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1. Introduction

The concept fuzzy has invaded almost all branches of mathematics with the
introduction of fuzzy sets by Zadeh[8] of 1965. The theory of fuzzy topological
spaces was introduced and developed by Chang[3]. The concept of fuzzy e-open sets
and fuzzy e-continuity and separations axioms and their properties were defined by
Seenivasan etal[6]. In this paper the notion of fuzzy ẽ-closed sets is introduced and
its properties are studied. Also the fuzzy ẽ-continuous, fuzzy ẽ-irresolute maps, fuzzy
ẽ-homeomorphism and fuzzy ẽ- connectedness and their properties are investigated
with the help of fuzzy ẽ-open sets.

2. Preliminaries

Throughout this paper (X, τ), (Y, σ) and (Z, ρ) (or simply X, Y and Z) represent
non-empty fuzzy topological spaces on which no separation axioms are assumed,
unless otherwise mentioned. Let A be subset of a space X. The fuzzy closure of A,
fuzzy interior of A, fuzzy δ-closure of A and the fuzzy δ-interior of A are denoted by
cl(A), int(A), clδ(A), intδ(A) respectively.

Definition 2.1. A subset A of space X is called fuzzy regular open [2](resp.fuzzy
regular closed) if A = int(cl(A)) (resp. A = cl(int(A)).
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Definition 2.2. The fuzzy δ- interior of subset A of X is the union of all fuzzy
regular open sets contained in A.

Definition 2.3. A subset A is called fuzzy δ -open[7] if A = intδ(A). The comple-
ment of fuzzy δ-open set is called fuzzy fuzzy δ -closed (i.e, A = clδ(A)).

Definition 2.4. A subset A of a space X is called fuzzy δ-preopen [1](resp. fuzzy
δ -semi open[4], fuzzy e-open[6]) if A ≤ int (clδ(A)) (resp. A ≤ cl (intδ(A)),
A ≤ cl (intδ( A)) ∨ int( clδ(A)).

Definition 2.5. The complement of a fuzzy δ-preopen set (resp. fuzzy δ-semiopen
set, fuzzy e-open ) is called fuzzy δ-preclosed (resp.fuzzy δ-semiclosed, fuzzy e-
closed).

Definition 2.6. The intersection of all fuzzy e-closed sets containing A is called
fuzzy e-closure of A and is denoted by ecl(A) and the union of all fuzzy e-open sets
contained in A is called fuzzy e-interior of A and is denoted by e int(A).

Definition 2.7. A mapping f : X → Y is said to be a fuzzy e- continuous[6] (resp.
fuzzy e-irresolute) if f−1(λ) is fuzzy e-open in X for every fuzzy open (resp. fuzzy
e-open) set λ in Y.

Definition 2.8. A fuzzy set µ is quasi-coincident[5] with a fuzzy set λ denoted by
µqλ iff there exist x ∈ X such that µ(x) + λ(x) > 1. If µ and λ are not quasi-
coincident then we write µqλ. Note that µ ≤ λ ⇔ µq(1− λ).

Definition 2.9. A fuzzy point xp is quasi-coincident[5] with a fuzzy set λdenoted
by xpqλ iff there exist x ∈ X such that p + λ(x) > 1.

3. Fuzzy ẽ-closed sets

Definition 3.1. A fuzzy set λ in a fuzzy topological space (X, τ) is called
(a) fuzzy ẽ- closed (briefly fẽ-closed ) iff ecl(λ) ≤ µ, whenever λ ≤ µ and µ is

fuzzy e-open in X.
(b) fuzzy ẽ- open (briefly fẽ-open) iff µ ≤ e int(λ), whenever µ ≤ λ and µ is

fuzzy e-closed in X.

Theorem 3.2. Every fuzzy closed, fuzzy δ-pre closed, fuzzy δ-semi closed is fuzzy
ẽ-closed but, the converse may not be true in general.

Proof. Proof follows immediately from the definition. ¤
Example 3.3. Let X = {a, b} and the fuzzy sets u, v, w, h are defined as follows.

u(a) = 0.3, v(a) = 0.4, w(a) = 0.4, h(a) = 0.6.

u(b) = 0.5, v(b) = 0, w(b) = 0.6, h(b) = 0.5.

