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1. Introduction

The concept of fuzzy sets has been primarily introduced for representing sets
containing uncertainty or vagueness by Zadeh [19] as fuzzy set theory. Then, fuzzy
set theory has been applied in various areas such as economics, management science,
engineering, optimization theory, operations research, etc. (Gupta and Dangar [5],
Kurano et al. [8], Mahapatra et al. [12], Saraj and Sadeghi [14], Wu [15, 16, 17],
and Yoshida [18]). Fuzzy numbers and fuzzy vectors are often used in applications.
A fuzzy number is a fuzzy set on R with some restrictions, and is interpreted as the
fuzzy set of real numbers around some real number. A fuzzy vector is a fuzzy set on
Rn with some restrictions, and is interpreted as the fuzzy set of vectors around some
vector. The usual restrictions are support boundedness, closedness, convexity, and
normality (Bortolan and Degani [1], Dubois et al. [3], Furukawa [4], Kurano et al. [9],
Maeda [11], and Ramı́k and Řimánek [13]). Properties of operations (addition and
scalar multiplication), orderings, and fuzzy set-valued convex mappings for general
fuzzy sets rather than fuzzy numbers or fuzzy vectors are investigated by Kon [7].

In the present paper, a fuzzy inner product and a fuzzy product space for general
fuzzy sets are proposed, and their properties with respect to operations, orderings,
and fuzzy set-valued convex mappings are investigated.
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The remainder of the present paper is organized as follows. In Section 2, some
notations and auxiliary results are presented. In Section 3, we investigate funda-
mental properties of an inner product and product sets for crisp sets with respect to
operations and orderings. In Section 4, operations and the (strict) fuzzy max order
of fuzzy sets are defined, and their properties are presented. In Section 5, the fuzzy
inner product of fuzzy sets is defined, and relationships between it and the (strict)
fuzzy max order are investigated. In Section 6, we consider the fuzzy product space,
and investigate properties of operations, the (strict) fuzzy max order, and the fuzzy
inner product on the fuzzy product space. In Section 7, the definition of fuzzy set-
valued convex mappings is presented, and its properties are investigated. Finally,
conclusions are presented in Section 8.

2. Preliminaries

In this section, some notations and auxiliary results are presented.
For a, b ∈ R, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[= {x ∈ R : a ≤ x <

b}, ]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[= {x ∈ R : a < x < b}. We set
Rn

+ = {x ∈ Rn : x ≥ 0} and Rn
− = {x ∈ Rn : x ≤ 0}. Let {e1, e2, · · · , en} be the

canonical basis of Rn. For S ⊂ Rn, we denote the interior of S by int(S). Let C(Rn),
BC(Rn), K(Rn), and BCK(Rn) be sets of all closed, compact, convex, and compact
convex subsets of Rn, respectively.

For the notational convenience, we identify a fuzzy set s̃ on Rn with its member-
ship function s̃ : Rn → [0, 1]. Let F(Rn) be the set of all fuzzy sets on Rn.

Let s̃ ∈ F(Rn). For each α ∈]0, 1], the set [s̃]α = {x ∈ Rn : s̃(x) ≥ α} is called
the α-level set of s̃. The set supp(s̃) = {x ∈ Rn : s̃(x) > 0} is called the support of
s̃, and hgt(s̃) = supx∈Rn s̃(x) is called the height of s̃. The fuzzy set s̃ is said to be
normal if hgt(s̃) = 1. We set I(s̃) = {α ∈]0, 1] : [s̃]α 6= ∅}.

For a crisp set S ⊂ Rn, a function cS : Rn → {0, 1} defined as cS(x) = 1 if x ∈ S,
and cS(x) = 0 if x /∈ S for each x ∈ Rn is called the indicator function of S. For
0 ∈ Rn, we set 0̃ = c{0} ∈ F(Rn).

A fuzzy set s̃ ∈ F(Rn) can be represented as

(2.1) s̃ = sup
α∈]0,1]

αc[s̃]α ,

which is well-known as the decomposition theorem (Dubois et al. [2]).
Let s̃ ∈ F(Rn). The fuzzy set s̃ is said to be closed if s̃ is an upper semicontinuous

function, and s̃ is closed if and only if [s̃]α ∈ C(Rn) for any α ∈]0, 1]. The fuzzy set
s̃ is said to be convex if s̃(λx + (1− λ)y) ≥ min{s̃(x), s̃(y)} for any x, y ∈ Rn and
any λ ∈ [0, 1]. That is, s̃ is said to be convex if s̃ is a quasiconcave function, and s̃
is convex if and only if [s̃]α ∈ K(Rn) for any α ∈ ]0, 1]. The fuzzy set s̃ is said to be
compact if [s̃]α ∈ BC(Rn) for any α ∈]0, 1]. If s̃ is support bounded and closed, then
s̃ is compact. Note that s̃ is not always support bounded even if s̃ is compact. Let
FC(Rn), FBC(Rn), FK(Rn), and FBCK(Rn) be sets of all closed, compact, convex,
and compact convex fuzzy sets on Rn, respectively.

