Annals of Fuzzy Mathematics and Informatics Volume 9, No. 5, (May 2015), pp. 817–822 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On soft separation axioms

Orhan Göçür, Abdullah Kopuzlu

Received 28 October 2014; Accepted 30 November 2014

ABSTRACT. We showed that if a soft topological space (X, τ, E) is a soft T_0 space, then topological space (X, τ_α) is a T_0 space for which $\alpha \in E$ and we showed that if a soft topological space (X, τ, E) is a soft T_1 space, then topological space (X, τ_α) is a T_1 space for which $\alpha \in E$. Won Keun Min (2011) [7, Theorem 3.21] indicated that if a soft topological space (X, τ, E) is soft T_3 space, then (x, E) is soft closed set for each $x \in X$. We developed this result and we showed that if a soft topological space (X, τ, E) is a soft T_2 space, then (x, E) is soft closed set for each $x \in X$.

2010 AMS Classification: 06D72, 54A40, 54D10

Keywords: Soft set, Soft closed, Soft topology, Soft separation axioms, Soft hausdorff space, Soft T_i , i = 0, 1, 2.

Corresponding Author: Orhan Göçür (ogocur@atauni.edu.tr)

1. INTRODUCTION

None mathematical tools can successfully deal with the several kinds of uncertainties in complicated problems in engineerig, economics, environment, sociology, medical science, etc, so Molodtsov [12] introduced the concept of a soft set in order to solve these problems in 1999. However, there are some theories such as theory of probability, theory of fuzzy sets [13], theory of intuitionistic fuzzy sets [1], theory of vague sets [3], theory of interval mathematics [5] and the theory of rough sets [9], which can be taken into account as mathematical tools for dealing with uncertainties. But these theories have their own difficulties. Maji et al. [6] introduced a few operators for soft set theory and made a more detailed theoretical study of the soft set theory. Recently, study on the soft set theory and its applications in different fields has been making progress rapidly [11, 4, 10]. Shabir and Naz [12] introduced the concept of soft topological spaces which are defined over an initial universe with fixed set of parameter. They indicated that a soft topological space gives a parameterized family of topological spaces and introduced the concept of soft open sets, soft closed sets, soft interior point, soft closure and soft seperation axioms. They indicated that if a soft topological space (X, τ, E) is a soft T₂ spaces, then topological space (X, τ_e) is T₂ space for all $e \in E$ ([12]).

In the present paper, firstly we show that if a soft topological space (X, τ, E) is a soft T₀ space, then topological space (X, τ_{α}) is a T₀ space for which $\alpha \in E$ (Theorem 3.2). Secondly, we show that if a soft topological space (X, τ, E) is a soft T₁ space then, topological space (X, τ_{α}) is a T₁ space for which $\alpha \in E$ (Theorem 3.5). Finally, in [12]it was indicated that if (x, E) is soft closed set for each $x \in X$ in a soft topological space (X, τ, E) , then (X, τ, E) is a soft T₁ space and in [7, Theorem 3.21] it was indicated that if a soft topological space (X, τ, E) is soft T₃ space, then (x, E) is soft closed for each $x \in X$. In this paper, we develop Won Keun Min's this theorem, then we show that if a soft topological space (X, τ, E) is a soft T₂ space, then (x, E) is soft closed set for each $x \in X$ (Theorem 3.7).

2. Preliminaries

Definition 2.1 ([8]). Let U be an initial universe and E be a set of parameters. Let P(U) denote the power set of U and A be a non-empty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by $F : A \to P(U)$. In other words, a soft set over U is a parametrized family of subsets of the universe U. For $e \in A, F(e)$ may be considered as the set of e-approximate elements of the soft set (F, A). Clearly, a soft set is not a set

Definition 2.2 ([6]). For two soft sets (F, A) and (G, B) over a common universe U, (F, A) is a soft subset of (G, B), denoted by $(F, A) \subseteq (G, B)$, if $A \subset B$ and $e \in A$, $F(e) \subseteq G(e)$. (F, A) is said to be a soft superset of (G, B), if (G, B) is a soft subset of $(F, A), (F, A) \supseteq (G, B)$.

