Generalized group soft topology

Sk. Nazmul, S. K. Samanta

Received 10 March, 2014; Revised 15 October, 2014; Accepted 17 November, 2014

Abstract. In the present paper, a notion of generalized group soft topology is introduced and some of the important properties of the resulting generalized group soft topological space are studied. Also some definitions and results on soft sets, soft mappings and soft topologies are established in this context.

2010 AMS Classification: 54A40, 06D72, 03E72, 20N25

Keywords: Soft sets, Soft groups, Topological groups, Soft topology, Soft topological groups, Group soft topology, Generalized group soft topology.

Corresponding Author: Sk. Nazmul (sk.nazmul.math@yahoo.in)

1. Introduction

The theory of soft sets which was introduced by Molodtsov [16] in 1999 has become an important tool for dealing with uncertainties inherent in the problems of physical science, biological science, engineering, economics, social science, medical science etc. Researchers are continuing their study to investigate the behaviour of different mathematical fields such as algebra, topology etc. and their hybrid structures in soft set theoretic form. In 2003, Maji et al. [12] worked on some mathematical aspects of soft sets, and, in 2007, Aktas and Cagman [1] introduced a basic version of soft group theory. Feng [6] in 2008, dealt with the concept of soft semirings; Shabir and Ali (2009) [23] studied soft semigroups and soft ideals; Kharal and Ahmed [11] as well as Majumdar and Samanta [14] defined soft mappings, Babitha and Sunil [3] worked on soft relations and functions etc. Recently, Shabir and Naz [24] came up with an idea of soft topological spaces. Later Zorlutuna et al. [26], Cagman et al. [4], Hussain, Ahmad [10] and Hazra et al. [8], Min [15], Varol et al. [25] and Peyghan et al. [22] studied on soft topological spaces. As a continuation of this, it is natural to investigate the behaviour of a combination of algebraic and topological structures in soft-set theoretic form. In view of this, and also considering the importance of topological group structure in developing Haar measure and Haar integral in [9], we have introduced in [20], a notion of group
soft topology where the continuity of the composition function \((x, y) \rightarrow xy^{-1}\) over the group is considered with respect to soft topology. In this paper we proceed further. In fact, in stead of taking ordinary group composition mapping, we have considered here soft composition mapping and studied the resulting soft topological group structure, which is defined here as generalized group soft topology. For this, we investigate various properties of soft mappings and soft topological spaces. In this connection, it is also worth noting that, in fuzzy setting, some significant works have been done on fuzzy topological group structure by Foster \cite{7}, Liang and Hai \cite{5}. The present authors have already established, in soft setting, the concept of topological groups in \cite{17,18,20,21}, however, approaching from different perspectives from that of the present paper. The organization of the paper is as follows:

Section 2 is the preliminary section where definitions and some properties of a soft set, soft mapping are given. In section 3, definitions of soft topological space and enriched soft topological spaces are given and studied their properties in the context of soft mappings. In section 4, we introduce generalized group soft topology and some properties of it are studied. The straightforward proofs of the theorems are omitted.

2. Preliminaries

Following Molodtsov \cite{16} and Maji et al. \cite{12} some definitions and preliminary results of soft sets are presented in this section. Unless otherwise stated, \(X\) will be assumed to be an initial universal set and \(E\) will be taken to be a set of parameters.

Let \(P(X)\) denote the power set of \(X\) and \(S(X, E)\) denote the set of all soft sets over \(X\) under the parameter set \(E\).

Definition 2.1 (\cite{16,12}). A pair \((F, A)\) is called a soft set over \(X\), where \(F\) is a mapping given by \(F: A \rightarrow P(X)\) and \(A \subseteq E\).

Definition 2.2 (\cite{12}). Let \((F, A)\) and \((G, B)\) be two soft sets over \(X\). Then their union is a soft set \((H, C)\) over \(X\) where \(C = A \cup B\) and for all \(\alpha \in C\),

\[
H(\alpha) = \begin{cases}
F(\alpha) & \text{if } \alpha \in A/B \\
G(\alpha) & \text{if } \alpha \in B/A \\
F(\alpha) \cup G(\alpha) & \text{if } \alpha \in A \cap B
\end{cases}
\]

This relationship is written as \((F, A) \cup (G, B) = (H, C)\).

Definition 2.3 (\cite{12}). Let \((F, A)\) and \((G, B)\) be two soft sets over \(X\). Then their intersection is a soft set \((H, C)\) over \(X\) where \(C = A \cap B\) and for all \(\alpha \in C\), \(H(\alpha) = F(\alpha) \cap G(\alpha)\).

This relationship is written as \((F, A) \cap (G, B) = (H, C)\).

Remark 2.4 (\cite{13}). Let \(E\) be the set of parameters and \(A \subseteq E\). Then for each soft set \((F, A)\) over \(X\) we construct a soft set \((H, E)\) over \(X\), where for all \(\alpha \in E\),

\[
H(\alpha) = \begin{cases}
F(\alpha) & \text{if } \alpha \in A \\
\phi & \text{if } \alpha \in E/A
\end{cases}
\]

Thus the soft sets \((F, A)\) and \((H, E)\) are equivalent to each other and the usual set operations of the soft sets \((F_i, A_i), i \in \Delta\) is the same as the soft sets \((H_i, E), i \in \Delta\).
The following definitions and results are presented in this form.

Definition 2.5 ([17]). A pair \((F, A)\), where \(F\) is a mapping from \(A\) to \(P(X)\), is called a soft set over \(X\).

Let \((F_1, A)\) and \((F_2, A)\) be two soft sets over a common universe \(X\). Then \((F_1, A)\) is said to be soft subset of \((F_2, A)\) if \(F_1(\alpha) \subseteq F_2(\alpha)\), for all \(\alpha \in A\). This relation is denoted by \((F_1, A) \subseteq (F_2, A)\). \((F_1, A)\) is said to be soft equal to \((F_2, A)\) if \(F_1(\alpha) = F_2(\alpha)\), for all \(\alpha \in A\). It is denoted by \((F_1, A) = (F_2, A)\).

The complement of a soft set \((F, A)\) is defined as \((F, A)^c = (F^c, A)\), where \(F^c(\alpha) = (F(\alpha))^c = X - F(\alpha)\), for all \(\alpha \in A\).

A soft set \((F, A)\) over \(X\) is said to be a null soft set (an absolute soft set) if \(F(\alpha) = \phi\) or \(X\), for all \(\alpha \in A\). This is denoted by \(\Phi(A)\).

Definition 2.6 ([17]). Let \(\{(F_i, A); i \in I\}\) be a nonempty family of soft sets over a common universe \(X\). Then their

(a) Intersect, denoted by \(\cap_{i \in I} F_i\), is defined by \(\cap_{i \in I} F_i(\alpha) = (\cap_{i \in I} F_i(\alpha))\), for all \(\alpha \in A\).

(b) Union, denoted by \(\cup_{i \in I} F_i\), is defined by \(\cup_{i \in I} F_i(\alpha) = (\cup_{i \in I} F_i(\alpha))\), for all \(\alpha \in A\).

Definition 2.7. A soft set \((F, A) \subseteq S(X, A)\) is called a pseudo constant soft set if \(F(\alpha) = \phi\) or \(X\), for all \(\alpha \in A\); \(CS(X, A)\) denotes the set of all pseudo constant soft sets over \(X\) under the parameter set \(A\).

Definition 2.8 ([19]). A soft set \((E, A)\) over \(X\) is said to be a soft element if there exists \(\alpha \in A\) such that \(E(\alpha)\) is a singleton, say, \(\{x\}\) and \(E(\beta) = \phi\), for all \(\beta(\neq \alpha) \in A\). Such a soft element is denoted by \(E^a_\alpha\). Let \(E\) be the set of all soft elements of the universal set \(X\).

Also for a given \(P \subseteq X\), a soft set \((E, A)\) where \(E(\alpha) = P\), for all \(\alpha \in A\) is called a constant soft set and is denoted by \(E_P\) and in particular if \(P = \{x\}\), then \(E_x\) denote the constant soft set where \(E(\alpha) = \{x\}\), for all \(\alpha \in A\).

Definition 2.9 ([19]). The soft element \(E^a_\alpha\) is said to be in the soft set \((G, A)\), denoted by \(E^a_\alpha \in (G, A)\) if \(x \in G(\alpha)\).

Proposition 2.10 ([19]). \(E^a_\alpha \in (F, A)\) iff \(E^a_\alpha \notin (F^c, A)\).

Definition 2.11 ([11]). Let \(S(X, A)\) and \(S(Y, B)\) be the families of all soft sets over \(X\) and \(Y\) respectively. The mapping \(f_\varphi : S(X, A) \rightarrow S(Y, B)\) is called a soft mapping from \(X\) to \(Y\), where \(f : X \rightarrow Y\) and \(\varphi : A \rightarrow B\) are two mappings. Also

(i) the image of a soft set \((F, A) \subseteq S(X, A)\) under the mapping \(f_\varphi\) is denoted by \(f_\varphi[F, A]\) = \((f_\varphi(F), B)\), and is defined by

\[
[f_\varphi(F)](\beta) = \begin{cases}
\bigcup_{\alpha \in f^{-1}(\beta)} [f[F(\alpha)]] & \text{if } f^{-1}(\beta) \neq \phi \\
\phi & \text{otherwise}
\end{cases}
\]

for all \(\beta \in B\).
(ii) the inverse image of a soft set \((G, B) \in S(Y, B) \) under the mapping \(f_\varphi \) is denoted by \(f_\varphi^{-1}[(G, B)] = (f_\varphi^{-1}(G), A) \), and is defined by \([f_\varphi^{-1}(G)](\alpha) = f^{-1}[G(\varphi(\alpha))] \), for all \(\alpha \in A \).