We set

(2.2) S(Rn) = {{Sα}α∈]0,1] : Sα ⊂ Rn, α ∈]0, 1],
and Sβ ⊃ Sγ for β, γ ∈]0, 1] with β < γ},
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and define M : S(Rn) → F(Rn) as

(2.3) M({Sα}α∈]0,1]) = sup
α∈]0,1]

αcSα

for each {Sα}α∈]0,1] ∈ S(Rn). For {Sα}α∈]0,1] ∈ S(Rn) and x ∈ Rn, it follows that
M({Sα}α∈]0,1])(x) = supα∈]0,1] αcSα(x) = sup{α ∈]0, 1] : x ∈ Sα}, where sup∅ = 0.
The decomposition theorem (2.1) can be represented as s̃ = M({[s̃]α}α∈]0,1]) for
s̃ ∈ F(Rn). When s̃ = M({Sα}α∈]0,1]) for s̃ ∈ F(Rn) and {Sα}α∈]0,1] ∈ S(Rn), s̃ is
called the fuzzy set generated by {Sα}α∈]0,1], and {Sα}α∈]0,1] is called the generator
of s̃.

The following proposition shows a relationship between the inclusion relation of
two generators of two fuzzy sets and the inclusion relation of the two fuzzy sets.

Proposition 2.1. (Kon [6]) Let {Sα}α∈]0,1], {Tα}α∈]0,1] ∈ S(Rn). If Sα ⊂ Tα for
any α ∈]0, 1], then M({Sα}α∈]0,1]) ≤ M({Tα}α∈]0,1]).

The following proposition shows a relationship between a generator of a fuzzy set
and level sets of the fuzzy set.

Proposition 2.2. (Kon [6]) Let {Sα}α∈]0,1] ∈ S(Rn), and let s̃ = M({Sα }α∈]0,1]).
Then, [s̃]α =

⋂
β∈]0,α[ Sβ for α ∈]0, 1].

3. Fundamental properties of crisp sets

In this section, we investigate fundamental properties of an inner product and
product sets for crisp sets with respect to operations and orderings.

For A,B ⊂ Rn and λ ∈ R, we define A + B, λA ⊂ Rn as A + B = {x + y : x ∈
A,y ∈ B} and λA = {λx : x ∈ A}.

We define orders on 2R
n

.

Definition 3.1. (Kurano et al. [9], Kuroiwa et al. [10], Maeda [11]) Let A,B ⊂ Rn.
(i) We write A ≤ B or B ≥ A if B ⊂ A + Rn

+ and A ⊂ B + Rn
−.

(ii) We write A < B or B > A if B ⊂ A + int(Rn
+) and A ⊂ B + int(Rn

−).

Let A, B ⊂ Rn. B ⊂ A+Rn
+ if and only if for any y ∈ B, there exists x ∈ A such

that x ≤ y. A ⊂ B + Rn
− if and only if for any x ∈ A, there exists y ∈ B such that

x ≤ y. B ⊂ A + int(Rn
+) if and only if for any y ∈ B, there exists x ∈ A such that

x < y. A ⊂ B + int(Rn
−) if and only if for any x ∈ A, there exists y ∈ B such that

x < y. It can be shown easily that the order ≤ in Definition 3.1 is a pseudo-order
on 2R

n

.
We define the inner product of crisp sets.

Definition 3.2. (i) For A,B ⊂ Rn,

(3.1) 〈A,B〉 = {x ∈ R : x = 〈y, z〉, y ∈ A, z ∈ B}
is called the inner product of A and B, where 〈y, z〉 is the canonical inner
product of y and z.

(ii) For A ⊂ Rn and b ∈ Rn,

(3.2) 〈A, b〉 = {x ∈ R : x = 〈y, b〉, y ∈ A}
is called the inner product of A and b. Furthermore, 〈b, A〉 = 〈A, b〉 is called
the inner product of b and A.
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The following proposition shows fundamental properties of the inner product for
crisp sets. It can be shown easily.