Definition 2.3 ([6]). Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

Definition 2.4 ([6]). A soft set (F, A) over U is said to be a NULL soft set denoted by $\tilde{\emptyset}$ if for all $e \in A$, $F(e) = \emptyset$ (null set).

Definition 2.5 ([6]). A soft set (F, A) over U is said to be an absolute soft set denoted by \tilde{A} if for all $e \in A, F(e) = U$. Clearly $\tilde{A}^c = \tilde{\varnothing}$ and $\tilde{\varnothing}^c = \tilde{A}$

Definition 2.6 ([6]). The union of two soft sets of (F, A) and (G, B) over the common universe U is the soft set (H, C), where $C = A \cup B$ and for all $e \in C$,

$$H(e) = \begin{cases} F(e) & \text{if } e \in A - B \\ G(e) & \text{if } e \in B - A \\ F(e) \cup G(e) & \text{if } e \in A \cap B. \end{cases}$$

We write $(F, A)\widetilde{\cup}(G, B) = (H, C)$.

Definition 2.7 ([2]). The intersection (H, C) of two soft sets (F, A) and (G, B) over a common universe U, denoted $(F, A) \widetilde{\cap}(G, B)$, is defined as $C = A \cap B$, and $H(e) = F(e) \cap G(e)$ for all $e \in C$.

818

Definition 2.8 ([12]). The difference (H, E) of two soft sets (F, E) and (G, E) over X, denoted by $(F, E) \widetilde{\setminus} (G, E)$, is defined as $H(e) = F(e) \setminus G(e)$ for all $e \in E$

Definition 2.9 ([12]). Let (F, E) be a soft set over X and $x \in X$. We say that $x \in (F, E)$ read as x belongs to the soft set (F, E) whenever $x \in F(e)$ for all $e \in E$. Note that for any $x \in X$, $x \notin (F, E)$, if $x \notin F(\alpha)$ for some $\alpha \in E$

Definition 2.10 ([12]). Let Y be a non-empty subset of X, then \tilde{Y} denotes the soft set (Y, E) over X for which Y(e) = Y, for all $e \in E$. In particular, (X, E) will be denoted by \tilde{X} .

Definition 2.11 ([12]). Let $x \in X$, then (x, E) denotes the soft set over X for which $x(e) = \{x\}$, for all $e \in E$.

Definition 2.12 ([12]). The relative complement of a soft set (F, A) is denoted by (F, A)' and is defined by (F, A)' = (F', A) where $F' : A \to P(U)$ is a mapping given by F'(e) = U - F(e) for all $e \in A$.

Definition 2.13 ([12]). Let τ be the collection of soft sets over X, then τ is said to be a soft topology on X if

- (1) \emptyset, X belong to τ
- (2) the union of any number of soft sets in τ belongs to τ
- (3) the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X.

Definition 2.14 ([12]). Let (X, τ, E) be a soft space over X, then the members of τ are said to be soft open sets in X.

Definition 2.15 ([12]). Let (X, τ, E) be a soft space over X. A soft set (F, E) over X is said to be a soft closed set in X, if its relative complement (F, E)' belongs to τ

Proposition 2.16 ([12]). Let (X, τ, E) be a soft space over X. Then

- (1) $\tilde{\varnothing}$, X are closed soft sets over X
- (2) the intersection of any number of soft closed sets is a soft closed set over X(3) the union of any two soft closed sets is a soft closed set over X.

Proposition 2.17 ([12]). Let (X, τ, E) be a soft space over X. Then the collection $\tau_e = \{F(e) | (F, E) \in \tau\}$ for each $e \in E$, defines a topology on X.

Definition 2.18 ([12]). Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$. If there exist soft open sets (F, E) and (G, E) such that $x \in (F, E)$, $y \notin (F, E)$ or $y \in (G, E)$, $x \notin (G, E)$, then (X, τ, E) is called a soft T_0 space.