(iii) If \(f_\varphi \) is bijective, then the inverse soft mapping, denoted by \((f_\varphi)^{-1} \), is defined by \((f_\varphi)^{-1} = f_\varphi^{-1} \).

Note: If \((f_\varphi)^{-1} \) exists, then \(f_\varphi^{-1}[(G, B)] = [f_\varphi^{-1}(G, B)] \).

(iv) The soft mapping \(f_\varphi \) is called injective (surjective) if \(f \) and \(\varphi \) are both injective (surjective).

(v) The soft mapping \(f_\varphi \) is said to be constant, if \(f \) is constant.

(vi) The soft mapping \(f_\varphi \) is identity soft mapping, if \(f \) and \(\varphi \) are both classical identity mappings.

Definition 2.12 ([2]). Let \(f_\varphi : S(X, A) \to S(Y, B) \) and \(g_\varphi : S(Y, B) \to S(Z, C) \) be two soft mappings, then the composition of \(f_\varphi \) and \(g_\varphi \) is denoted by \(g_\varphi \circ f_\varphi \) and is defined by \(g_\varphi \circ f_\varphi = (g \circ f)_\varphi \).

Proposition 2.13 ([11]). Let \(X \) and \(Y \) be two nonempty sets and \(f_\varphi : S(X, A) \to S(Y, B) \) be a soft mapping. If \((F, A), (F_i, A) \in S(X, A) \) and \((G, B), (G_i, B) \in S(Y, B), i \in \Delta \) then

(i) \((F_1, A) \subset (F_2, A) \Rightarrow f_\varphi[(F_1, A)] \subset f_\varphi[(F_2, A)] \);

(ii) \((G_1, B) \subset (G_2, B) \Rightarrow f_\varphi^{-1}[(G_1, B)] \subseteq f_\varphi^{-1}[(G_2, B)] \);

(iii) \((F, A) \subseteq f_\varphi^{-1}[f_\varphi(F, A)] \), the equality holds if \(f_\varphi \) is injective.

(iv) \(f_\varphi[f_\varphi^{-1}(G, B)] \subseteq (G, B) \), the equality holds if \(f_\varphi \) is surjective.

(v) \(f_\varphi[\bigcup_{i \in \Delta}(F_i, A)] = \bigcup_{i \in \Delta}[f_\varphi(F_i, A)] \);

(vi) \(f_\varphi[\bigcap_{i \in \Delta}(F_i, A)] \subseteq \bigcap_{i \in \Delta}[f_\varphi(F_i, A)] \), the equality holds if \(f_\varphi \) is injective.

(vii) \(f_\varphi^{-1}[(\bigcup_{i \in \Delta}(F_i, A))] = \bigcup_{i \in \Delta}[f_\varphi^{-1}(F_i, A)] \);

(viii) \(f_\varphi^{-1}[(\bigcap_{i \in \Delta}(F_i, A))] = \bigcap_{i \in \Delta}[f_\varphi^{-1}(F_i, A)] \);

Proposition 2.14. Let \(X \) and \(Y \) be two nonempty sets and \(f_\varphi : S(X, A) \to S(Y, B) \) be a soft mapping. If \((F, A) \in S(X, A) \) and \((G, B) \in S(Y, B) \) then

(i) \((G, B) \in CS(Y, B) \Rightarrow f_\varphi^{-1}[(G, B)] \in CS(X, A) \);

(ii) \((F, A) \in CS(X, A) \) and \(f \) is surjective \(\Rightarrow f_\varphi[(F, A)] \in CS(Y, B) \).

Proof. (i) If \((G, B) \in CS(Y, B) \) and \(G(\beta_j) = Y, G(\beta_k) = \phi, \beta_j, \beta_k \in B \), then for all \(\alpha \in A \)

\[
[f_\varphi^{-1}(G)](\alpha) = \begin{cases} X & \text{if } \varphi(\alpha) = \beta_j \\ \phi & \text{if } \varphi(\alpha) = \beta_k \end{cases}
\]

So, \((G, B) \in CS(Y, B) \Rightarrow f_\varphi^{-1}[(G, B)] \in CS(X, A) \).

(ii) If \((F, A) \in CS(X, A) \) and \(F(\alpha_i) = X, F(\alpha_j) = \phi, \alpha_i, \alpha_j \in A \), then for all \(\beta \in B \)

\[
[f_\varphi(F)](\beta) = \begin{cases} Y & \text{if } \varphi^{-1}(\beta) \neq \phi, \text{there exists } \alpha_i \in \varphi^{-1}(\beta) \text{ and } f \text{ is surjective} \\ \phi & \text{if } \varphi^{-1}(\beta) \neq \phi \text{ and for all } \alpha_i \notin \varphi^{-1}(\beta) \\ \phi & \text{if } \varphi^{-1}(\beta) = \phi \end{cases}
\]

So, \((F, A) \in CS(X, A) \) and \(f \) is surjective \(\Rightarrow f_\varphi[(F, A)] \in CS(Y, B) \).
Proposition 2.15 (2). Let \(f_\varphi : S(X, A) \rightarrow S(Y, B) \) be a soft mapping. If \(E^\varphi_\alpha \in S(X, A) \), then \(f_\varphi[E^\varphi_\alpha] = E^{f(\varphi)}_{f(\alpha)} \in S(Y, B) \).

Proposition 2.16. Let \(f_\varphi : S(X, A) \rightarrow S(Y, B) \) be a constant mapping and \(\varphi : A \rightarrow B \) is surjective. Then for all \((F, A) \in S(X, A) \), \(f_\varphi[(F, A)] \) is a constant soft set \(E_{y_0} \in S(Y, B) \) if \(f(x) = y_0 \), for all \(x \in X \).

Proof. Let \(\beta \in B \). Since \(\varphi \) is surjective, it follows that \(\varphi^{-1}(\beta) \neq \phi \).

So, \([f_\varphi[(F, A)]](\beta) = \bigcup_{\alpha \in \varphi^{-1}(\beta)} [f(F(\alpha))] = \{y_0\} \), for all \(\beta \in B \).

Therefore, \(f_\varphi[(F, A)] = E_{y_0} \in S(Y, B) \). \(\square \)

Definition 2.17 (3). Let \((F, A) \in S(X, A) \) and \((G, B) \in S(Y, B) \). The Cartesian product of \((F, A) \) and \((G, B) \) is denoted by \((F, A) \times (G, B) = (F \times G, A \times B) \in S(X \times Y, A \times B) \) and defined as for all \((\alpha, \beta) \in A \times B \), \((F \times G)(\alpha, \beta) = F(\alpha) \times G(\beta) \).

Proposition 2.18 (2). Let \(X, Y \) be two nonempty sets and \(A, B \) be two sets of parameters. If \(\pi^1 : X \times Y \rightarrow X \), \(\pi^2 : X \times Y \rightarrow Y \), \(\varphi_1 : A \times B \rightarrow A \) and \(\varphi_2 : A \times B \rightarrow B \) are projection mappings, then

\[
[\pi^1_\varphi((F, A) \times (G, B))](\alpha) = \bigcup_{\alpha = \varphi_1(\alpha, \beta)} [\pi^1_F(\alpha) \times G(\beta)] = F(\alpha), \quad \text{for all } \alpha \in A
\]

and

\[
[\pi^2_\varphi((F, A) \times (G, B))](\beta) = \bigcup_{\beta = \varphi_2(\alpha, \beta)} [\pi^2_F(\alpha) \times G(\beta)] = G(\beta), \quad \text{for all } \beta \in B,
\]

Thus \(\pi^1_\varphi \) and \(\pi^2_\varphi \) are soft projection mappings, where \([\pi^1_\varphi][(F, A) \times (G, B)] = (F, A) \) and \([\pi^2_\varphi][(F, A) \times (G, B)] = (G, B) \).

3. Soft topological spaces

In this section we have introduced the notion of product of soft topological spaces and studied some continuity properties of mappings over product spaces; the soft topology that we have considered is in the sense of Shabir and Naz \[24\] and an enriched soft topological space in the sense of Aygun et.al and the authors \[2, 20\]. Unless otherwise stated, \(X \) is an initial universal set, \(A \) is the nonempty set of parameters and \(S(X, A) \) denotes the collection of all soft sets over \(X \) under the parameter set \(A \).

Definition 3.1 (24). Let \(\tau \) be a collection of soft sets over \(X \). Then \(\tau \) is said to be a soft topology on \(X \) if

(i) \((\tilde{\varphi}, A), (\tilde{X}, A) \in \tau \) where \(\tilde{\varphi}(\alpha) = \phi \) and \(\tilde{X}(\alpha) = X \), for all \(\alpha \in A \).