Proposition 3.3. Let A,B, C ⊂ Rn, and let λ ∈ R.
(i) 〈A,B〉 = 〈B, A〉.
(ii) 〈A + B, C〉 ⊂ 〈A,C〉+ 〈B, C〉.
(iii) It does not always hold that 〈A + B, C〉 ⊃ 〈A,C〉+ 〈B,C〉.
(iv) 〈λA,B〉 = λ〈A,B〉.
(v) It does not always hold that 〈A,A〉 ≥ {0}.
(vi) A = {0} ⇔ 〈A,A〉 = {0}.
(vii) A 6= ∅⇒ 〈A, {0}〉 = {0}.
The following proposition shows relationships between orderings and the inner

product of crisp sets.

Proposition 3.4. Let A,B ⊂ Rn.
(i) A ≤ B ⇒ 〈A,d〉 ≤ 〈B, d〉, d ∈ Rn

+.
(ii) A,B ∈ BCK(Rn) and 〈A, d〉 ≤ 〈B, d〉,d ∈ Rn

+ ⇒ A ≤ B.
(iii) A < B ⇒ 〈A,d〉 < 〈B, d〉, d ∈ Rn

+ \ {0}.
(iv) A,B ∈ K(Rn) and 〈A, d〉 < 〈B, d〉,d ∈ Rn

+ \ {0} ⇒ A < B.

Proof. (i) and (ii) are special cases of Lemma 4.4 in Kurano et al. [9].
(iii) Assume that A < B, and let d ∈ Rn

+ \{0}. Then, it is sufficient to show that
(iii-1) for any x ∈ 〈A, d〉, there exists y ∈ 〈B, d〉 such that x < y, and (iii-2) for any
y ∈ 〈B, d〉, there exists x ∈ 〈A,d〉 such that x < y. We show only (iii-1). (iii-2) can
be shown in the similar way to (iii-1). Let x ∈ 〈A,d〉. Then, there exists x0 ∈ A
such that x = 〈x0,d〉. Since A < B, there exists y0 ∈ B such that x0 < y0. We set
y = 〈y0,d〉 ∈ 〈B, d〉. Since d ∈ Rn

+ \ {0}, we have x = 〈x0,d〉 < 〈y0, d〉 = y.
(iv) Assume that A 6< B. Then, there are the following two cases: (iv-1) there

exists x ∈ A such that x 6< y for any y ∈ B; (iv-2) there exists y ∈ B such that
x 6< y for any x ∈ A. We show only the case (iv-1). The case (iv-2) can be shown
in the similar way to the case (iv-1). In the case (iv-1), since y /∈ x + int(Rn

+) for
any y ∈ B, it follows that B ∩ (x + int(Rn

+)) = ∅. Since B, x + int(Rn
+) ∈ K(Rn),

there exists a ∈ Rn \ {0} such that 〈a, y〉 ≤ 〈a, x〉 + 〈a,d〉 for any y ∈ B and any
d ∈ int(Rn

+) from the separation theorem. Assume that there exists d0 ∈ int(Rn
+)

such that 〈a, d0〉 < 0. Then, since λd0 ∈ int(Rn
+) for any λ > 0, it follows that

〈a, x〉 + 〈a, λd0〉 = 〈a, x〉 + λ〈a,d0〉 → −∞ as λ → ∞, which contradicts that
〈a, y〉 ≤ 〈a, x〉+ 〈a, d〉 for any y ∈ B and any d ∈ int(Rn

+). Thus, since 〈a,d〉 ≥ 0
for any d ∈ int(Rn

+), it follows that a ∈ Rn
+ \ {0}. For any y ∈ B, when d → 0,

d ∈ int(Rn
+) in 〈a, y〉 ≤ 〈a,x〉 + 〈a,d〉, we have 〈a,y〉 ≤ 〈a,x〉, which contradicts

that 〈A, a〉 < 〈B, a〉. ¤
For Ai ⊂ R, i = 1, 2, · · · , n, we set

∏n
i=1 Ai = A1 × A2 × · · · × An and

∑n
i=1 Ai

= A1 + A2 + · · ·+ An.
The following proposition shows fundamental properties of the product for crisp

sets, and relationships between the product and operations, the inner product, or-
derings for crisp sets. It can be shown easily.

Proposition 3.5. Let Ai, Bi ⊂ R, i = 1, 2, · · · , n, and let λ ∈ R.
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(i) Ai 6= ∅, i = 1, 2, · · · , n,
∏n

i=1 Ai ∈ K(Rn) ⇒ Ai ∈ K(R), i = 1, 2, · · · , n.
(ii)

∏n
i=1 Ai ∈ K(Rn) ⇐ Ai ∈ K(R), i = 1, 2, · · · , n.

