{-1}(\lambda)$ is \widetilde{fe} -closed set in X, for every fuzzy closed set λ in Y.

Definition 4.2. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \tilde{e} -irresolute (briefly f \tilde{e} -irresolute), if $f^{-1}(\lambda)$ is f \tilde{e} -closed set in X, for every f \tilde{e} -closed set λ in Y.

Theorem 4.3. Every fe-irresolute map is fe-continuous.

Proof. Let $f:(X,\tau)\to (Y,\sigma)$ be $f\widetilde{e}$ -irresolute and let λ be fuzzy closed set in Y. Since every fuzzy closed set is also $f\widetilde{e}$ -closed, λ is $f\widetilde{e}$ -closed in Y. Since $f:(X,\tau)\to (Y,\sigma)$ is $f\widetilde{e}$ -irresolute, we have $f^{-1}(\lambda)$ is $f\widetilde{e}$ -closed. Thus inverse image of every fuzzy closed set in Y is $f\widetilde{e}$ -closed in X. Therefore the function $f:(X,\tau)\to (Y,\sigma)$ is $f\widetilde{e}$ -continuous. \square

The converse of above theorem need not be true as shown in the following example.

Example 4.4. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$ and the fuzzy sets u_1, u_2, v, w are defined as follows.

$$u_1(a) = 0.1, \ u_2(a) = 0.7, \ v(x) = 0.2, \ w(x) = 0.3,$$

 $u_1(b) = 0.4, \ u_2(b) = 0.2, \ v(y) = 0.4, \ w(y) = 0.5,$
 $u_1(c) = 0.6, \ u_2(c) = 0.4, \ v(z) = 0.5, \ w(z) = 0.2$

Let $\tau = \{0, 1, u_1, u_2, u_1 \lor u_2, u_1 \land u_2\}$ and $\sigma = \{0, v, 1\}$ and the mapping $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = x, f(b) = y, f(c) = z. Then f is fẽ-continuous but not fẽ-irresolute as the fuzzy set w is fẽ-closed in Y but $f^{-1}(w)$ is not fẽ-closed set in X.

Theorem 4.5. Every fuzzy continuous map is fuzzy \tilde{e} -continuous.

However, converse need not be true as shown in the following example.

Example 4.6. Let $X = \{a, b\}$ and $Y = \{x, y\}$ and the fuzzy sets A, B, C are defined as follows.

$$A(a) = 0.2, \ B(x) = 0.6, \ C(a) = 0.5$$

 $A(b) = 0.4, \ B(y) = 0.4, \ C(b) = 0.3$

Let $\tau = \{0, 1, A\}$ and $\sigma = \{0, B, 1\}$. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = x, f(b) = y. Then f is \widetilde{fe} -continuous as C is fuzzy e-open sets in X but f is not fuzzy continuous in Y, since $B \in \sigma$ and $f^{-1}(B) = B \notin \tau$.

Theorem 4.7. If $f:(X,\tau)\to (Y,\sigma)$ is fe-continuous if and only if the inverse image of each fuzzy open set of Y is fe-open set of X.

Proof. Let u be a f \tilde{e} -open set of Y then 1-u is f \tilde{e} -closed in Y. Since $f: X \to Y$ is f \tilde{e} -continuous $f^{-1}(1-u) = 1 - f^{-1}(u)$ is f \tilde{e} -closed set of X. That is $f^{-1}(u)$ is f \tilde{e} -open set of X. The converse is obvious.

Theorem 4.8. If $f:(X,\tau)\to (Y,\sigma)$ is fee-continuous then

- (a) for each fuzzy point x_{α} of X and each $\lambda \in Y$ such that $f(x_{\alpha})q\lambda$, there exists a fe-open set μ of X such that $x_{\alpha} \in \mu$ and $f(\mu) \leq \lambda$.
- (b) for each fuzzy point x_{α} of X and each $\lambda \in Y$ such that $f(x_{\alpha})q\lambda$, there exists a fe-open set μ of X such that $x_{\alpha}q\mu$ and $f(\mu) \leq \lambda$.

Proof. (a) Let x_{α} be a fuzzy point of X. Then $f(x_{\alpha})$ is a fuzzy point in Y. Now, let $\lambda \in Y$ be a fe-open set such that $f(x_{\alpha})q\lambda$. For $\mu = f^{-1}(\lambda)$ as f is fe-continuous we have μ is fe-open set of X and $x_{\alpha} \in \mu$. Therefore $f(\mu) = f(f^{-1}(\lambda)) \leq \lambda$.