(ii) the intersection of any two soft sets in \(\tau \) belongs to \(\tau \).

(iii) the union of any number of soft sets in \(\tau \) belongs to \(\tau \).

The triplet \((X, A, \tau)\) is called a soft topological space over \(X \).

Definition 3.2 (2, 20). A subcollection \(\tau \) of \(S(X, A) \) is said to be an enriched soft topology on \(X \) if

(i) \((F, A) \in \tau \), for all \((F, A) \in CS(X, A) \);

(ii) the intersection of any two soft sets in \(\tau \) belongs to \(\tau \);

(iii) the union of any soft sets in \(\tau \) belongs to \(\tau \).

The triplet \((X, A, \tau)\) is called an enriched soft topological space over \(X \).

Proposition 3.3 (24). Let \((X, A, \tau)\) be a soft topological space over \(X \). Then the collection \(\tau^\alpha = \{F(\alpha) : (F, A) \in \tau\} \) for each \(\alpha \in A \), defines a topology on \(X \).
Proposition 3.4 ([19]). If \((X, A, \tau)\) is a soft topological space and if \(\tau^* = \{(F, A) \in S(X, A) : F(\alpha) \in \tau^\alpha, \text{ for all } \alpha \in A\}\), then \(\tau^*\) is a soft topology on \(X\) such that \([\tau^*]^\alpha = \tau^\alpha\), for all \(\alpha \in A\).

Remark 3.5. If \((X, A, \tau)\) be a soft topological space which is enriched or not and if \(\tau^* = \{(F, A) \in S(X, A) : F(\alpha) \in \tau^\alpha, \text{ for all } \alpha \in A\}\) then \(\tau^*\) is an enriched soft topology on \(X\) such that \([\tau^*]^\alpha = \tau^\alpha\), for all \(\alpha \in A\).

Proposition 3.6 ([24]). Let \((X, A, \tau_1)\) and \((X, A, \tau_2)\) be two soft topological spaces over \(X\). Then \((X, A, \tau_1 \cap \tau_2)\) where \(\tau_1 \cap \tau_2 = \{(F, A) \in \tau_1 \& (F, A) \in \tau_2\}\) is a soft topological space over \(X\). But the union of two soft topological spaces over \(X\) may not be a soft topological space over \(X\).

Definition 3.7 ([2]). Let \((X, A, \tau)\) and \((Y, B, \nu)\) be two soft topological spaces. A soft mapping \(f_\varphi : (X, A, \tau) \rightarrow (Y, B, \nu)\) is said to be soft continuous if for each open soft set \((G, B) \in \nu\), the inverse image \((f_\varphi)^{-1}[(G, B)]\) is in \(\tau\).

Definition 3.8 ([2]). Let \((X, A, \tau)\) and \((Y, B, \nu)\) be two soft topological spaces. A soft mapping \(f_\varphi : (X, A, \tau) \rightarrow (Y, B, \nu)\) is said to be soft open if for each open soft set \((F, A)\) in \(\tau\), the image \((f_\varphi)(F, A)\) is in \(\nu\).

Proposition 3.9. Let \((X, A, \tau)\) and \((Y, B, \nu)\) be two soft topological spaces. A soft mapping \(f_\varphi : (X, A, \tau) \rightarrow (Y, B, \nu)\) is soft continuous if for all \(x \in X\), for all \(\alpha \in A\) and for all \((V, B) \in \nu\) with \(E_{\varphi(\alpha)} \subseteq (V, B)\), there exists \((U, A) \in \tau\) with \(E^\alpha \subseteq (U, A)\) such that \(f_\varphi(U, A) \subseteq (V, B)\).

Proof. Let \(f_\varphi : (X, A, \tau) \rightarrow (Y, B, \nu)\) be soft continuous.

Let \(x \in X\), \(\alpha \in A\) and \((V, B) \in \nu\) such that \(E^\alpha \subseteq (V, B)\). Since \(E^\alpha \subseteq (V, B)\), it follows that \(\varphi(\alpha) = \beta \in B\) and \(f(x) \in V(\beta)\).

Again since \(f_\varphi\) is soft continuous, \(f_\varphi^{-1}[(V, B)] \subseteq \tau\).

Let \((U, A) = f_\varphi^{-1}[(V, B)]\).

Also, \(E^\alpha \subseteq (V, B)\) \Rightarrow \(E^\alpha \subseteq f_\varphi^{-1}(f_\varphi(E^\alpha)) \subseteq f_\varphi^{-1}(f_\varphi((V, B})) = (U, A)\).

Then \(x \in U(\alpha)\). Thus \(E^\alpha \subseteq (U, A)\) and \(f_\varphi(U, A) \subseteq f_\varphi(f_\varphi^{-1}(V, B)) \subseteq (V, B)\).

Therefore the given condition is satisfied.

Conversely let the given condition be satisfied.

Let \((V, B) \in \nu\) and \(E^\alpha \subseteq f_\varphi^{-1}[(V, B)]\).

Then \((f_\varphi^{-1}[(V, B)])(\alpha) = f^{-1}[V(\varphi(\alpha))]\).

So \(f(x) \in f^{-1}[V(\varphi(\alpha))] \subseteq V(\varphi(\alpha))\) and hence \(E^\alpha \subseteq (V, B)\). Then there exists \((U(x, \alpha), A) \in \tau\) such that \(E^\alpha \subseteq (U(x, \alpha), A)\) and \(f_\varphi[U(x, \alpha), A] \subseteq (V, B)\) i.e. \((U(x, \alpha), A) \subseteq f_\varphi^{-1}[(V, B)]\).

Therefore,
\[
\begin{align*}
f_\varphi^{-1}[(V, B)] &= \bigcup\{E^\alpha : (U(x, \alpha), A) \subseteq f_\varphi^{-1}[(V, B)]\} \\
&\supseteq \bigcup\{(U(x, \alpha), A) : E^\alpha \subseteq f_\varphi^{-1}[(V, B)]\} \\
&\supseteq f_\varphi^{-1}[(V, B)]
\end{align*}
\]
Thus $f_{\varphi}^{-1}(V, B) = \bigcup \{ (U(x, \alpha), A) : E^\alpha_\varphi \subseteq f_{\varphi}^{-1}(V, B) \} \in \tau$. So $f_{\varphi} : (X, A, \tau) \to (Y, B, \nu)$ is soft continuous.

Proposition 3.10 ([2]). Let (X, A, τ) and (Y, B, ν) be two enriched soft topological spaces and $\varphi : A \to B$ be any mapping. Then the mapping $f_{\varphi} : (X, A, \tau) \to (Y, B, \nu)$ where $f(x) = y_0$ (a fixed element of Y), for all $x \in X$, is soft continuous.

Remark 3.11. It can be easily shown that the above result is also true if (Y, B, ν) is not an enriched soft topological space.

Proposition 3.12. Let (X, A, τ) be a soft topological space. Then the identity soft mapping $f_{\varphi} : (X, A, \tau) \to (X, A, \tau)$ is soft continuous.

Proof. Let $(F, A) \in \tau$. Then $f_{\varphi}^{-1}[(F, A)](\alpha) = f^{-1}[F(\varphi(\alpha))] = f^{-1}[F(\alpha)] = F(\alpha)$, for all $\alpha \in A$ and hence $f_{\varphi}^{-1}[(F, A)] = (F, A) \in \tau$.

Therefore, f_{φ} is soft continuous.

Proposition 3.13 ([2]). Let $(X, A, \tau), (Y, B, \nu)$ and (Z, C, ω) be soft topological spaces. If $f_{\varphi} : (X, A, \tau) \to (Y, B, \nu)$ and $g_{\varphi} : (Y, B, \nu) \to (Z, C, \omega)$ are soft continuous, then the mapping $g_{\varphi} \circ f_{\varphi} : (X, A, \tau) \to (Z, C, \omega)$ is soft continuous.

Proposition 3.14 ([10]). Let (X, A, τ) and (Y, B, ν) be two soft topological spaces. Then $\mathcal{F} = \{(F, A) \times (G, B) : (F, A) \in \tau, (G, B) \in \nu \}$ forms an open base of the soft topology on $X \times Y$.

Definition 3.15 ([10]). The soft topology in $X \times Y$ induced by the open base \mathcal{F} is said to be the product soft topology of the soft topologies τ and ν. It is denoted by $\tau \times \nu$.

Proposition 3.16. Let (X, A, τ) and (Y, B, ν) be two enriched soft topological spaces. Then $(X \times Y, A \times B, \tau \times \nu)$ is an enriched soft topological space.

Proof. Since (X, A, τ) and (Y, B, ν) be two soft topological spaces, it follows that $(X \times Y, A \times B, \tau \times \nu)$ is a soft topological space. Now we are to prove that $(\tau \times \nu)$ is an enriched soft topology.

For this, let $(H, A \times B) \in CS(X \times Y)$ and $(H, A \times B) = \bigcup_{i,j} (H_{ij}, A \times B)$ where $H_{ij}(\alpha_k, \beta_l) = X \times Y$ if $i = k, j = l$ and $H_{ij}(\alpha_k, \beta_l) = \phi$, otherwise.