Let τ = {0, 1, u} and h is e-open of X. Then v is fẽ-closed set for v ≤ w, ecl(v) ≤ w,
where w is fuzzy e-open, but not fuzzy δ-pre closed.

Example 3.4. Let X = {a, b} and the fuzzy sets u, v, w, h are defined as follows.

u(a) = 0.5, v(a) = 0.1, w(a) = 0.5, h(a) = 0.6.

u(b) = 0.1, v(b) = 0.3, w(b) = 1.0, h(b) = 0.3.
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Let τ = {0, 1, u} and h is fuzzy e-open of X. Then v is fẽ-closed set for v ≤ w,
ecl(v) ≤ w, where w is fuzzy e-open, but not fuzzy δ-semi closed.

Theorem 3.5. If u is fuzzy e-open and fẽ-closed in (X, τ), then u is fuzzy e-closed
in (X, τ) .

Proof. Let u be fuzzy e-open and fẽ-closed set in X. For u ≤ u, by definition ecl(u) ≤
u. But u ≤ ecl(u), which implies u = ecl(u). Hence u is fuzzy e-closed set in X. ¤
Theorem 3.6. Let (X, τ) be a fuzzy topological spaces and u be a fuzzy set of X.
Then u is fẽ-closed if and only if uqv implies ecl(u)qv for every fuzzy e-closed set v
of X.

Proof. Suppose u be a fẽ-closed set of X. Let v be a fuzzy e-closed set in X such that
uqv. Then by definition that implies u ≤ 1 − v and 1 − v is fuzzy e-open set of X.
Therefore, ecl(u) ≤ ecl(1− v) ≤ 1− v as u is fẽ-closed. Hence ecl(u)qv. Conversely,
let d be fuzzy e-open set in X such that u ≤ d. Then by definition uq(1−d) and 1−d
is fuzzy e-closed set in X. By hypothesis, ecl(u)q(1 − d), which implies ecl(u) ≤ d.
Hence u is fẽ-closed. ¤
Theorem 3.7. Let u be fẽ-closed set in (X, τ) and xp be a fuzzy point of (X, τ) such
that xpq(ecl(u)) then (ecl(xp))qu

Proof. Let u be fẽ-closed and xp be a fuzzy point of X. Suppose ecl(xp)qu, then by
definition ecl(xp) ≤ 1−u which implies u ≤ 1− (ecl(xp)). So ecl(u) ≤ 1− (ecl(xp) ≤
1 − xp, because 1 − (ecl(xp)) is fuzzy e-open in X and u is fẽ-closed in X. Hence
xpq(ecl(u)), which is a contradiction. ¤
Theorem 3.8. If u is fẽ-closed set in (X, τ) and u ≤ v ≤ ecl(u), then v is fẽ-closed
set in (X, τ).

Proof. Let d be fuzzy e- open set of (X, τ)such that v ≤ d. Then we get u ≤ d. Since
u is fẽ-closed, it follows that ecl(u) ≤ d. Now, v ≤ ecl(u) implies ecl(v) ≤ ecl(ecl(u)
= ecl(u). Thus ecl(v) ≤ d. This proves that v is also a fẽ-closed set of (X, τ). ¤
Theorem 3.9. If u is fẽ-open set in (X, τ) and e int(u) ≤ v ≤ u then v is fẽ-open
set in (X, τ) .

4. fẽ-continuous and fẽ-irresolute mappings

Definition 4.1. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ-continuous
(briefly, fẽ-continuous), if f−1(λ) is fẽ-closed set in X, for every fuzzy closed set λ
in Y.

Definition 4.2. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ-irresolute
(briefly fẽ-irresolute), if f−1(λ) is fẽ-closed set in X, for every fẽ-closed set λ in Y.

Theorem 4.3. Every fẽ-irresolute map is fẽ-continuous.

Proof. Let f : (X, τ) → (Y, σ) be fẽ-irresolute and let λ be fuzzy closed set in Y. Since
every fuzzy closed set is also fẽ-closed, λ is fẽ-closed in Y. Since f : (X, τ) → (Y, σ) is
fẽ-irresolute, we have f−1(λ) is fẽ-closed. Thus inverse image of every fuzzy closed set
in Y is fẽ-closed in X. Therefore the function f : (X, τ) → (Y, σ) is fẽ-continuous. ¤
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The converse of above theorem need not be true as shown in the following example.