(b) Let x_{α} be a fuzzy point of X, and let $\lambda \in Y$ such that $f(x_{\alpha})q\lambda$. Taking $\mu = f^{-1}(\lambda)$ we get μ is fe-open set of X such that $x_{\alpha} \in \mu$ and $f(\mu) = f(f^{-1}(\lambda)) \leq \lambda$.

Definition 4.9. A fuzzy topological space X is fuzzy $eT_{1/2}$ space (briefly, $feT_{1/2}$ space) if every $f\tilde{e}$ -closed set in X is fuzzy e-closed set in X.

Theorem 4.10. A fuzzy topological space X is $feT_{1/2}$ if and only if every fuzzy set in X is both fuzzy e-open and \widetilde{fe} -open.

Proof. Let X be $feT_{1/2}$ and let μ be $f\widetilde{e}$ -open in X. Then $1-\mu$ is $f\widetilde{e}$ -closed. By hypothesis every $f\widetilde{e}$ -closed set is fuzzy e-closed, $1-\mu$ is fuzzy e-closed set and hence μ is fuzzy e-open in X. Conversely, let μ be $f\widetilde{e}$ - closed. Then $1-\mu$ is $f\widetilde{e}$ -open which implies $1-\mu$ is fuzzy e-open. Hence μ is fuzzy e-closed. Every $f\widetilde{e}$ -closed set in X is fuzzy e-closed. Therefore X is $feT_{1/2}$ space.

Definition 4.11. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \widetilde{e} -open (briefly $f\widetilde{e}$ -open) if the image of every fuzzy open set in X, is $f\widetilde{e}$ -open in Y.

Definition 4.12. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \widetilde{e} -closed (briefly $f\widetilde{e}$ -closed) if the image of every fuzzy closed set in X is $f\widetilde{e}$ -closed in Y.

Definition 4.13. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \widetilde{e}^* -open (briefly $f\widetilde{e}^*$ -open) if the image of every $f\widetilde{e}$ -open set in X is $f\widetilde{e}$ -open in Y.

Definition 4.14. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy \widetilde{e}^* -closed (briefly $f\widetilde{e}^*$ -closed) if the image of every $f\widetilde{e}$ -closed set in X is $f\widetilde{e}$ -closed.

Theorem 4.15. If λ is fe-closed in X and $f: X \to Y$ is bijective, fe-irresolute and fe-closed, then $f(\lambda)$ is fe-closed in Y.

Proof. Let $f(\lambda) \leq \mu$ where μ is fuzzy e-open in Y. Since f is fuzzy e-irresolute, $f^{-1}(\mu)$ is fuzzy e-open containing λ . Hence $ecl(\lambda) \leq f^{-1}(\mu)$ as λ is $f\tilde{e}$ -closed. Since f is $f\tilde{e}$ -closed, $f(ecl(\lambda))$ is $f\tilde{e}$ -closed set contained in the fuzzy e-open set μ , which implies that $ecl(f(ecl(\lambda))) \leq \mu$ and hence $ecl(f(\lambda)) \leq \mu$. So $f(\lambda)$ is $f\tilde{e}$ -closed in Y. \square

Definition 4.16. A mapping $f:(X,\tau)\to (Y,\sigma)$ is said to be fuzzy e-open(resp. fuzzy e*-open) if the image of every fuzzy open (resp. fuzzy e-open)set in X is fuzzy e-open set in Y.

Theorem 4.17. Let $f:(X,\tau)\to (Y,\sigma)$ be onto fe-irresolute and fuzzy e^* -closed. If X is $feT_{1/2}$ space, then (Y,σ) is $feT_{1/2}$ -space.

Proof. Let μ be a fe-closed set in Y. Since $f: X \to Y$ is fe-irresolute, $f^{-1}(\mu)$ is fe-closed set in X. As X is $feT_{1/2}$ -space, $f^{-1}(\mu)$ is fuzzy e-closed set in X. Also $f: X \to Y$ is fuzzy e^* -closed, $f(f^{-1}(\mu))$ is fuzzy e-closed in Y. Since $f: X \to Y$ is onto, $f(f^{-1}(\mu)) \le \mu$. Thus μ is fuzzy e-closed in Y. Hence (Y, σ) is also $feT_{1/2}$ -space.

Theorem 4.18. If the bijective map $f:(X,\tau)\to (Y,\sigma)$ is fuzzy e^* -open and fuzzy e-irresolute, then $f:(X,\tau)\to (Y,\sigma)$ is \widetilde{fe} -irresolute.