Let $(F_i, A) \in S(X, A)$ such that $F_i(\alpha_k) = X, F(\alpha_k) = \phi$ if $k \neq i$ and $(G_j, B) \in S(Y, B)$ such that $G_j(\beta_l) = Y, G_j(\beta_l) = \phi$ if $k \neq j$.

Then $(F_i, A) \in CS(X, A), (G_j, B) \in CS(Y, B)$ such that $(F_i, A) \times (G_j, B) = (H_{ij}, A \times B)$.

Since (X, A, τ) and (Y, B, ν) be two enriched soft topological spaces, it follows that $(F_i, A) \in \tau, (G_j, B) \in \nu$ and hence $(H_{ij}, A \times B) \in (\tau \times \nu)$.

Therefore $(\tau \times \nu)$ is an enriched soft topology on $X \times Y$ and hence $(X \times Y, A \times B, \tau \times \nu)$ is an enriched soft topological space.

Proposition 3.17. Let $(X \times Y, A \times B, \tau \times \nu)$ be the product soft topological space of two soft topological spaces (X, A, τ) and (Y, B, ν). Then the soft projection mappings $\pi_{1, \varphi} : (X \times Y, A \times B, \tau \times \nu) \to (X, A, \tau)$ and $\pi_{2, \varphi} : (X \times Y, A \times B, \tau \times \nu) \to (Y, B, \nu)$
are soft continuous and soft open. Also $\tau \tilde{\times} \nu$ is the smallest enriched soft topology in $X \times Y$ for which the soft projection mappings are soft continuous.

Proof. Let $(F, A) \in \tau$. Then $([\pi^1_\varphi]^{-1}([F, A]))(\alpha, \beta) = [\pi^1]^{-1}(F(\varphi_1(\alpha, \beta))) = [\pi^1]^{-1}[F(\alpha)] = F(\alpha) \times Y$. Therefore, $[\pi^1_\varphi]^{-1}([F, A]) = (F, A) \tilde{\times} (Y, B)$, is a basic open set in $\tau \tilde{\times} \nu$.

So π^1_φ is soft continuous.

Again let $(H, A \times B) \in \tau \tilde{\times} \nu$. Then there exists a subfamily \mathcal{F}' of \mathcal{F} such that $(H, A \times B)$ is the union of the members of \mathcal{F}'. So,

$$[\pi^1_\varphi](H, A \times B) = \bigcup\{[\pi^1_\varphi][U, A]\times(V, B) : (U, A)\tilde{\times}(V, B) \in \mathcal{F}'\}$$

$$= \bigcup\{(U, A) : (U, A)\tilde{\times}(V, B) \in \mathcal{F}'\} \in \tau (\text{since}(U, A) \in \tau).$$

Therefore π^1_φ is soft open.

Similarly it can be shown that π^2_φ is also soft continuous and soft open.

Next let ω be any enriched soft topology on $X \times Y$ such that the mappings $\pi^1_\varphi : (X \times Y, A \times B, \omega) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi : (X \times Y, A \times B, \omega) \rightarrow (Y, B, \nu)$ are soft continuous.

Let $\{(U, A) \tilde{\times} (V, B)\}$ be any basic open soft set in $\tau \tilde{\times} \nu$.

Now, $\{(U, A) \tilde{\times} (V, B)\} = \{(U, A) \tilde{\times} (\tilde{X}, A) \tilde{\times} (\tilde{Y}, B) \tilde{\times} (V, B)\}$

$$= \{(U, A) \tilde{\times} (\tilde{Y}, B) \tilde{\times} (\tilde{X}, A) \tilde{\times} (V, B)\}$$

$$= ([\pi^1_\varphi]^{-1}([U, A]) \tilde{\times} [\pi^2_\varphi]^{-1}([V, B]) \subseteq \omega$$

(since([\pi^1_\varphi]^{-1}([U, A]), [\pi^2_\varphi]^{-1}([V, B]) \subseteq \omega).

Thus $\tau \tilde{\times} \nu$ is a subset of ω.

Therefore $\tau \tilde{\times} \nu$ is the smallest enriched soft topology in $X \times Y$ for which the soft projection mappings are soft continuous.

\[\square \]

Proposition 3.18. Let $(X \times Y, A \times B, \tau \tilde{\times} \nu)$ be the product space of two soft topological spaces (X, A, τ) and (Y, B, ν) and $\pi^1_\varphi : (X \times Y, A \times B, \tau \tilde{\times} \nu) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi : (X \times Y, A \times B, \tau \tilde{\times} \nu) \rightarrow (Y, B, \nu)$ be the soft projection mappings. If (Z, C, ω) is any soft topological space, then the mapping $f_\varphi : (Z, C, \omega) \rightarrow (X \times Y, A \times B, \tau \tilde{\times} \nu)$ is soft continuous iff the soft mappings $\pi^1_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (Y, B, \nu)$ are soft continuous.

Proof. First let $f_\varphi : (Z, C, \omega) \rightarrow (X \times Y, A \times B, \tau \tilde{\times} \nu)$ be soft continuous. Also the soft mappings $\pi^1_\varphi : (X \times Y, A \times B, \tau \tilde{\times} \nu) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi : (X \times Y, A \times B, \tau \tilde{\times} \nu) \rightarrow (Y, B, \nu)$ are soft continuous.

Then by Proposition 3.13, we have the composition soft mappings $\pi^1_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (Y, B, \nu)$ are soft continuous.

Next let the soft mappings $\pi^1_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (X, A, \tau)$ and $\pi^2_\varphi \circ f_\varphi : (Z, C, \omega) \rightarrow (Y, B, \nu)$ be soft continuous.

Let $(F, A \times B) \in (\tau \tilde{\times} \nu)$ and $\mathcal{F} = \{(U, A) \tilde{\times} (V, B) : (U, A) \in \tau, (V, B) \in \nu\}.$

Then there exists a subfamily $\mathcal{F}' = \left\{(U_{k}, A) \tilde{\times} (V_{k}, B) : k \in \Delta \right\}$ of \mathcal{F} such that $(F, A \times B) = \bigcup_{k \in \Delta} (U_{k}, A) \tilde{\times} (V_{k}, B).$
Thus,
\[
[f_\varphi]^{-1}[(F, A \times B)] = (f_\varphi)^{-1}[\bigcup_{k \in \Delta}((U_k, A) \times (V_k, B))]
\]
\[
= (f_\varphi)^{-1}[\bigcup_{k \in \Delta}((\pi_{\varphi_1}^{-1}(U_k, A) \cap (\pi_{\varphi_2}^{-1}(V_k, B))]
\]
\[
= \bigcup_{k \in \Delta}[(\pi_{\varphi_1}^{-1} \circ f_\varphi)^{-1}(U_k, A) \cap (\pi_{\varphi_2}^{-1} \circ f_\varphi)^{-1}(V_k, B)] \in \omega.
\]
Therefore, \(f_\varphi \) is soft continuous. \(\square \)

Proposition 3.19. Let \((X \times Y, A \times B, \tau \widetilde{\times} \nu)\) be the product space of two enriched soft topological spaces \((X, A, \tau)\) and \((Y, B, \nu)\) and \(f : B \to A \times B \) be a mapping such that \(\varphi(\beta) = (\alpha, \beta) \) for some \(\alpha \in A \). Then for any \(x \in X \), the soft mapping \(f_\varphi : (Y, B, \nu) \to (X \times Y, A \times B, \tau \widetilde{\times} \nu) \), where \(f(y) = (a, y) \), is soft continuous.

Proof. Let \(\pi_{\varphi_1} : (X \times Y, A \times B, \tau \widetilde{\times} \nu) \to (X, A, \tau) \) and \(\pi_{\varphi_2} : (X \times Y, A \times B, \tau \widetilde{\times} \nu) \to (Y, B, \nu) \) be the soft projection mappings. Now \(\pi_{\varphi_1} \circ f_\varphi : (Y, B, \nu) \to (X, A, \tau) \) is such that \([\pi_1 \circ f](y) = a \), for all \(y \in Y \) and \(\pi_{\varphi_2} \circ f_\varphi : (Y, B, \nu) \to (Y, B, \nu) \) is such that \([\pi_2 \circ f](y) = y \), for all \(y \in Y \).

So, by Propositions 3.10 and 3.12 the soft mappings \(\pi_{\varphi_1} \circ f_\varphi \) and \(\pi_{\varphi_2} \circ f_\varphi \) are soft continuous and hence by Proposition 3.18, \(f_\varphi \) is soft continuous. \(\square \)

Proposition 3.20. Let \((X \times Y, A \times B, \tau \widetilde{\times} \nu)\) be the product space of two enriched soft topological spaces \((X, A, \tau)\) and \((Y, B, \nu)\) and \(f : A \to A \times B \) be a mapping such that \(\varphi(\alpha) = (\alpha, \beta) \) for some \(\beta \in B \). Then for any \(y \in Y \), the soft mapping \(f_\varphi : (X, A, \tau) \to (X \times Y, A \times B, \tau \widetilde{\times} \nu) \), where \(f(x) = (x, a) \), is soft continuous.

Proof. Proof is similar to that of Proposition 3.19. \(\square \)

Proposition 3.21. Let \((X, A, \tau)\) and \((Y, B, \nu)\) be two soft topological spaces. Then for each \((\alpha, \beta) \in (A \times B) \), \((\tau \widetilde{\times} \nu)^{(\alpha, \beta)} = \tau^\alpha \times \nu^\beta \).