Example 4.4. Let X = {a, b, c} and Y = {x, y, z} and the fuzzy sets u1, u2, v, w
are defined as follows.

u1(a) = 0.1, u2(a) = 0.7, v(x) = 0.2, w(x) = 0.3,

u1(b) = 0.4, u2(b) = 0.2, v(y) = 0.4, w(y) = 0.5,

u1(c) = 0.6, u2(c) = 0.4, v(z) = 0.5, w(z) = 0.2

Let τ = {0, 1, u1, u2, u1∨u2, u1∧u2} and σ = {0, v, 1} and the mapping f : (X, τ) →
(Y, σ) defined by f(a) = x, f(b) = y, f(c) = z. Then f is fẽ-continuous but not
fẽ-irresolute as the fuzzy set w is fẽ-closed in Y but f−1(w) is not fẽ-closed set in X.

Theorem 4.5. Every fuzzy continuous map is fuzzy ẽ-continuous.

However, converse need not be true as shown in the following example.

Example 4.6. Let X = {a, b} and Y = {x, y} and the fuzzy sets A, B,C are defined
as follows.

A(a) = 0.2, B(x) = 0.6, C(a) = 0.5

A(b) = 0.4, B(y) = 0.4, C(b) = 0.3

Let τ = {0, 1, A} and σ = {0, B, 1}. Then the mapping f : (X, τ) → (Y, σ) defined
by f(a) = x, f(b) = y. Then f is fẽ-continuous as C is fuzzy e-open sets in X but f
is not fuzzy continuous in Y, since B ∈ σ and f−1(B) = B /∈ τ.

Theorem 4.7. If f : (X, τ) → (Y, σ) is fẽ-continuous if and only if the inverse
image of each fuzzy open set of Y is fẽ-open set of X.

Proof. Let u be a fẽ-open set of Y then 1− u is fẽ-closed in Y. Since f : X → Y is
fẽ-continuous f−1(1−u) = 1−f−1(u) is fẽ-closed set of X. That is f−1(u) is fẽ-open
set of X. The converse is obvious. ¤

Theorem 4.8. If f : (X, τ) → (Y, σ) is fẽ-continuous then
(a) for each fuzzy point xα of X and each λ ∈ Y such that f(xα)qλ, there exists

a fẽ-open set µ of X such that xα ∈ µ and f(µ) ≤ λ.
(b) for each fuzzy point xα of X and each λ ∈ Y such that f(xα)qλ, there exists

a fẽ-open set µ of X such that xαqµ and f(µ) ≤ λ.

Proof. (a) Let xα be a fuzzy point of X. Then f(xα) is a fuzzy point in Y. Now, let
λ ∈ Y be a fẽ-open set such that f(xα)qλ. For µ = f−1(λ) as f is fẽ-continuous we
have µ is fẽ-open set of X and xα ∈ µ. Therefore f(µ) = f(f−1(λ)) ≤ λ.
(b) Let xα be a fuzzy point of X, and let λ ∈ Y such that f(xα)qλ. Taking µ = f−1(λ)
we get µ is fẽ-open set of X such that xα ∈ µ and f(µ) = f(f−1(λ)) ≤ λ. ¤

Definition 4.9. A fuzzy topological space X is fuzzy eT1/2 space (briefly, feT1/2

space) if every fẽ-closed set in X is fuzzy e-closed set in X.

Theorem 4.10. A fuzzy topological space X is feT1/2 if and only if every fuzzy set
in X is both fuzzy e-open and fẽ-open.
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Proof. Let X be feT1/2 and let µ be fẽ-open in X. Then 1 − µ is fẽ-closed. By
hypothesis every fẽ-closed set is fuzzy e-closed,1− µ is fuzzy e-closed set and hence
µ is fuzzy e-open in X. Conversely, let µ be fẽ- closed. Then 1− µ is fẽ-open which
implies 1− µ is fuzzy e-open. Hence µ is fuzzy e-closed. Every fẽ-closed set in X is
fuzzy e-closed. Therefore X is feT1/2 space. ¤
Definition 4.11. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ-open (briefly
fẽ-open) if the image of every fuzzy open set in X, is fẽ-open in Y.

Definition 4.12. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ-closed (briefly
fẽ-closed) if the image of every fuzzy closed set in X is fẽ-closed in Y.