Definition 2.19 ([12]). Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$. If there exist soft open sets (F, E) and (G, E) such that $x \in (F, E)$, $y \notin (F, E)$ and $y \in (G, E)$, $x \notin (G, E)$, then (X, τ, E) is called a soft T_1 space.

Definition 2.20 ([12]). Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$. If there exist soft open sets (F, E) and (G, E) such that $x \in (F, E), y \in (G, E)$ and $(F, E) \cap (G, E) = \widetilde{\emptyset}$, then (X, τ, E) is called a soft T_2 space.

Proposition 2.21 ([12]). Let (X, τ, E) be a soft topological space over X. If (X, τ, E) is a soft T_2 space, then (X, τ_e) is a T_2 space for each $e \in E$.

Theorem 2.22 ([7]). Let (X, τ, E) be a soft topological space over X and $x \in X$. If X is a soft T_2 space, then $(x, E) = \widetilde{\cap}(F, E)$ for each soft open set (F, E) with $x \in (F, E)$.

Corollary 2.23 ([7]). Let (X, τ, E) be a soft topological space over X and $x \in X$. If X and E are finite, and if X is a soft T_2 space, then (x, E) is a soft open set for $x \in X$.

3. Main results

Now, we will give the following Remark to establish our one of the main theorems in this section.

Remark 3.1. Let (X, τ, E) be a soft T_0 space. Then there exist soft open sets (F, E) and (G, E) such that $x \in (F, E)$, $y \notin (F, E)$ or $y \in (G, E)$, $x \notin (G, E)$ from Definition 2.18. Also we know that for each $e \in E$, (X, τ_e) is a topological space from Proposition 2.17. Then we can see that clearly, since $x \in (F, E)$, there exists open set F(e) in τ_e such that $x \in F(e)$ for all $e \in E$; and since $y \notin (F, E)$, there exists open set $F(e_i)$ in τ_{e_i} such that $y \notin F(e_i)$ for $e_i \in E$, $i \in I$. Or similarly since $y \in (G, E)$, there exists open set G(e) in τ_e such that $y \notin G(e)$ for all $e \in E$; and $f(e_i)$ for $e_j \in E$, $i \in I$.

Theorem 3.2. Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$ and let $i, j \in I$ such that mentioned in Remark 3.1, $e \in E$. If (X, τ, E) is a soft T_0 space, then at least one of (X, τ_{e_i}) and (X, τ_{e_i}) are T_0 spaces.

Proof. Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$ and let $i, j \in I$ such that mentioned in Remark 3.1, $e \in E$. Give us (X, τ, E) is a soft T_0 space. We can see that clearly from Remark3.1, there exists open set $F(e_i)$ in τ_{e_i} such that $x \in F(e_i), y \notin F(e_i)$. Or similarly there exists open set $G(e_j)$ in τ_{e_j} such that $y \in G(e_j), x \notin G(e_j)$. As a consuquence, at least one of (X, τ_{e_i}) and (X, τ_{e_i}) are T_0 spaces.

Example 3.3. Let $X = \{x, y\}, E = \{e_1, e_2\}$ and $\tau = \{\widetilde{\emptyset}, \widetilde{X}, (F_1, E), (F_2, E)\}$ where

 $F_1(e_1) = \{x, y\}, \qquad F_1(e_2) = \{x\},$ $F_2(e_1) = \{y\}, \qquad F_2(e_2) = \{x\}.$

Then, (X, τ, E) is a soft topological space over X. We note that, (X, τ, E) is a soft T_0 space because there exist soft open set (F_1, E) such that $x \in (F_1, E)$ and $y \notin (F_1, E)$. We can see that (X, τ_{e_1}) is T_0 space because there exist open set $F_2(e_1)$ such that $y \in F_2(e_1)$ and $x \notin F_2(e_1)$.(see $\tau_{e_1} = \{\emptyset, X, \{y\}\})$. Also we can see that τ_{e_2} is a T_0 space because there exist open set $F_1(e_2)$ such that $x \in F_1(e_2)$ and $y \notin F_1(e_2)$.(see $\tau_{e_2} = \{\emptyset, X, \{x\}\}$.