Proof. Let \((\alpha, \beta) \in (A \times B) \) and \(U \in (\tau \widetilde{\times} \nu)^{(\alpha, \beta)} \). Then there exists \((F, A \times B) \in (\tau \widetilde{\times} \nu)^{(\alpha, \beta)} \).

Since \((F, A \times B) \in (\tau \widetilde{\times} \nu) \), it follows that there exist \((U_i, A) \in \tau \), \((V_i, B) \in \nu \), \(i \in \Delta \) such that \(F(A \times B) = \bigcup_{i \in \Delta}[(U_i, A) \times (V_i, B)] \).

So, \(U = F(\alpha, \beta) = \bigcup_{i \in \Delta}[U_i(\alpha) \times V_i(\beta)] \in (\tau^\alpha \times \nu^\beta) \).

Therefore, \((\tau \widetilde{\times} \nu)^{(\alpha, \beta)} \subseteq (\tau^\alpha \times \nu^\beta) \).

Next, let \(U \in (\tau^\alpha \times \nu^\beta) \).

Then we have \(U_i \in \tau^\alpha \), \(V_i \in \nu^\beta \), \(i \in \Delta \) such that \(U = \bigcup_{i \in \Delta}[(U_i \times V_i) \times \nu^\beta] \) and hence there exist \((F_i, A) \in \tau \), \((G_i, B) \in \nu \) such that \(F_i(\alpha) = U_i \), \(G_i(\beta) = V_i \), \(i \in \Delta \).

Thus \(\bigcup_{i \in \Delta}[(F_i, A) \times (G_i, B)] \in (\tau \times \nu)^{(\alpha, \beta)} \).

So, \(\tau^\alpha \times \nu^\beta \subseteq (\tau \times \nu)^{(\alpha, \beta)} \).

Therefore, for each \((\alpha, \beta) \in (A \times B) \), \((\tau \times \nu)^{(\alpha, \beta)} = \tau^\alpha \times \nu^\beta \). \(\square \)

Proposition 3.22. Let \((X, A, \tau)\) and \((Y, B, \nu)\) be two soft topological spaces which are enriched or not and define \(T^* = \{(F, A \times B) \in S(X \times Y, A \times B) \text{ such that } F(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta) \text{, for all } (\alpha, \beta) \in (A \times B) \} \). Then \(T^* \) is an enriched soft topology over \(X \times Y \) and \(T^* = \tau^* \times \nu^* \), where \(\tau^* \), \(\nu^* \) are as in Proposition 3.4.
Proof. Since ϕ and $X \times Y \in (\tau^\alpha \times \nu^\beta)$, for all $(\alpha, \beta) \in (A \times B)$, we have for all $(F, A \times B) \in CS(X \times Y)$, $(F, A \times B) \in T^\ast$. Again, let $(F_1, A \times B), (F_2, A \times B) \in T^\ast$. Then $F_1(\alpha, \beta), F_2(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta)$. So, $(F_1 \circ F_2)(\alpha, \beta) = F_1(\alpha, \beta) \cap F_2(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta)$, for all $(\alpha, \beta) \in (A \times B)$. Thus $(F_1 \circ F_2, A \times B) \cap (F_2, A \times B) \in T^\ast$. Next, let $(F, A \times B) \in T^\ast$, $i \in \Delta$. Then $F_i(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta)$, $i \in \Delta$. So, $(\bigcup_{i \in \Delta} F_i)(\alpha, \beta) = \bigcup_{i \in \Delta} F_i(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta)$, for all $(\alpha, \beta) \in (A \times B)$. Thus $\bigcup_{i \in \Delta} (F, A \times B) \in T^\ast$. Therefore, T^\ast is an enriched soft topology over $X \times Y$.

Now let $(F, A \times B) \in T^\ast$ and $(\alpha, \beta) \in (A \times B)$. Then $F(\alpha, \beta) \in (\tau^\alpha \times \nu^\beta)$ and hence there exist $U_i \in \tau^\alpha$, $V_i \in \nu^\beta$, $i \in \Delta$ such that $F(\alpha, \beta) = \bigcup_{i \in \Delta}(U_i \times V_i)$. For each pair $U_i \in \tau^\alpha$, $V_i \in \nu^\beta$, take soft sets (F_{U_i}, A) and (F_{V_i}, B) such that $F_{U_i}(\alpha) = U_i$, $F_{V_i}(\alpha) = \phi$, for all $\alpha' \neq \alpha \in A$ and $F_{V_i}(\beta) = V_i$, $F_{V_i}(\beta) = \phi$, for all $\beta' \neq \beta \in B$. So, $(F_{U_i}, A) \in \tau^\alpha$, $(F_{V_i}, B) \in \nu^\beta$ and hence $(F_{U_i} \times F_{V_i}, A \times B) \in (\tau^\ast \times \nu^\ast)$. Also $[F_{U_i} \times F_{V_i}](\alpha, \beta) = F_{U_i}(\alpha) \times F_{V_i}(\beta) = U_i \times V_i$ and $[F_{U_i} \times F_{V_i}](\gamma, \delta) = F_{U_i}(\gamma) \times F_{V_i}(\delta) = \phi$, for all $(\gamma, \delta) \neq (\alpha, \beta) \in (A \times B)$. Let $(G(\alpha, \beta), A \times B) = \bigcup_{i \in \Delta}(F_{U_i} \times F_{V_i}, A \times B)$. Then $(G(\alpha, \beta), A \times B) \in (\tau^\ast \times \nu^\ast)$ and $G(\alpha, \beta) \in \bigcup_{i \in \Delta}(U_i \times V_i) = F(\alpha, \beta)$, $G(\alpha, \beta)(\gamma, \delta) = \phi$, for all $(\gamma, \delta) \neq (\alpha, \beta) \in (A \times B)$. Again, let $(G, A \times B) = \bigcup_{i \in \Delta}(G(\alpha, \beta), A \times B)$. Then $(G, A \times B) \in (\tau^\ast \times \nu^\ast)$ and $G \in \bigcup_{i \in \Delta}(U_i \times V_i) = F$, $(G, A \times B) \in (\tau^\ast \times \nu^\ast)$. Therefore, $T^\ast \subseteq (\tau^\ast \times \nu^\ast)$.

Also, let $(F, A \times B) \in (\tau^\ast \times \nu^\ast)$. Then there exist $(U_i, A) \in \tau^\ast$, $(V_i, B) \in \nu^\ast$, $i \in \Delta$ such that $(F, A \times B) = \bigcup_{i \in \Delta}[(U_i, A) \times (V_i, B)]$. Also, $F(\alpha, \beta) = \bigcup_{i \in \Delta}[U_i(\alpha) \times V_i(\beta)] \in (\tau^\alpha \times \nu^\beta)$, for all $(\alpha, \beta) \in (A \times B)$ and hence $(F, A \times B) \in T^\ast$. Thus, $(\tau^\ast \times \nu^\ast) \subseteq T^\ast$. Therefore, $T^\ast = \tau^\ast \times \nu^\ast$. \qed

Proposition 3.23. Let $f_\phi : (X, A, \tau) \to (X, A, \tau)$ and $g_\psi : (Y, B, \nu) \to (Y, B, \nu)$ be two soft continuous mappings. Then the soft mapping $h_\xi : (X \times Y, A \times B, \tau \times \nu) \to (X \times Y, A \times B, \tau \times \nu)$, where $h(x, y) = (f(x), g(y))$ and $\xi(\alpha, \beta) = (\phi\alpha, \psi\beta))$ is soft continuous.

Proof. Let $(F, A \times B) \in (\tau \times \nu)$. Then there exist $(G_1, A) \in \tau$ and $(H_1, B) \in \nu$, $i \in \Delta$ such that $(F, A \times B) = \bigcup_{i \in \Delta}[(G_i, A) \times (H_i, B)]$. Since f_ϕ and g_ψ are soft continuous, it follows that $f_\phi^{-1}[(G_i, A)] \in \tau$ and $g_\psi^{-1}[(H_i, B)] \in \nu$. 792
Now for all \((\alpha, \beta) \in (A \times B)\), we have
\[
[h^{-1}((G_i, A) \sim (H_i, B))] (\alpha, \beta) = [h^{-1}([G_i \sim H_i])] \xi(\alpha, \beta)
\]
\[
= [h^{-1}([G_i \sim H_i])] (\psi(\alpha), \psi(\beta))
\]
\[
= h^{-1}[G_i(\psi(\alpha)) \times H_i(\psi(\beta))]
\]
\[
= f^{-1}[G_i(\varphi(\alpha))] \times g^{-1}[H_i(\psi(\beta))]
\]
\[
= [f^{-1}(G_i) \sim g^{-1}(H_i)] (\alpha, \beta).
\]
Therefore, \(h^{-1}((G_i, A) \sim (H_i, B)) = (f^{-1}(G_i), A) \times (g^{-1}(H_i), B) \in (\tau \sim \nu)\) and hence
\[
h^{-1}([F, A \times B]) = h^{-1} \left(\bigcup_{i \in \Delta} ([G_i, A] \sim (H_i, A)) \right)
\]

Therefore, the soft mapping \(h : (X \times Y, A \times B, \tau \sim \nu) \rightarrow (X \times Y, A \times B, \tau \sim \nu)\) defined by \(h(x, y) = (f(x), g(y))\) where \(\xi(\alpha, \beta) = (\varphi(\alpha), \psi(\beta))\) is soft continuous.

\[\Box\]

Definition 3.24. Let \(\tau\) and \(\nu\) be two soft topologies on \(X, Y\) under the parameter sets \(A, B\) respectively and \(f : X \rightarrow Y, \varphi : A \rightarrow B\) be two mappings. The image of \(\tau\) and the preimage of \(\nu\) under the soft mapping \(f_\varphi\) respectively are defined by

(i) \(f_\varphi(\tau) = \{(G, B) \in S(Y, B) : f_\varphi^{-1}([G, B]) \in \tau\}\)

(ii) \(f_\varphi^{-1}(\nu) = \{f_\varphi^{-1}([G, B]) : (G, B) \in \nu\}\).