Proof. Let λ be a fe-closed set in Y and let $f^{-1}(\lambda) \leq \mu$ where μ is a fuzzy e-open set in X. Clearly, $\lambda \leq f(\mu)$. Since $f: X \to Y$ is fe*-open map, $f(\mu)$ is fuzzy e-open in Y and λ is fe-closed set in Y. Then $ecl(\lambda) \leq f(\mu)$, and thus $f^{-1}(ecl(\lambda)) \leq \mu$. Also $f: X \to Y$ is fuzzy e- irresolute and $ecl(\lambda)$ is a fuzzy e-closed set in Y, then $f^{-1}(ecl(\lambda))$ is fuzzy e-closed set in X. Thus $ecl(f^{-1}(\lambda)) \leq ecl(f^{-1}(ecl(\lambda)) \leq \mu$. So $f^{-1}(\lambda)$ is fe-closed set in X. Hence $f: X \to Y$ is fe-irresolute map.

Theorem 4.19. Let $f:(X,\tau)\to (Y,\sigma)$. Then the following statements are equivalent.

(a) f is $f\tilde{e}$ -irresolute.

- (b) for every fe-closed set λ in Y, $f^{-1}(\lambda)$ is fe-closed in X.
- (c) for every fuzzy point x_p of X and every $f\tilde{e}$ -open λ of Y such that $f(x_p) \in \lambda$, there exist a $f\tilde{e}$ -open set such that $x_p \in \mu$ and $f(\mu) \leq \lambda$.

Proof. $(a) \Rightarrow (b)$ Obvious.

- $(b)\Rightarrow(c)$ Let λ be f\vec{e}-open in Y which implies $1-\lambda$ is f\vec{e}-closed in Y. By (ii), $f^{-1}(\lambda)$ is f\vec{e}-closed in X, $f^{-1}(1-\lambda)$ is f\vec{e}-closed in X. Let x_p be a fuzzy point of X such that $f(x_p)\in\lambda$ implies that $x_p\in f^{-1}(\lambda)$ is f\vec{e}-open in X. Let $\mu=f^{-1}(\lambda)$ which implies that $f(\mu)=f(f^{-1}(\lambda))\leq\lambda$.
- Then there exist a fe-open set in Y and $x_p \in f^{-1}(\lambda)$ which implies $f(x_p) \in \lambda$. Then there exist a fe-open set μ in X such that $x_p \in \mu$ and $f(\mu) \leq \lambda$. Hence $x_p \in \mu \leq f^{-1}(\lambda)$. Hence $f^{-1}(\lambda)$ is fe-open in X. Hence f is fe-irresolute.

Theorem 4.20. Let $f:(X,\tau)\to (Y,\sigma),\ g:(Y,\sigma)\to (Z,\rho)$ be two maps such that $g\circ f:(X,\tau)\to (Z,\rho)$ is $f\widetilde{e}$ -closed.

- (a) If f is fuzzy continuous and surjective, then g is fe-closed.
- (b) If g is f\vec{e}-irresolute and injective, then f is f\vec{e}-closed.

Proof. (a) Let U be fuzzy closed in Y . Then $f^{-1}(U)$ is fuzzy closed in X, as f is fuzzy continuous. Since $g \circ f$ is fe-closed map and f is surjective, $(g \circ f)f^{-1}(U) = g(U)$ is fe-closed in Z. Hence $g: Y \to Z$ is fe-closed.

(b) Let U be a fuzzy closed in X. Then $(g \circ f)(U)$ is feg-closed in Z. Since g is $f\widetilde{e}$ -irresolute and injective $g^{-1}(g \circ f)(U) = f(U)$ is $f\widetilde{e}$ -closed in Y. Hence f is a $f\widetilde{e}$ -closed.

Theorem 4.21. Let $f:(X,\tau)\to (Y,\sigma),\ g:(Y,\sigma)\to (Z,\rho)$ be two maps such that $g\circ f:(X,\tau)\to (Z,\rho)$ is $f\widetilde{e}^*$ -closed.

- (a) If f is fuzzy continuous and surjective, then g is $f\tilde{e}$ -closed.
- (b) If g is $f\tilde{e}$ -irresolute and injective, then f is $f\tilde{e}^*$ -closed.

Theorem 4.22. For the functions $f: X \to Y$ and $g: Y \to Z$ the following relations hold:

- (a) If $f:X\to Y$ is fe-continuous and $g:Y\to Z$ is fuzzy continuous then $g\circ f:X\to Z$ is fe-continuous.
- (b) If $f:X\to Y$ and $g:Y\to Z$ are fe-irresolute then $g\circ f:X\to Z$ is fe-irresolute.
- (c) If $f: X \to Y$ is f\vec{e}-irresolute and $g: Y \to Z$ is f\vec{e}-continuous then $g \circ f: X \to Z$ is f\vec{e}-continuous.