(iii) Ai 6= ∅, i = 1, 2, · · · , n,
∏n

i=1 Ai ∈ C(Rn) ⇒ Ai ∈ C(R), i = 1, 2, · · · , n.
(iv)

∏n
i=1 Ai ∈ C(Rn) ⇐ Ai ∈ C(R), i = 1, 2, · · · , n.

(v) Ai 6= ∅, i = 1, 2, · · · , n,
∏n

i=1 Ai ∈ BC(Rn) ⇒ Ai ∈ BC(R), i = 1, 2, · · · , n.
(vi)

∏n
i=1 Ai ∈ BC(Rn) ⇐ Ai ∈ BC(R), i = 1, 2, · · · , n.

(vii)
∏n

i=1 Ai +
∏n

i=1 Bi =
∏n

i=1(Ai + Bi).
(viii) λ

∏n
i=1 Ai =

∏n
i=1 λAi.

(ix) 〈∏n
i=1 Ai,

∏n
i=1 Bi〉 =

∑n
i=1〈Ai, Bi〉.

(x) Ai 6= ∅, Bi 6= ∅, i = 1, 2, · · · , n,
∏n

i=1 Ai ≤
∏n

i=1 Bi ⇒ Ai ≤ Bi, i = 1, 2,
· · · , n.

(xi)
∏n

i=1 Ai ≤
∏n

i=1 Bi ⇐ Ai ≤ Bi, i = 1, 2, · · · , n.
(xii) Ai 6= ∅, Bi 6= ∅, i = 1, 2, · · · , n,

∏n
i=1 Ai <

∏n
i=1 Bi ⇒ Ai < Bi, i = 1, 2,

· · · , n.
(xiii)

∏n
i=1 Ai <

∏n
i=1 Bi ⇐ Ai < Bi, i = 1, 2, · · · , n.

4. Operations and orderings of fuzzy set

In this section, operations and orderings on F(Rn) are defined, and their proper-
ties are presented.

The following definitions are addition and scalar multiplication on F(Rn) by
Zadeh’s extension principle.

Definition 4.1. For ã, b̃ ∈ F(Rn) and λ ∈ R, we define ã + b̃, λã ∈ F(Rn) as

(4.1) (ã + b̃)(x) = sup
x=y+z

min
{

ã(y), b̃(z)
}

and (λã)(x) = sup
x=λy

ã(y)

for each x ∈ Rn.

The following proposition shows relationships between operations of fuzzy sets
and operations of level sets of the fuzzy sets.

Proposition 4.2. (Kon [7]) Let ã, b̃ ∈ F(Rn), and let λ ∈ R. In addition, let
α ∈]0, 1].

(i) [ã + b̃]α ⊃ [ã]α + [̃b]α.
(ii) ã ∈ FBC(Rn), b̃ ∈ FC(Rn) ⇒ [ã + b̃]α ⊂ [ã]α + [̃b]α.
(iii) [λã]α ⊃ λ[ã]α.
(iv) ã ∈ FBC(Rn) ⇒ [λã]α ⊂ λ[ã]α.

The following proposition shows relationships between operations of fuzzy sets
and generators of the fuzzy sets.

Proposition 4.3. (Kon [7]) Let {Sα}α∈]0,1], {Tα}α∈]0,1] ∈ S(Rn), and let ã =
M({Sα}α∈]0,1]) and b̃ = M({Tα}α∈]0,1]). In addition, let λ ∈ R.

(i) ã + b̃ = M({Sα + Tα}α∈]0,1]) = supα∈]0,1] αcSα+Tα .
(ii) λã = M({λSα}α∈]0,1]) = supα∈]0,1] αcλSα .

The following proposition shows a property of addition and scalar multiplication
on F(Rn) in some special case.
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Proposition 4.4. (Kon [7]) ã, b̃ ∈ F(Rn), hgt(ã) = hgt(̃b) ⇒ 1 · ã + 0 · b̃ = ã.

The following proposition shows properties of the convexity, closedness, and com-
pactness with respect to addition and scalar multiplication of fuzzy sets.

Proposition 4.5. (Kon [7]) Let ã, b̃ ∈ F(Rn), and let λ ∈ R.

(i) ã, b̃ ∈ FK(Rn) ⇒ ã + b̃ ∈ FK(Rn).
(ii) ã, b̃ ∈ FBC(Rn) ⇒ ã + b̃ ∈ FBC(Rn).
(iii) ã ∈ FBC(Rn), b̃ ∈ FC(Rn) ⇒ ã + b̃ ∈ FC(Rn).
(iv) It does not always hold that ã + b̃ ∈ FC(Rn) even if ã, b̃ ∈ FC(Rn).
(v) ã ∈ FK(Rn) ⇒ λã ∈ FK(Rn).
(vi) ã ∈ FC(Rn) ⇒ λã ∈ FC(Rn).
(vii) ã ∈ FBC(Rn) ⇒ λã ∈ FBC(Rn).