Now, we will give the following Remark to establish our one of the main theorems in this section.

Remark 3.4. Let (X, τ, E) be a soft T_1 space, then there exist soft open sets (F, E)and (G, E) such that $x \in (F, E)$, $y \notin (F, E)$ and $y \in (G, E)$, $x \notin (G, E)$ from Definition 2.19. Also we know that for each $e \in E$, (X, τ_e) is a topological space from Proposition 2.17. Then we can see that clearly, since $x \in (F, E)$, there exists open set F(e) in τ_e such that $x \in F(e)$ for all $e \in E$; and since $y \notin (F, E)$, there exists open set $F(e_i)$ in τ_{e_i} such that $y \notin F(e_i)$ for $e_i \in E$, $i \in I$. And similarly since $y \in (G, E)$, there exists open set G(e) in τ_e such that $y \notin G(e)$ for all $e \in E$; and since $x \notin (G, E)$, there exists open set $G(e_j)$ in τ_{e_j} such that $x \notin G(e_j)$ for $e_j \in E$, $j \in I$.

Theorem 3.5. Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$ and let $i, j \in I$ such that mentioned in Remark 3.4, $e \in E$. Let $k, l \in I$ such that $e_{i_k} = e_{j_l}$. If (X, τ, E) is a soft T_1 space, then $(X, \tau_{e_{i_k}})$ are T_1 spaces.

Proof. Let (X, τ, E) be a soft topological space over X and $x, y \in X$ such that $x \neq y$ and let $i, j \in I$ such that mentioned in Remark 3.4, $e \in E$. Give us (X, τ, E) is a soft T_1 space. We can see that clearly from Remark 3.4, there exists open set $F(e_i)$ in τ_{e_i} such that $x \in F(e_i), y \notin F(e_i)$. And similarly there exists open set $G(e_j)$ in τ_{e_j} such that $y \in G(e_j), x \notin G(e_j)$. As a consuquence, there exist open sets $F(e_{i_k})$ and $G(e_{i_k})$ in $\tau_{e_{i_k}}$ such that $x \in F(e_{i_k}), y \notin F(e_{i_k})$ and $y \in G(e_{i_k}), x \notin G(e_{i_k})$ for $k, l \in I$ such that $e_{i_k} = e_{j_l}$. Hence, $(X, \tau_{e_{i_k}})$ are T_1 spaces.

Example 3.6. Let $X = \{x, y\}, E = \{e_1, e_2\}$ and $\tau = \{\widetilde{\varnothing}, \widetilde{X}, (F_1, E), (F_2, E), (F_3, E)\}$ where

 $\begin{array}{ll} F_1(e_1) = \{x,y\}, & F_1(e_2) = \{x\}, \\ F_2(e_1) = \{y\}, & F_2(e_2) = \{y\}, \\ F_3(e_1) = \{y\}, & F_3(e_2) = \varnothing \end{array}$

We note that (X, τ, E) is a soft T_1 space because there exist soft open sets (F_1, E) and (F_2, E) such that $x \in (F_1, E)$, $y \notin (F_1, E)$ and $y \in (F_2, E)$, $x \notin (F_2, E)$.

We can see that (X, τ_{e_1}) is not T_1 space because of $\tau_{e_1} = \{\emptyset, X, \{y\}\}$. Also we can see that, (X, τ_{e_2}) is a T_1 space because of $\tau_{e_2} = \{\emptyset, X, \{x\}, \{y\}\}$.

Theorem 3.7. Let (X, τ, E) be a soft topological space over X and $x \in X$. If (X, τ, E) is a soft T_2 space then, (x, E) is a soft closed set in X.