Proposition 3.25. Let \(\tau\) and \(\nu\) be two soft topologies on \(X, Y\) under the parameter sets \(A, B\) respectively and \(f : X \rightarrow Y, \varphi : A \rightarrow B\) be two mappings. Then

(i) \(f_\varphi^{-1}(\nu)\) is a soft topology on \(X\) under the parameter set \(A\) and

(ii) \(f_\varphi(\tau)\) is a soft topology on \(Y\) under the parameter set \(B\).

Proof. (i) We observe that \((\phi, A) = f_\varphi^{-1}([\phi, B])\) and \([f_\varphi^{-1}([\tilde{Y}, B])] (\alpha) = f^{-1}(\tilde{Y}(\varphi(\alpha))) = f^{-1}(Y) = X\), for all \(\alpha \in A\) and hence \((\tilde{X}, A) = f_\varphi^{-1}([\tilde{Y}, B])\).

Therefore, \((\phi, A), (\tilde{X}, A) \in f_\varphi^{-1}(\nu)\).

Next let \((F_1, A), (F_2, A) \in f_\varphi^{-1}(\nu)\). Then there exist \((G_1, B), (G_2, B) \in \nu\) such that
\[(F_1, A) = f_\varphi^{-1}([G_1, B])\] and \((F_2, A) = f_\varphi^{-1}([G_2, B])\).

Thus \((G_1, B) \bar{\cap} (G_2, B) \in \nu\) and hence
\[f_\varphi^{-1}([G_1, B]) \bar{\cap} (G_2, B) = f_\varphi^{-1}([G_1, B]) \bar{\cap} f_\varphi^{-1}([G_2, B])
\]
\[= (F_1, A) \bar{\cap} (F_2, A) \in f_\varphi^{-1}(\nu).
\]

Again let \((F, A) \in f_\varphi^{-1}(\nu), i \in \Delta\). Then there exist \((G_i, B) \in \nu, i \in \Delta\) such that
\[(F_1, A) = f_\varphi^{-1}([G_1, B]), i \in \Delta\]. Thus \(\bigcup_{i \in \Delta} (G_i, B) \in \nu\) and hence
\[\bigcup_{i \in \Delta} f_\varphi^{-1}([G_i, B]) = f_\varphi^{-1}([\bigcup_{i \in \Delta} ([G_i, B])] = \bigcup_{i \in \Delta} ([F_i, A]) \in f_\varphi^{-1}(\nu).
\]

Therefore, \(f_\varphi^{-1}(\nu)\) is a soft topology on \(X\) under the parameter set \(A\).

(ii) Proof is similar to part (i).

Definition 3.26. A soft mapping \(f_\varphi : (X, A, \tau) \rightarrow (Y, B, \nu)\) is said to be soft homeomorphism if \(f_\varphi\) is bijective and \(f_\varphi, (f_\varphi)^{-1}\) are soft continuous.
Definition 3.27. A soft topology \(\tau \) is called \textit{indiscrete (discrete)} soft topology if \(\tau^\alpha \) is an indiscrete (discrete) topology, for all \(\alpha \in A \). The discrete and indiscrete soft topologies are called the trivial soft topologies.

4. Group soft topology

Equipped with the results developed in sections 2 and 3, we are now in a position to investigate our main interest, i.e. we introduce the definition of a generalized group soft topology and to study some of its properties. Throughout this section \((G, \circ) \) is assumed to be a group. By abuse of notation, we use \(G \) instead of \((G, \circ) \) and \(xy \) instead of \(x \circ y \).

Definition 4.1. Let \(G \) be a group and \(\tau \) be a soft topology on \(G \) with respect to a parameter set \(A \). Then \(\tau \) is said to be a \textit{generalized group soft topology} on \(G \) if there exist mappings \(\varphi : A \times A \rightarrow A \) and \(\psi : A \rightarrow A \) such that the soft mappings

(i) \(f_\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau) \), where \(f(x, y) = xy \)

(ii) \(g_\psi : (G, A, \tau) \rightarrow (G, A, \tau) \), where \(g(x) = x^{-1} \)

are soft continuous.

Example 4.2. (i) Let \(G \) be a group, \(\tau = \{(\tilde{\phi}, A), (\hat{G}, A)\} \), \(\nu = S(G, A) \) are soft topologies on \(G \) and \(\varphi : A \times A \rightarrow A, \psi : A \rightarrow A \) be any two mappings. Then \(\tau \times \tau = \{(\tilde{\phi}, A \times A), (\hat{G} \times G, A \times A)\} \) and \(\nu \times \nu = S(G \times G, A \times A) \).

It can be easily shown that \(\tau \) and \(\nu \) are generalized group soft topologies. Thus, the trivial soft topologies on a group \(G \) are generalized group soft topologies.

(ii) Let \(G \) be a group, \(A = \{\alpha, \beta\} \) and

\[
\tau = \{(\phi/\alpha, \phi/\beta), (\phi/\alpha, G/\beta), (G/\alpha, \phi/\beta), (G/\alpha, G/\beta)\}. \\
\tilde{\tau} = \{(\phi/(\alpha, \alpha), \phi/(\alpha, \beta), \phi/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{G \times G)/(\alpha, \alpha), \phi/(\alpha, \beta), \phi/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{\phi/(\alpha, \alpha), (G \times G)/(\alpha, \beta), \phi/(\alpha, \beta), \phi/(\beta, \beta)), \\
\{G \times G)/(\alpha, \alpha), \phi/(\alpha, \beta), (G \times G)/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{G \times G)/(\alpha, \alpha), \phi/(\alpha, \beta), (G \times G)/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{\phi/(\alpha, \alpha), (G \times G)/(\beta, \alpha), \phi/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{\phi/(\alpha, \alpha), (G \times G)/(\beta, \alpha), (G \times G)/(\beta, \alpha), \phi/(\beta, \beta)), \\
\{\phi/(\alpha, \alpha), (G \times G)/(\beta, \alpha), (G \times G)/(\beta, \alpha), \phi/(\beta, \beta))\}
\]

\(794\)
Since \(f(x, y) = xy \) and \(g(x) = x^{-1} \), it follows that \(f^{-1}(\phi) = \phi \), \(f^{-1}(G) = G \times G \), \(g^{-1}(\phi) = \phi \) and \(g^{-1}(G) = G \). Now if \((F, A) \in \tau\), then

\[
\begin{align*}
\varphi^{-1}[(F, A)](\alpha, \alpha) &= \begin{cases}
\phi & \text{if } F(\alpha) = \phi \\
G \times G & \text{if } F(\alpha) = G
\end{cases} \\
&\quad \text{if } \varphi(\alpha, \alpha) = \alpha \\
\varphi^{-1}[(F, A)](\alpha, \beta) &= \begin{cases}
\phi & \text{if } F(\alpha) = \phi \\
G \times G & \text{if } F(\alpha) = G
\end{cases} \\
&\quad \text{if } \varphi(\alpha, \beta) = \alpha \\
\varphi^{-1}[(F, A)](\beta, \alpha) &= \begin{cases}
\phi & \text{if } F(\beta) = \phi \\
G \times G & \text{if } F(\beta) = G
\end{cases} \\
&\quad \text{if } \varphi(\beta, \alpha) = \alpha \\
\varphi^{-1}[(F, A)](\beta, \beta) &= \begin{cases}
\phi & \text{if } F(\beta) = \phi \\
G \times G & \text{if } F(\beta) = G
\end{cases} \\
&\quad \text{if } \varphi(\beta, \beta) = \beta
\end{align*}
\]

Thus, clearly \(\varphi^{-1}[(F, A)] \in \tau \) and \(\psi^{-1}[(F, A)] \in \tau \), for all \((F, A) \in \tau\). Therefore, \(G \) is a generalized group soft topology.

Proposition 4.3. Let \(\tau \) be a generalized group soft topology on \(G \) and \(f_\varphi \), \(g_\psi \) be the corresponding soft continuous mappings. If further \(\varphi(\alpha, \alpha) = \alpha \) and \(\psi(\alpha, \alpha) = \alpha \), for all \(\alpha \in A \), then \(\tau^\alpha \) is a group topology on \(G \), for all \(\alpha \in A \).