We define orders on F(Rn) based on orderings of level sets of fuzzy sets.

Definition 4.6. (Kon [7]) Let ã, b̃ ∈ F(Rn).

(i) We write ã ¹ b̃ or b̃ º ã if [ã]α ≤ [̃b]α for any α ∈]0, 1].
(ii) We write ã ≺ b̃ or b̃ Â ã if [ã]α < [̃b]α for any α ∈]0, 1].

The orders ¹ and ≺ in Definition 4.6 are called the fuzzy max order and the
strict fuzzy max order, respectively. It can be shown easily that the order ¹ is a
pseudo-order on F(Rn).

5. Fuzzy inner product

In this section, a fuzzy inner product on F(Rn) is defined, and relationships
between it and the (strict) fuzzy max order are investigated.

We define the fuzzy inner product on F(Rn) based on Zadeh’s extension principle.

Definition 5.1. (i) For ã, b̃ ∈ F(Rn), 〈ã, b̃〉 ∈ F(R) defined as

(5.1) 〈ã, b̃〉(x) = sup
x=〈y,z〉

min{ã(y), b̃(z)}

for each x ∈ R is called the fuzzy inner product of ã and b̃.
(ii) For ã ∈ F(Rn) and b ∈ Rn, 〈ã, b〉 ∈ F(R) defined as

(5.2) 〈ã, b〉(x) = sup
x=〈y,b〉

ã(y)

for each x ∈ R is called the fuzzy inner product of ã and b. Furthermore,
〈b, ã〉 = 〈ã, b〉 is called the fuzzy inner product of b and ã.

Note that 〈ã, b〉 = 〈ã, c{b}〉 for ã ∈ F(Rn) and b ∈ Rn. The fuzzy inner product
has been defined for fuzzy vectors by Maeda [11], and for fuzzy sets which are closed,
convex, normal, and support bounded by Kurano et al. [9]. The fuzzy inner product
in Definition 5.1 is an extension of these definitions in the sense that it is the fuzzy
inner product for general fuzzy sets.

The following proposition shows a relationship between the fuzzy inner product
of fuzzy sets and generators of the fuzzy sets.
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Proposition 5.2. Let {Sα}α∈]0,1], {Tα}α∈]0,1] ∈ S(Rn), and let ã = M({Sα }α∈]0,1])
and b̃ = M({Tα}α∈]0,1]). Then,

(5.3) 〈ã, b̃〉 = M({〈Sα, Tα〉}α∈]0,1]) = sup
α∈]0,1]

αc〈Sα,Tα〉.

Proof. Let x ∈ R. We set β = 〈ã, b̃〉(x) = supx=〈y,z〉min{ã(y), b̃(z)}. Then, we
show that M({〈Sα, Tα〉}α∈]0,1])(x) = supα∈]0,1] αc〈Sα,Tα〉(x) = β.

If β = 1, then αc〈Sα,Tα〉(x) ≤ 1 = β for any α ∈]0, 1]. Suppose that β < 1.
It follows that x /∈ 〈Sγ , Tγ〉 for any γ ∈]β, 1]. If there exists γ ∈]β, 1] such that
x ∈ 〈Sγ , Tγ〉, then there exist y ∈ Sγ and z ∈ Tγ such that x = 〈y, z〉, and then
min{ã(y), b̃(z)} = min{sup{α ∈]0, 1] : y ∈ Sα}, sup{α ∈]0, 1] : z ∈ Tα}} ≥ γ > β,
which contradicts the definition of β. Therefore, we have αc〈Sα,Tα〉(x) ≤ β for any
α ∈]0, 1].

If β = 0, then supα∈]0,1] αc〈Sα,Tα〉(x) = 0. Suppose that β > 0. Fix any
ε ∈]0, β[. From the definition of β, there exist y0, z0 ∈ Rn such that x = 〈y0, z0〉 and
min{ã(y0), b̃(z0)} > β − ε

2 . From Proposition 2.2, it follows that y0 ∈ [ã]β− ε
2+δ =

∩α∈]0,β− ε
2+δ[Sα ⊂ Sβ− ε

2
and z0 ∈ [̃b]β− ε

2+δ = ∩α∈]0,β− ε
2+δ[Tα ⊂ Tβ− ε

2
for suffi-

ciently small δ > 0. Therefore, we have
(
β − ε

2

)
c〈

Sβ− ε
2

,Tβ− ε
2

〉(x) = β− ε
2 > β−ε. ¤

The following proposition can be obtained from Proposition 5.2.