Definition 4.13. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ∗-open (briefly
fẽ∗-open) if the image of every fẽ-open set in X is fẽ-open in Y.

Definition 4.14. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy ẽ∗-closed (briefly
fẽ∗-closed) if the image of every fẽ-closed set in X is fẽ-closed.

Theorem 4.15. If λ is fẽ-closed in X and f : X → Y is bijective, fe-irresolute
and fẽ-closed, then f(λ) is fẽ-closed in Y.

Proof. Let f(λ) ≤ µ where µ is fuzzy e-open in Y. Since f is fuzzy e -irresolute,
f−1(µ) is fuzzy e-open containing λ. Hence ecl(λ) ≤ f−1(µ) as λ is fẽ -closed. Since
f is fẽ-closed, f(ecl(λ)) is fẽ-closed set contained in the fuzzy e-open set µ, which
implies that ecl(f(ecl(λ))) ≤ µ and hence eclf(λ) ≤ µ. So f(λ) is fẽ-closed in Y. ¤
Definition 4.16. A mapping f : (X, τ) → (Y, σ) is said to be fuzzy e-open(resp.
fuzzy e*-open) if the image of every fuzzy open (resp. fuzzy e-open)set in X is fuzzy
e-open set in Y.

Theorem 4.17. Let f : (X, τ) → (Y, σ) be onto fẽ-irresolute and fuzzy e*-closed. If
X is feT1/2 space, then (Y, σ) is feT1/2 -space.

Proof. Let µ be a fẽ-closed set in Y. Since f : X → Y is fẽ-irresolute, f−1(µ) is
fẽ-closed set in X. As X is feT1/2 -space, f−1(µ) is fuzzy e-closed set in X. Also
f : X → Y is fuzzy e∗-closed, f(f−1(µ)) is fuzzy e-closed in Y. Since f : X → Y is
onto, f(f−1(µ)) ≤ µ. Thus µ is fuzzy e-closed in Y. Hence (Y, σ) is also feT1/2 -
space. ¤
Theorem 4.18. If the bijective map f : (X, τ) → (Y, σ) is fuzzy e*-open and fuzzy
e-irresolute, then f : (X, τ) → (Y, σ) is fẽ-irresolute.

Proof. Let λ be a fẽ-closed set in Y and let f−1(λ) ≤ µ where µ is a fuzzy e-open
set in X. Clearly, λ ≤ f(µ). Since f : X → Y is fe*-open map, f(µ) is fuzzy e-open
in Y and λ is fẽ-closed set in Y. Then ecl(λ) ≤ f(µ), and thus f−1(ecl(λ)) ≤ µ.
Also f : X → Y is fuzzy e- irresolute and ecl(λ) is a fuzzy e-closed set in Y, then
f−1(ecl(λ)) is fuzzy e-closed set in X. Thus ecl(f−1(λ)) ≤ ecl(f−1(ecl(λ)) ≤ µ. So
f−1(λ) is fẽ-closed set in X. Hence f : X → Y is fẽ-irresolute map. ¤
Theorem 4.19. Let f : (X, τ) → (Y, σ). Then the following statements are equiva-
lent.

(a) f is fẽ-irresolute.
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(b) for every fẽ-closed set λ in Y , f−1(λ)is fẽ-closed in X.
(c) for every fuzzy point xp of X and every fẽ-open λ of Y such that f(xp) ∈ λ,

there exist a fẽ-open set such that xp ∈ µ and f(µ) ≤ λ .

Proof. (a) ⇒ (b) Obvious.
(b) ⇒ (c) Let λ be fẽ-open in Y which implies 1−λ is fẽ-closed in Y. By (ii), f−1(λ)is
fẽ- closed in X, f−1(1− λ) is fẽ- closed in X. Let xp be a fuzzy point of X such that
f(xp) ∈λ implies that xp ∈ f−1(λ) is fẽ-open in X. Let µ = f−1(λ) which implies
thatf(µ) = f(f−1(λ)) ≤ λ.
(c) ⇒ (a)Let λ be a fẽ-open set in Y and xp ∈ f−1(λ)which implies f(xp) ∈ λ.
Then there exist a fẽ-open set µ in X such that xp ∈ µ and f(µ) ≤ λ. Hence
xp ∈ µ ≤ f−1(λ). Hence f−1(λ)is fẽ-open in X. Hence f is fẽ-irresolute. ¤

Theorem 4.20. Let f : (X, τ) → (Y, σ), g : (Y, σ) → (Z, ρ) be two maps such that
g ◦ f : (X, τ) → (Z, ρ) is fẽ-closed.