Proof. Let \(U \in \tau^\alpha \). Then there exists \((F, A) \in \tau \) such that \(F(\alpha) = U \). Since \(\tau \) is a generalized group soft topology and the mappings

\[
\begin{align*}
f_\varphi : (G \times A, \tau \times \tau) &\rightarrow (G, A, \tau), \text{ where } f(x, y) = xy, \\
g_\psi : (G, A, \tau) &\rightarrow (G, A, \tau), \text{ where } g(x) = x^{-1}
\end{align*}
\]

are soft continuous, it follows that
Let \(f^{-1}([F, A]) = (\tau \times \tau) \) and \(g^{-1}([F, A]) = \tau \).

Also since \(\varphi(\alpha, \alpha) = \alpha \) and \(\psi(\alpha) = \alpha \), for all \(\alpha \in A \), we have,

\[
[f^{-1}([F, A])](\alpha, \alpha) = f^{-1}[f(\alpha, \alpha)] = f^{-1}[F(\alpha)] = f^{-1}[U] \in (\tau \times \tau)^{[\alpha, \alpha]} = (\tau^\alpha \times \tau^\alpha)
\]

and \([g^{-1}([F, A])](\alpha) = g^{-1}[f(\alpha)] = g^{-1}[F(\alpha)] = g^{-1}[U] \in \tau^\alpha \), for all \(\alpha \in A \).

Thus the mappings \(f : (G \times G, \tau^\alpha \times \tau^\alpha) \to (G, \tau^\alpha) \), where \(f(x, y) = xy \) and \(g : (G, \tau^\alpha) \to (G, \tau^\alpha) \), where \(g(x) = x^{-1} \) are continuous for all \(\alpha \in A \). Therefore \(\tau^\alpha \) is a group topology on \(G \), for all \(\alpha \in A \).

\[\square\]

Definition 4.4. Let \((F, A), (H, B)\) be two soft sets over a group \(G \). Then \(\exists \) a mapping \(\phi : F \to H \) and \(\psi : A \to B \) such that \(\phi \) and \(\psi \) are continuous for all \((\alpha, \beta) \in (A \times B) \).

Proposition 4.5. Let \((G, A, \tau)\) be a soft topological space over a group \(G \). Then \(\tau \) is a generalized group soft topology iff the following conditions are satisfied:

(i) there exists a mapping \(\varphi : A \times A \to A \) and for all \(x, y \in G \), for all \((\alpha, \beta) \in A \times A \) and for all \((W, A) \in \tau \) with \(E_{x,y}^{\varphi(\alpha, \beta)} \subseteq (W, A) \), there exist \((U, A), (V, A) \in \tau \) such that \(E_{x,y}^{\varphi(\alpha, \beta)} \subseteq (U, A), E_{x,y}^{\psi(\alpha, \beta)} \subseteq (V, A) \) with \((U, A) \cap V(\beta) \subseteq \gamma(W, A), \)

(ii) there exists a mapping \(\psi : A \to A \) and for all \(x \in G \), for all \(\alpha \in A \) and for all \((W, A) \in \tau \) with \(E_{x,y}^{\psi^{-1}(\alpha)} \subseteq (V, A) \), there exists \((U, A) \in \tau \) such that \(E_{x,y}^{\psi^{-1}(\alpha)} \subseteq (U, A) \cap V(\beta), \)

for all \(\alpha, \beta \in A \) such that \(\psi(\alpha) = \beta \).

Proof. Let \((G, A, \tau)\) be a generalized group soft topological space.

Then there exists a mapping \(\varphi : A \times A \to A \) defined by \(\varphi(\alpha, \beta) = \gamma \) (say) such that \(f_{\varphi} : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau) \), where \(f(x, y) = xy \), is soft continuous.

Let \(x, y \in G \), \((\alpha, \beta) \in A \times A \) and \((W, A) \in \tau \) such that \(E_{x,y}^{\varphi(\alpha, \beta)} \subseteq (W, A) \). Then by Proposition 3.9 there exists \((P, A) \in (\tau \times \tau) \) such that \(\varphi(\alpha, \beta) = \gamma \) (say) and \(f_{\varphi}[(P, A) \times A] \subseteq (W, A) \).

Since \((P, A) \in (\tau \times \tau) \), there exist \((U, A), (V, A) \in \tau \), \(i \in \Delta \) such that \((P, A \times A) = \bigcup_{i \in \Delta}[(U, A) \times (V, A)] \) and also there exist \(i \in \Delta \) such that \(E_{x,y}^{\varphi(\alpha, \beta)} \subseteq (U, A) \) and \(E_{x,y}^{\psi(\alpha, \beta)} \subseteq (V, A) \).

Therefore, \(f_{\varphi}[(P, A \times A)] = f_{\varphi}[(U, A) \times (V, A)] \subseteq (W, A) \) and hence

\[
[f_{\varphi}[(U, A) \times (V, A)]](\gamma) = \bigcup_{\varphi(\alpha, \beta) = \gamma} U_{\varphi(\alpha, \beta)}] \times \bigcup_{\psi(\alpha, \beta) = \gamma} V_{\psi(\alpha, \beta)} \subseteq \gamma(W, A).
\]

Therefore, \((U, A) \cap V(\beta) \subseteq \gamma(W, A) \), for all \(\alpha, \beta, \gamma \in A \) such that \(\varphi(\alpha, \beta) = \gamma \).

Condition (ii) can be proved similarly.

Conversely let the given conditions be satisfied.

Let \((W, A) \in \tau \) and \(E_{(x,y)}^{\gamma} \subseteq f_{\varphi}^{-1}[(W, A)] \). Then \(f_{\varphi}(E_{(x,y)}^{\gamma}) = E_{\varphi(\alpha, \beta)}^{\gamma} = E_{x,y}^{\gamma} \subseteq (W, A) \)

and hence by the given condition (i), there exist \((U, A), (V, A) \in \tau \) such that
E^x ∈ (U_x, A), E^y ∈ (V_y, A) and $[U_x(\alpha) \circ V_y(\beta)] \subseteq W(\gamma)$, for all α, β, γ with $\varphi(\alpha, \beta) = \gamma$.

Thus, $[f_\varphi[(U_x, A) \times (V_y, A)](\gamma)] = \cup_{\varphi(\alpha, \beta) = \gamma} f[U_x(\alpha) \times V_y(\beta)]$

$= \cup_{\varphi(\alpha, \beta) = \gamma} [U_x(\alpha) \circ V_y(\beta)] \subseteq W(\gamma)$,

for all $\gamma \in A$. Therefore, $f_\varphi[(U_x, A) \times (V_y, A)] \subseteq (W, A)$ and hence

$$[(U_x, A) \times (V_y, A)] \subseteq f_\varphi^{-1}[(W, A)].$$

Again

$$f_\varphi^{-1}[(W, A)] = \bigcup \{E^{(x, y)}_{(\alpha, \beta)} : E^{(x, y) \in f_\varphi^{-1}[(W, A)]} \subseteq f_\varphi^{-1}[(W, A)].$$

Thus $f_\varphi^{-1}[(W, A)] = \bigcup \{(U_x, A) \times (V_y, A) : E^{(x, y) \in f_\varphi^{-1}[(W, A)]}\} \in (\tau \times \tau)$ and hence, the soft mapping $f_\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$, where $f(x, y) = xy$ is soft continuous.

Continuity of the soft mapping $g_\psi : (G, A, \tau) \rightarrow (G, A, \tau)$, where $g(x) = x^{-1}$, can be proved similarly.

Therefore (G, A, τ) is a generalized group soft topology on G.

\[\Box\]

Proposition 4.6. Let τ be a generalized group soft topology on a group G and f_φ, g_ψ be the corresponding soft mappings. Then the soft mapping $h_\xi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G \times G, A \times A, \tau \times \tau)$, where $h(x, y) = (x, y^{-1})$ and $\xi(\alpha, \beta) = (\alpha, \psi(\beta))$, is soft continuous.

Proof. By Proposition 3.17, we have the mappings $\pi_1^\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$ and $\pi_2^\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$, where $\pi^1(x, y) = x$, $\pi^2(x, y) = y$, for all $x, y \in G$ and $\varphi(\alpha, \beta) = \alpha$, $\varphi_2(\alpha, \beta) = \beta$ are soft continuous.

Now $\pi_1^\varphi h_\xi = (\pi^1 h)_\varphi \pi_1^\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$, where $[\pi^1 h](x, y) = \pi^1(x, y^{-1}) = x = \pi^1(x, y)$ and $[\varphi h_\xi(\alpha, \beta) = \varphi_1(\alpha, \psi(\beta)) = \alpha = \varphi_1(\alpha, \beta)$.

So $\pi_1^\varphi h_\xi = \pi_1^\varphi$ is soft continuous.

Again since $g_\psi : (G, A, \tau) \rightarrow (G, A, \tau)$, where $g(y) = y^{-1}$, is soft continuous, by Proposition 3.13, we get $g_\psi \pi_2^\varphi = (g \pi_2^\varphi)_\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$, where $g \pi^2(x, y) = y^{-1}$, is soft continuous.