Proposition 5.3. Let {Sα}α∈]0,1] ∈ S(Rn), and let ã = M({Sα}α∈]0,1]). In addi-
tion, let b ∈ Rn. Then,

(5.4) 〈ã, b〉 = M({〈Sα, b〉}α∈]0,1]) = sup
α∈]0,1]

αc〈Sα,b〉.

Example 5.4. Let ã, b̃ ∈ F(R2) be fuzzy sets defined as ã(y, z) = min{max{0, 1−
|y−1|}, max{0, 1−|z−2|}} and b̃(y, z) = min{max{0, 1−|y−4|}, max{0, 1−|z−1|}}
for each (y, z) ∈ R2. For each α ∈]0, 1], since [ã]α = [α, 2 − α] × [1 + α, 3 − α] and
[̃b]α = [3+α, 5−α]× [α, 2−α], it follows that 〈[ã]α, [̃b]α〉 = [α(3+α)+(1+α)α, (2−
α)(5− α) + (3− α)(2− α)] = [2α2 + 4α, 2α2 − 12α + 16]. From the decomposition
theorem (2.1) and Proposition 5.2, we have

〈ã, b̃〉(x) = sup
α∈]0,1]

αc〈[ã]α,[̃b]α〉(x) =





√
2x+4
2 − 1 if x ∈ [0, 6],

−
√

2x+4
2 + 3 if x ∈]6, 16],

0 otherwise

for each x ∈ R.

The following proposition shows relationships between level sets of the fuzzy inner
product of fuzzy sets and the inner product of level sets of the fuzzy sets.

Proposition 5.5. Let ã, b̃ ∈ F(Rn), and let α ∈]0, 1].

(i) [〈ã, b̃〉]α ⊃ 〈[ã]α, [̃b]α〉.
(ii) ã, b̃ ∈ FBC(Rn) ⇒ [〈ã, b̃〉]α ⊂ 〈[ã]α, [̃b]α〉.
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Proof. From the decomposition theorem (2.1) and Propositions 2.1 and 5.2, [〈ã, b̃〉]α
= ∩β∈]0,α[〈[ã]β , [̃b]β〉. We set A = [〈ã, b̃〉]α and B = 〈[ã]α, [̃b]α〉.

(i) Since B = 〈[ã]α, [̃b]α〉 ⊂ 〈[ã]β , [̃b]β〉 for any β ∈]0, α[, we have B ⊂ ∩β∈]0,α[〈[ã]β ,
[̃b]β〉 = A.

(ii) Let x ∈ A. Since x ∈ 〈[ã]β , [̃b]β〉 for any β ∈]0, α[, there exist yk ∈ [ã]α− α
k+1

and zk ∈ [̃b]α− α
k+1

such that x = 〈yk, zk〉 for each k ∈ N, where N is the set of all

natural numbers. Since ã, b̃ ∈ FBC(Rn), without loss of generality, we assume that
there exist y0,z0 ∈ Rn such that yk → y0 and zk → z0.

Fix any β ∈]0, α[. There exists k0 ∈ N such that α − α
k+1 ∈]β, α[ for any k

≥ k0. Then, yk ∈ [ã]α− α
k+1

⊂ [ã]β and zk ∈ [̃b]α− α
k+1

⊂ [̃b]β for any k ≥ k0. Since

[ã]β , [̃b]β ∈ BC(Rn), it follows that yk → y0 ∈ [ã]β and zk → z0 ∈ [̃b]β .
Thus, y0 ∈ [ã]β and z0 ∈ [̃b]β for any β ∈]0, α[. From the decomposition

theorem (2.1) and Proposition 2.2, it follows that y0 ∈ ∩β∈]0,α[[ã]β = [ã]α and
z0 ∈ ∩β∈]0,α[ [̃b]β = [̃b]α. Therefore, we have x = 〈yk, zk〉 → x = 〈y0, z0〉 ∈
〈[ã]α, [̃b]α〉 = B. ¤

The following proposition can be obtained from Proposition 5.5.

Proposition 5.6. Let ã ∈ F(Rn), and let b ∈ Rn. In addition, let α ∈]0, 1].
(i) [〈ã, b〉]α ⊃ 〈[ã]α, b〉.
(ii) ã ∈ FBC(Rn) ⇒ [〈ã, b〉]α ⊂ 〈[ã]α, b〉.

The following proposition shows that the fuzzy inner product in Definition 5.1
is not an inner product, but the fuzzy inner product has nearly properties of inner
products.

Proposition 5.7. Let ã, b̃, c̃ ∈ F(Rn), and let λ ∈ R.