Proof. Omitted. \Box

Theorem 4.23. If $f:(X,\tau)\to (Y,\sigma)$ is fuzzy e-irresolute and $g:(Y,\sigma)\to (Z,\rho)$ is fe-continuous then $g\circ f:(X,\tau)\to (Z,\rho)$ is fe-continuous if Y is $feT_{1/2}$ -space.

Proof. Suppose μ is fuzzy e-closed subset of Z. Since $g: Y \to Z$ is $f\widetilde{e}$ -continuous $g^{-1}(\mu)$ is $f\widetilde{e}$ -closed subset of Y. Now since Y is $feT_{1/2}$ -space, $g^{-1}(\mu)$ is fuzzy e-closed subset of Y. Also since $f: X \to Y$ is fuzzy e- irresolute $f^{-1}(g^{-1}(\mu)) = (g \circ f)^{-1}(\mu)$ is fuzzy e-closed. Thus $g \circ f: X \to Z$ is $f\widetilde{e}$ -continuous.

Theorem 4.24. Let $g \circ f : (X, \tau) \to (Z, \rho)$ be $f\widetilde{e}$ -continuous. Then f is fe-continuous if X is $feT_{1/2}$ -space.

Proof. Let μ be fuzzy closed set in Y. Since $f: X \to Y$ is fe-continuous, $f^{-1}(\mu)$ is fe-closed subset in X. Since X is $feT_{1/2}$ -space, by hypothesis every fe-closed set is fuzzy eclosed. Hence $f^{-1}(\mu)$ is fuzzy e-closed subset in X. Therefore $f: X \to Y$ is fuzzy e-continuous.

5. $f\widetilde{e}$ - HOMEOMORPHISM AND $f\widetilde{e}^*$ -HOMEOMORPHISM

Definition 5.1. A mapping $f:(X,\tau)\to (Y,\sigma)$ is called fuzzy \widetilde{e} -homeomorphism (briefly f \widetilde{e} -homeomorphism) if f and f^{-1} are f \widetilde{e} -continuous.

Definition 5.2. A mapping $f:(X,\tau)\to (Y,\sigma)$ is called fuzzy \widetilde{e}^* -homeomorphism (briefly \widetilde{e}^* -homeomorphism) if f and f^{-1} are $f\widetilde{e}$ - irresolute.

Theorem 5.3. Every fuzzy homeomorphism is $f\tilde{e}$ -homeomorphism.

The converse of the above theorem need not be true as seen from the following example.

Example 5.4. Let $X = Y = \{a, b, c\}$ and the fuzzy sets u, v be defined as, u(a) = 0.1, u(b) = 0.4, v(a) = 0.2, v(b) = 0.5. Let $\tau = \{0, 1, u\}$ and $\sigma = \{0, 1, v\}$. Then the mapping $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = a, f(b) = b with A(a) = 0, A(b) = 0.3 is fuzzy e-open in (X, τ) and B(a) = 0.1, B(b) = 0.3 is fuzzy e-open (Y, τ) is fe-homeomorphism but not fuzzy homeomorphism as u is open in X, f(u) = u is not open in Y. Hence $f^{-1}: Y \to X$ is not fuzzy continuous.

Theorem 5.5. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective mapping. Then the following are equivalent:

- (a) f is $f\tilde{e}$ -homeomorphism.
- (b) f is fe-continuous and fe-open map.
- (c) f is fe-continuous and fe-closed map.

Proof. (a) \Rightarrow (b) Let f be f\vec{e}-homeomorphism. Then f and f^{-1} are f\vec{e}-continuous. To prove that f is f\vec{e}-open map, let λ be a fuzzy open set in X. Since $f^{-1}: Y \to X$ is f\vec{e}-continuous, $(f^{-1})^{-1}(\lambda) = f(\lambda)$ is f\vec{e}-open in Y. Therefore $f(\lambda)$ is f\vec{e}-open in Y. Hence f is f\vec{e}-open.