(a) If f is fuzzy continuous and surjective, then g is fẽ-closed.
(b) If g is fẽ-irresolute and injective, then f is fẽ-closed.

Proof. (a) Let U be fuzzy closed in Y . Then f−1(U) is fuzzy closed in X, as f is fuzzy
continuous. Since g ◦ f is fẽ-closed map and f is surjective, (g ◦ f)f−1(U) = g(U) is
fẽ-closed in Z. Hence g : Y → Z is fẽ-closed.
(b) Let U be a fuzzy closed in X. Then (g ◦ f)(U) is feg-closed in Z. Since g is
fẽ-irresolute and injective g−1(g ◦ f)(U) = f(U) is fẽ-closed in Y. Hence f is a fẽ-
closed. ¤

Theorem 4.21. Let f : (X, τ) → (Y, σ), g : (Y, σ) → (Z, ρ) be two maps such that
g ◦ f : (X, τ) → (Z, ρ) is fẽ∗-closed.

(a) If f is fuzzy continuous and surjective, then g is fẽ-closed.
(b) If g is fẽ-irresolute and injective, then f is fẽ∗-closed.

Theorem 4.22. For the functions f : X → Y and g : Y → Z the following relations
hold:

(a) If f : X → Y is fẽ-continuous and g : Y → Z is fuzzy continuous then
g ◦ f : X → Z is fẽ-continuous.

(b) If f : X → Y and g : Y → Z are fẽ-irresolute then g ◦ f : X → Z is
fẽ-irresolute.

(c) If f : X → Y is fẽ-irresolute and g : Y → Z is fẽ-continuous then g ◦ f :
X → Z is fẽ-continuous.

Proof. Omitted. ¤

Theorem 4.23. If f : (X, τ) → (Y, σ) is fuzzy e-irresolute and g : (Y, σ) → (Z, ρ)
is fẽ-continuous then g ◦ f : (X, τ) → (Z, ρ) is fẽ-continuous if Y is feT1/2 -space.

Proof. Suppose µ is fuzzy e-closed subset of Z. Since g : Y → Z is fẽ-continuous
g−1(µ) is fẽ-closed subset of Y. Now since Y is feT1/2 -space, g−1(µ) is fuzzy e-closed
subset of Y. Also since f : X → Y is fuzzy e- irresolute f−1(g−1(µ)) = (g ◦ f)−1(µ)
is fuzzy e-closed. Thus g ◦ f : X → Z is fẽ-continuous. ¤
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Theorem 4.24. Let g◦f : (X, τ) → (Z, ρ) be fẽ-continuous. Then f is fe-continuous
if X is feT1/2 -space.

Proof. Let µ be fuzzy closed set in Y. Since f : X → Y is fẽ-continuous, f−1(µ) is
fẽ-closed subset in X. Since X is feT1/2 -space, by hypothesis every fẽ-closed set is
fuzzy eclosed. Hence f−1(µ) is fuzzy e-closed subset in X. Therefore f : X → Y is
fuzzy e-continuous. ¤

5. fẽ- homeomorphism and fẽ∗-homeomorphism

Definition 5.1. A mapping f : (X, τ) → (Y, σ) is called fuzzy ẽ-homeomorphism
(briefly fẽ-homeomorphism) if f and f−1 are fẽ-continuous.

Definition 5.2. A mapping f : (X, τ) → (Y, σ) is called fuzzy ẽ∗-homeomorphism
(briefly ẽ∗-homeomorphism) if f and f−1 are fẽ- irresolute.

Theorem 5.3. Every fuzzy homeomorphism is fẽ- homeomorphism.

The converse of the above theorem need not be true as seen from the following
example.

Example 5.4. Let X = Y = {a, b, c} and the fuzzy sets u, v be defined as,
u(a) = 0.1, u(b) = 0.4, v(a) = 0.2, v(b) = 0.5. Let τ = {0, 1, u} and σ = {0, 1, v}.
Then the mapping f : (X, τ) → (Y, σ) defined by f(a) = a, f(b) = b with A(a) = 0,
A(b) = 0.3 is fuzzy e-open in (X, τ) and B(a) = 0.1, B(b) = 0.3 is fuzzy e-open (Y, τ)
is fẽ-homeomorphism but not fuzzy homeomorphism as u is open in X, f(u) = u is
not open in Y. Hence f−1 : Y → X is not fuzzy continuous.