(i) 〈ã, b̃〉 = 〈̃b, ã〉.
(ii) 〈ã + b̃, c̃〉 ≤ 〈ã, c̃〉+ 〈̃b, c̃〉.
(iii) It does not always hold that 〈ã + b̃, c̃〉 ≥ 〈ã, c̃〉+ 〈̃b, c̃〉.
(iv) 〈λã, b̃〉 = λ〈ã, b̃〉.
(v) It does not always hold that 〈ã, ã〉 º 0̃.
(vi) ã = 0̃ ⇔ 〈ã, ã〉 = 0̃.
(vii) hgt(ã) = 1 ⇒ 〈ã, 0̃〉 = 0̃.

Proof. (i) Let x ∈ R. Then, we have 〈ã, b̃〉(x) = supx=〈y,z〉min{ã(y), b̃(z)} =

supx=〈z,y〉min{b̃(z), ã(y)} = 〈̃b, ã〉(x).
(ii) From the decomposition theorem (2.1) and Propositions 4.3 (i) and 5.2, it fol-

lows that 〈ã+ b̃, c̃〉 = M({〈[ã]α+[̃b]α, [c̃]α〉}α∈]0,1]) and 〈ã, c̃〉+ 〈̃b, c̃〉 = M({〈[ã]α, [c̃]α〉
+ 〈[̃b]α, [c̃]α〉}α∈]0,1]). From Proposition 3.3 (ii), it follows that 〈[ã]α + [̃b]α, [c̃]α〉 ⊂
〈[ã]α, [c̃]α〉+ 〈[̃b]α, [c̃]α〉 for any α ∈]0, 1]. Therefore, we have 〈ã+ b̃, c̃〉 ≤ 〈ã, c̃〉+ 〈̃b, c̃〉
from Proposition 2.1.

(iii) From Proposition 3.3 (iii), there exist A,B,C ⊂ Rn such that 〈A + B, C〉
6⊃ 〈A,C〉 + 〈B, C〉. We set ã = cA, b̃ = cB , and c̃ = cC . From the decompo-
sition theorem (2.1) and Propositions 4.3 (i) and 5.2, it follows that 〈ã + b̃, c̃〉 =
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M({〈[ã]α +[̃b]α, [c̃]α〉}α∈]0,1]) = M({〈A+B, C〉}α∈]0,1]) = c〈A+B,C〉 and 〈ã, c̃〉+ 〈̃b, c̃〉
= M({〈[ã]α, [c̃]α〉+〈[̃b]α, [c̃]α〉}α∈]0,1]) = M({〈A,C〉+〈B, C〉}α∈]0,1]) = c〈A,C〉+〈B,C〉.
Since 〈A + B, C〉 6⊃ 〈A,C〉 + 〈B, C〉, there exists x0 ∈ 〈A,C〉 + 〈B,C〉 such that
x0 /∈ 〈A + B,C〉. Therefore, we have 〈ã + b̃, c̃〉(x0) = c〈A+B,C〉(x0) = 0 6≥ 1 =
c〈A,C〉+〈B,C〉(x0) = (〈ã, c̃〉+ 〈̃b, c̃〉)(x0).

(iv) From the decomposition theorem (2.1) and Propositions 3.3 (iv), 4.3 (ii),
and 5.2, we have 〈λã, b̃〉 = M({〈λ[ã]α, [̃b]α〉}α∈]0,1]) = M({λ〈[ã]α, [̃b]α〉}α∈]0,1]) =
λM({〈[ã]α, [̃b]α〉}α∈]0,1]) = λ〈ã, b̃〉.

(v) From Proposition 3.3 (v), there exists A ⊂ Rn such that 〈A,A〉 6≥ {0}.
We set ã = cA. From the decomposition theorem (2.1) and Proposition 5.2, it
follows that 〈ã, ã〉 = M({[ã]α, [ã]α〉}α∈]0,1]) = M({〈A, A〉}α∈]0,1]) = c〈A,A〉. Since
[〈ã, ã〉]α = 〈A,A〉 6≥ {0} = [0̃]α for any α ∈]0, 1], we have 〈ã, ã〉 6º 0̃.

(vi) First, we show the necessity. From the decomposition theorem (2.1) and
Proposition 5.2, we have 〈ã, ã〉 = 〈0̃, 0̃〉 = M({〈[0̃]α, [0̃]α〉}α∈]0,1]) = M({{0} }α∈]0,1])
= 0̃.