- (b) \Rightarrow (c) Let f be f \widetilde{e} -continuous and f \widetilde{e} -open map. To prove that f is f \widetilde{e} -closed map. Let μ be a fuzzy closed set in X. Then $1-\mu$ is fuzzy open set in X. Since f is f \widetilde{e} -open map, $f(1-\mu)$ is f \widetilde{e} -open set in Y. Now $f(1-\mu)=1-f(\mu)$. Therefore $f(\mu)$ is f \widetilde{e} -closed in Y. Hence f is a f \widetilde{e} -closed.
- (c) \Rightarrow (a) Let f be $f\widetilde{e}$ -continuous and $f\widetilde{e}$ -closed map. To prove that f^{-1} is $f\widetilde{e}$ -continuous. Let λ be a fuzzy open set in X. Then $1-\lambda$ is a fuzzy closed set in X. Since f is $f\widetilde{e}$ -closed map, $f(1-\lambda)$ is $f\widetilde{e}$ -closed in Y. Now $(f^{-1})^{-1}(1-\lambda) = f(1-\lambda) = 1-f(\lambda)$ is $f\widetilde{e}$ open set in Y. Therefore $f^{-1}: Y \to X$ is $f\widetilde{e}$ -continuous. Hence f is $f\widetilde{e}$ -homeomorphism.

Theorem 5.6. Let $f:(X,\tau)\to (Y,\sigma)$ be a bijective function. Then the following are equivalent:

- (a) f is $f\tilde{e}^*$ -homeomorphism.
- (b) f is $f\tilde{e}$ -irresolute and $f\tilde{e}^*$ -open.
- (c) f is fe-irresolute and fe*-closed.

Proof. Proof follows from the above theorem.

6. Fuzzy \tilde{e} -connectedness

Definition 6.1. A fuzzy set v in a fuzzy topological spaces (X, τ) is said to be fuzzy \tilde{e} -connected if and only if v cannot be expressed as the union of two fuzzy \tilde{e} -open sets.

Theorem 6.2. Every fuzzy \tilde{e} -connected set is fuzzy connected.

Proof. Let X be fuzzy \widetilde{e} -connected and X is not fuzzy connected. Then there exists fuzzy open sets u and v in X such that $1_x = u \vee v$. Since X is fuzzy \widetilde{e} -connected set, which implies that u and v is fuzzy \widetilde{e} -open set. Clearly, X is not fuzzy \widetilde{e} -connected which is a contradiction.

The converse of the above theorem is not true in general.

Example 6.3. Let $X = \{a, b, c\}$ and $\tau = \{0, 1, A\}$ and the fuzzy set A(a) = 0, A(b) = 1, A(c) = 0. Then (X, τ) is fuzzy connected but not fuzzy \tilde{e} -connected.

Theorem 6.4. Let $f:(X,\tau)\to (Y,\sigma)$ be a fuzzy \widetilde{e} -continuous surjective mapping. If v is a fuzzy \widetilde{e} -connected subset in X, then f(v) is fuzzy connected in Y.

Proof. Suppose that H is not fuzzy connected in Y. Then, there exist fuzzy open sets u and v in Y such that $H = u \vee v$. Since f is fuzzy \tilde{e} -continuous surjective mapping, $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy \tilde{e} -open set in X and $H = f^{-1}(u \vee v) = f^{-1}(u) \vee f^{-1}(v)$. It is clear that $f^{-1}(u)$ and $f^{-1}(v)$ are fuzzy \tilde{e} -open set in X. Therefore, H is not fuzzy \tilde{e} -connected in X, which is a contradiction. Hence, Y is fuzzy connected. \square

7. CONCLUSION

It is interesting to work on \tilde{e} -compactness, $f\tilde{e}$ -continuous and $f\tilde{e}$ -irresolute mappings, fuzzy \tilde{e} -connectedness and various properties of these things. Compositions of mappings can be tried with other forms of $f\tilde{e}$ -irresolute mappings.

References

- [1] Anjana Bhattacharyya and M. N. Mukherjee, On fuzzy δ -almost continuous and δ^* -almost continuous functions, J. Tripura Math. Soc. 2(2000) 45–57.
- [2] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] A. Mukherjee and S. Debnath, δ-semi open sets in fuzzy setting, J. Tripura. Math. Soc. 8 (2006) 51–54.
- [5] P. M. Pu and Y. M. Liu, Fuzzy topology-I. Neighborhood structure of fuzzy point and Mooresmith convergence, J. Math. Anal. Appl. 76(2) (1980) 571–599.
- [6] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Ann. Fuzzy Math. Inform. 8(1) (2014) 141–148.
- [7] N. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(2) (1968) 103-118.
- [8] L. A. Zadeh, Fuzzy Sets, Information and control 8 (1965) 338–353.

$\underline{\mathrm{V.\ SEENIVASAN}}$ (seenujsc@yahoo.co.in)

Department of mathematics, University College of Engineering Panruti, (A constituent college of Anna university, Chennai), Panruti-607106, Tamilnadu, India

$\underline{K.\ KAMALA}\ (\texttt{krsaut@gmail.com})$

Department of mathemathics, University College of Engineering Panruti, (A constituent college of Anna university, Chennai), Panruti-607106, Tamilnadu, India