Theorem 5.5. Let f : (X, τ) → (Y, σ) be a bijective mapping. Then the following
are equivalent:

(a) f is fẽ-homeomorphism.
(b) f is fẽ-continuous and fẽ-open map.
(c) f is fẽ-continuous and fẽ-closed map.

Proof. (a)⇒ (b) Let f be fẽ-homeomorphism. Then f and f−1 are fẽ-continuous.
To prove that f is fẽ-open map, let λ be a fuzzy open set in X. Since f−1 : Y → X

is fẽ-continuous, (f−1)−1(λ) = f(λ) is fẽ-open in Y. Therefore f(λ) is fẽ-open in Y.
Hence f is fẽ-open.
(b)⇒ (c) Let f be fẽ-continuous and fẽ-open map. To prove thatf is fẽ-closed map.
Let µ be a fuzzy closed set in X. Then 1−µ is fuzzy open set in X. Since f is fẽ-open
map, f(1 − µ) is fẽ-open set in Y. Now f(1 − µ) = 1 − f(µ). Therefore f(µ) is
fẽ-closed in Y. Hence f is a fẽ-closed.
(c)⇒ (a) Let f be fẽ-continuous and fẽ-closed map. To prove that f−1 is fẽ-
continuous. Let λ be a fuzzy open set in X. Then 1−λ is a fuzzy closed set in X. Since
f is fẽ-closed map, f(1−λ) is fẽ-closed in Y. Now (f−1)−1(1−λ) = f(1−λ) = 1−f(λ)
is fẽ- open set in Y. Therefore f−1 : Y → X is fẽ-continuous. Hence f is fẽ-
homeomorphism. ¤

Theorem 5.6. Let f : (X, τ) → (Y, σ) be a bijective function. Then the following
are equivalent:
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(a) f is fẽ∗-homeomorphism.
(b) f is fẽ-irresolute and fẽ∗-open.
(c) f is fẽ-irresolute and fẽ∗-closed.

Proof. Proof follows from the above theorem. ¤

6. Fuzzy ẽ-connectedness

Definition 6.1. A fuzzy set v in a fuzzy topological spaces (X, τ) is said to be fuzzy
ẽ-connected if and only if v cannot be expressed as the union of two fuzzy ẽ-open
sets.

Theorem 6.2. Every fuzzy ẽ-connected set is fuzzy connected.

Proof. Let X be fuzzy ẽ-connected and X is not fuzzy connected. Then there exists
fuzzy open sets u and v in X such that 1x = u∨ v. Since X is fuzzy ẽ-connected set,
which implies that u and v is fuzzy ẽ-open set. Clearly, X is not fuzzy ẽ-connected
which is a contradiction. ¤

The converse of the above theorem is not true in general.

Example 6.3. Let X = {a, b, c} and τ = {0, 1, A} and the fuzzy set A(a) = 0,
A(b) = 1, A(c) = 0. Then (X, τ) is fuzzy connected but not fuzzy ẽ-connected.

Theorem 6.4. Let f : (X, τ) → (Y, σ)be a fuzzy ẽ-continuous surjective mapping.
If v is a fuzzy ẽ -connected subset in X, then f (v) is fuzzy connected in Y.

Proof. Suppose that H is not fuzzy connected in Y. Then, there exist fuzzy open sets
u and v in Y such that H = u∨ v. Since f is fuzzy ẽ-continuous surjective mapping,
f−1(u) and f−1(v) are fuzzy ẽ-open set in X and H = f−1(u∨v) = f−1(u)∨f−1(v).
It is clear that f−1(u) and f−1(v) are fuzzy ẽ-open set in X. Therefore, H is not
fuzzy ẽ-connected in X, which is a contradiction. Hence, Y is fuzzy connected. ¤

7. conclusion

It is interesting to work on ẽ-compactness, fẽ-continuous and fẽ-irresolute map-
pings, fuzzy ẽ-connectedness and various properties of these things. Compositions
of mappings can be tried with other forms of fẽ-irresolute mappings.
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