Thus $\pi_2^\varphi h_\xi = (\pi^2 h)_\varphi \pi_2^\varphi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$ defined by $\pi^2 h(x, y) = \pi^2(x, y^{-1}) = y^{-1} = g \pi^2(x, y)$ and $\varphi h_\xi(\alpha, \beta) = \varphi_2(\alpha, \psi(\beta)) = \psi(\beta) = \psi \varphi_2(\alpha, \beta)$.

Thus $\pi_2^\varphi h_\xi = (g \pi^2)_\varphi \pi_2^\varphi = g_\psi \pi_2^\varphi$ is soft continuous.

Therefore from Proposition 3.18, we get that the soft mapping $h_\xi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G \times G, A \times A, \tau \times \tau)$ defined by $h(x, y) = (x, y^{-1})$ where $\xi(\alpha, \beta) = (\alpha, \psi(\beta))$, is soft continuous.

\[\Box\]

Proposition 4.7. A soft topology τ on a group G is a generalized group soft topology iff there exists a mapping $\chi : A \times A \rightarrow A$ such that the soft mapping $p^\chi : (G \times G, A \times A, \tau \times \tau) \rightarrow (G, A, \tau)$, where $p^\chi(x, y) = xy^{-1}$ (or $p^\chi(x, y) = x^{-1} y$), for all $x, y \in G$, is soft continuous.
Proof. Let τ be a generalized group soft topology. Then there exists $\varphi : A \times A \to A$ and $\psi : A \to A$ such that $f_\varphi : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau)$ and $g_\psi : (G, A, \tau) \to (G, A, \tau)$, where $f(x, y) = xy$, for all $x, y \in G$ and $g(x) = x^{-1}$, for all $x \in G$ are soft continuous.

So by Proposition 4.6, $h_\xi : (G \times G, A \times A, \tau \times \tau) \to (G \times G, A \times A, \tau \times \tau)$, where $h(x, y) = (x, y^{-1})$, for all $x, y \in G$ and $\xi(\alpha, \beta) = (\alpha, \psi(\beta))$, is soft continuous.

Let $\chi = \varphi\xi$.

Therefore $p_\chi^\prime = f_\varphi h_\xi : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau)$ is such that $p^\prime(x, y) = f(h(x, y)) = f(x, y^{-1}) = xy^{-1}$, for all $x, y \in G$ and $\chi(\alpha, \beta) = \varphi(\xi(\alpha, \beta)) = \varphi(\alpha, \psi(\beta))$, is soft continuous.

Conversely let $p_\chi^\prime : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau)$, where $p^\prime(x, y) = xy^{-1}$, for all $x, y \in G$ and $\chi : A \times A \to A$, be soft continuous.

Let e be the identity element of G, then from Proposition 3.19, $j_\varphi : (G, A, \tau) \to (G \times G, A \times A, \tau \times \tau)$, where $j(x) = (e, x)$ and $\varpi : A \to A \times A$ is any mapping, is soft continuous.

Thus $g_\varphi = p_\chi^\prime j_\varphi : (G, A, \tau) \to (G, A, \tau)$ where $g(x) = p^\prime j(x) = p^\prime(e, x) = x^{-1}$, for all $x \in G$, is soft continuous.

Also since the identity soft mapping $i_\eta : (G, A, \tau) \to (G, A, \tau)$ where $i(x) = x$ and $\eta : A \to A$ is an identity mapping, is soft continuous, from Proposition 3.23, we have that the soft mapping $h_\eta : (G \times G, A \times A, \tau \times \tau) \to (G \times G, A \times A, \tau \times \tau)$, where $h(x, y) = (x, y^{-1})$, for all $x, y \in G$ and $\xi(\alpha, \beta) = (\eta(\alpha), \psi(\beta))$, is soft continuous.

So $f_\varphi = p_\chi^\prime h_\eta : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau)$, where $[p^\prime h](x, y) = p^\prime(x, y^{-1}) = x(y^{-1})^{-1} = xy$, for all $x, y \in G$, is soft continuous.

Therefore τ is a generalized group soft topology.

Similarly we can prove that τ is a generalized group soft topology if there exists a mapping $\chi : A \times A \to A$ such that the soft mapping $p_\chi^\prime : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau)$, where $p^\prime(x, y) = x^{-1}y$, for all $x, y \in G$, is soft continuous.

\square

Definition 4.8. A mapping $\varphi : A \times A \to A$ is said to be

(i) left one-one if $a \neq b \Rightarrow \varphi(a, a) \neq \varphi(b, b)$ for all $a, b, \alpha, \beta \in A$;
(ii) right one-one if $a \neq b \Rightarrow \varphi(\alpha, a) \neq \varphi(\beta, b)$ for all $a, b, \alpha, \beta \in A$;
(iii) left onto if $\varphi(A \times \{\alpha\}) = A$, for all $\alpha \in A$;
(iv) right onto if $\varphi(\{\alpha\} \times A) = A$, for all $\alpha \in A$;
(v) left bijective if φ is left one-one and left onto;
(vi) right bijective if φ is right one-one and right onto.

Proposition 4.9. Let (G, A, τ) be a generalized group soft topological space with the associated product soft mapping f_φ and inverse soft mapping g_ψ.

(i) If $\varphi : A \times A \to A$ is left bijective, then there exists a bijective mapping $\eta : A \to A$ such that the soft mapping $R^\varphi_\eta : (G, A, \tau) \to (G, A, \tau)$, where $R^\varphi_\eta(x) = xa$, is soft homeomorphism;
(ii) If $\varphi : A \times A \to A$ is right bijective, then there exists a bijective mapping $\zeta : A \to A$ such that the soft mapping $L^\varphi_\eta : (G, A, \tau) \to (G, A, \tau)$, where $L^\varphi_\eta(x) = ax$, is soft homeomorphism.
(iii) If \(\varphi : A \times A \to A \) is both left and right bijective, then there exists a bijective mapping \(\kappa : A \to A \) such that the soft mapping \(C_\kappa : (G, A, \tau) \to (G, A, \tau) \), where \(C(x) = axa^{-1} \), is soft homeomorphism.

Proof. (i) It is clear that \(R^a \) is a bijective mapping.

Since \(\tau \) is a generalized group soft topology with the associated product soft mapping \(f_\varphi : (G \times G, A \times A, \tau \times \tau) \to (G, A, \tau) \), where \(f(x, y) = xy \), is soft continuous.

Also by Proposition 3.20 the mapping \(j_\varphi : (G, A, \tau) \to (G \times G, A \times A, \tau \times \tau) \), where \(j(x) = (x, a) \) and \(\varphi(\alpha) = (x, \beta) \), is soft continuous.

So, by Proposition 3.13 \(R^n_\eta = f_\varphi j_\varphi : (G, A, \tau) \to (G, A, \tau) \), where \(R^n(x) = f[j(x)] = f[(x, a)] = xa \), is soft continuous.

Also since \(\varphi : A \times A \to A \) is left bijective, it follows that \(\eta = \varphi \varphi \) is bijective.

Therefore, \(R^n_\eta \) is bijective and soft continuous mapping.

Again \([R^n_\eta]^{-1} = R^n_\eta^{-1} \) implies that \([R^n_\eta]^{-1} \) is bijective and soft continuous.

Therefore \(R^n_\eta : (G, A, \tau) \to (G, A, \tau) \) is a soft homeomorphism.

(ii) The proof is similar to that of (i).

(iii) From part (i) and (ii) we have the soft mappings \(L^n_\zeta \) and \(R^n_\eta^{-1} \) are soft continuous.

Therefore by Proposition 3.13 the soft mapping \(C_\kappa = L^n_\zeta R^n_\eta^{-1} : (G, A, \tau) \to (G, A, \tau) \), where \(C(x) = L^n_\zeta [R^n_\eta^{-1}(x)] = L^n_\eta [xa^{-1}] = axa^{-1} \), for all \(x \in G \), is soft continuous and \(\kappa : A \to A \) is bijective.

Therefore, \(C_\kappa \) is bijective and soft continuous mapping.

Similarly the soft mapping \([C_\kappa]^{-1} \) is bijective and soft continuous.

Therefore \(C_\kappa : (G, A, \tau) \to (G, A, \tau) \) is a soft homeomorphism. \(\square \)

5. Conclusion

In this paper, we have generalized the group soft topology by taking soft composition mapping instead of ordinary group composition mapping and parallel product is replaced by usual product. We have called the resulting structure as generalized group soft topological space and studied some basic properties of this space. Topological groups have many applications in the field of abstract integration theory such as the development of the theory of Haar measure and Haar integral and also in the manifold theory through the development of Lie groups. Here we have studied the topological group theory in soft set setting which is best suited for modeling physical systems involving uncertainty. In this sense, this study has a great significance. There is an ample scope of further research in developing the theory of Haar measure, Haar integral and the theory of Lie group etc in this setting.

Acknowledgements. The authors express their sincere thanks to the reviewers for their valuable suggestions for improving the quality of the paper. The authors are also thankful to the editors-in-chief and managing editors for their important comments which helped to improve the presentation of the paper.
References

Sk. Nazmul (sk.nazmul_math@yahoo.in)
Department of Mathematics, Institute of Education for Women, Hastings House, Alipore, Kolkata-700027, West Bengal, India

S. K. Samanta (syamal_123@yahoo.co.in)
Department of Mathematics, Visva-Bharati, Santiniketan-731235, West Bengal, India