Proof. Let $x \in X$ and $y \in X - \{x\}$, then, $x \neq y$. Since (X, τ, E) is a soft T₂ space, there exist soft open sets (F, E) and (G, E) such that $x \in (F, E)$ and $y \in (G, E)$ and $(F, E) \cap (G, E) = \tilde{\varnothing}$. Since $(G, E) \cap (x, E) = \tilde{\varnothing}$, $(G, E) \subseteq (x, E)'$. So, $\bigcup_{y \in X - \{x\}} (G, E) \subseteq (x, E)'$ (1). In other words, let $\bigcup_{y \in X - \{x\}} (G, E) = (H, E)$ where $H(e) = \bigcup_{y \in X - \{x\}} G(e)$ for all $e \in E$. Now, we know that, from Definition 2.11 and Definition 2.12, (x, E)' = (x', E) where $x'(e) = X - \{x\}$ for each $e \in E$. Then, for each $y \in X - \{x\}$ and for each $e \in E$, $x'(e) = X - \{x\} = \bigcup_{y \in X - \{x\}} (y) = \bigcup_{y \in X - \{x\}} y(e) \subset \bigcup_{y \in X - \{x\}} G(e) = H(e)$. This implies that $(x, E)' \subseteq \bigcup_{y \in X - \{x\}} (G, E)$ (2) from Definition 2.2.2. So $(x, E)^c = \bigcup_{y \in X - \{x\}} (G, E)$ from (1) and (2). Since (G, E) is soft open for each $y \in X - \{x\}, (x, E)'$ is soft open. Therefore, (x, E) is soft closed set in X. □

Corollary 3.8. Let (X, τ, E) be a soft topological space over X and $x \in X$. If (X, τ, E) is a soft T_2 space, the union of finite number of (x, E) is soft closed set in X.

Theorem 3.9. Let (X, τ, E) be a soft topological space over X and $x \in X$. And let X and E are finite. If (X, τ, E) is a soft T_2 space, (x, E) is soft open and soft closed set in X, for each $x \in X$.

Proof. It is obvious that Corollary 2.23 and Corollary 3.8.

Corollary 3.10. Let (X, τ, E) be a soft topological space over X and $x \in X$. And let X and E are finite. If (X, τ, E) is a soft T_2 space, the union of finite number of (x, E) is soft closed and soft open set in X, for each $x \in X$.

References

- [1] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] F. Feng, Y. B. Jun and X. Z. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621–2628.
- [3] W. L. Gau and D. J. Buehrer, Vague sets, IEEE Trans. System Man Cybernet 23(2) (1993) 610-614.
- [4] O. Gocur and A. Kopuzlu, Some new properties on soft separation axioms, Ann. Fuzzy Math. Inform. 9(3) (2015) 421–429.
- [5] M. B. Gorzalzany, A method of inference in approximate reasoning based on interval valued fuzzy sets, Fuzzy Sets and Systems 21 (1987) 1–17.
- [6] P. K. Maji, R. Biswas and R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555–562.
- [7] W. K. Min, A note on soft topological spaces, Comput. Math. Appl. 62 (2011) 3524–3528.
- [8] D. Molodtsov, Soft set theory first results, Comput. Math. Appl. 37 (1999) 19-31.
- [9] Z. Pawlak, Rough sets, Int. J. Comp. Inf. Sci. 11 (1982) 341-356.
- [10] R. Sahin and A. Kucuk, Soft filters and their convergence properties, Ann. Fuzzy Math. Inform. 6(3) (2013) 529–543.
- [11] M. Shabir and A. Ahmad, On soft ternary semigroups, Ann. Fuzzy Math. Inform. 3(1) (2012) 9–59.
- [12] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011) 1786–1799.
- [13] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

ORHAN GÖÇÜR (ogocur@atauni.edu.tr)

Department of Construction Technology, Oltu Vocational Training School, Atatürk University, 25400 Oltu, Erzurum, Turkey

<u>ABDULLAH KOPUZLU</u> (akopuzlu@atauni.edu.tr)

Department of Mathematics, Faculty of Science, Atatürk University, Erzurum, Turkey