Next, we show the sufficiency. Suppose that ã 6= 0̃. Then, there are the following
two cases: (vi-1) there exists x0 ∈ Rn such that x0 6= 0 and ã(x0) > 0; (vi-2)
ã(0) < 1, and there does not exist x0 ∈ Rn such that x0 6= 0 and ã(x0) > 0.
Suppose the case (vi-1). We set y0 = 〈x0,x0〉 > 0. Then, we have 〈ã, ã〉(y0) =
supy0=〈y,z〉min{ã(y), ã(z)} ≥ min{ã(x0), ã(x0)} = ã(x0) > 0 = 0̃(y0). Suppose
the case (vi-2). From the decomposition theorem (2.1) and Proposition 5.2, we have
〈ã, ã〉(0) = sup{α ∈]0, 1] : 0 ∈ 〈[ã]α, [ã]α〉} = ã(0) < 1 = 0̃(0).

(vii) Since [ã]α 6= ∅ and [0̃]α = {0} for any α ∈]0, 1[, it follows that 〈[ã]α,
[0̃]α〉 = {0} for any α ∈]0, 1[ from Proposition 3.3 (vii). From Propositions 2.2 and
5.2, it follows that [〈ã, 0̃〉]α = {0} for any α ∈]0, 1]. Therefore, we have 〈ã, 0̃〉 = 0̃
from the decomposition theorem (2.1). ¤

The following proposition shows characterizations of the (strict) fuzzy max order
based on the fuzzy inner product.

Proposition 5.8. Let ã, b̃ ∈ F(Rn).

(i) ã, b̃ ∈ FBC(Rn), ã ¹ b̃ ⇒ 〈ã,d〉 ¹ 〈̃b,d〉, d ∈ Rn
+.

(ii) ã, b̃ ∈ FBCK(Rn) and 〈ã,d〉 ¹ 〈̃b,d〉, d ∈ Rn
+ ⇒ ã ¹ b̃.

(iii) ã, b̃ ∈ FBC(Rn), ã ≺ b̃ ⇒ 〈ã,d〉 ≺ 〈̃b,d〉, d ∈ Rn
+ \ {0}.

(iv) ã, b̃ ∈ FBCK(Rn) and 〈ã,d〉 ≺ 〈̃b,d〉, d ∈ Rn
+ \ {0} ⇒ ã ≺ b̃.

Proof. We show only (i) and (ii). (iii) and (iv) can be shown in the similar ways to
(i) and (ii), respectively.

(i) Fix any α ∈]0, 1] and any d ∈ Rn
+. Since [ã]α ≤ [̃b]α, it follows that 〈[ã]α,d〉 ≤

〈[̃b]α, d〉 from Proposition 3.4 (i), and that [〈ã,d〉]α ≤ [〈̃b,d〉]α from Proposition 5.6.
Therefore, we have 〈ã,d〉 ¹ 〈̃b,d〉 for any d ∈ Rn

+ by the arbitrariness of α ∈]0, 1]
and d ∈ Rn

+.
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(ii) Fix any α ∈]0, 1]. Since 〈[ã]α, d〉 = [〈ã,d〉]α ≤ [〈̃b,d〉]α = 〈[̃b]α, d〉 for any
d ∈ Rn

+ from Proposition 5.6, it follows that [ã]α ≤ [̃b]α from Proposition 3.4 (ii).
Therefore, we have ã ¹ b̃ by the arbitrariness of α ∈]0, 1]. ¤

6. Fuzzy product space

In this section, we consider a fuzzy product space of n F(R)’s which is a subclass
of F(Rn), and investigate properties of operations, the (strict) fuzzy max order, and
the fuzzy inner product on the fuzzy product space.

We define the fuzzy product space.

Definition 6.1. For ãi ∈ F(R), i = 1, 2, · · · , n, ã = (ã1, ã2, · · · , ãn) ∈ F(Rn)
defined as

(6.1) ã(x) = min
i=1,2,··· ,n

ãi(xi)

for each x = (x1, x2, · · · , xn) ∈ Rn is called the fuzzy product set of ãi, i =
1, 2, · · · , n. Moreover,

(6.2) Fn(R) = {(ã1, ã2, · · · , ãn) : ãi ∈ F(R), i = 1, 2, · · · , n} ⊂ F(Rn)

is called the fuzzy product space of n F(R)’s.

The following proposition shows a relationship between level sets of fuzzy product
sets and level sets of fuzzy sets which construct the fuzzy product sets.

Proposition 6.2. Let ã = (ã1, ã2, · · · , ãn) ∈ Fn(R), and let α ∈]0, 1]. Then,

(6.3) [ã]α =
n∏

i=1

[ãi]α.

Proof.

[ã]α =
{

(x1, x2, · · · , xn) ∈ Rn : min
i=1,2,··· ,n

ãi(xi) ≥ α

}

= {(x1, x2, · · · , xn) ∈ Rn : ãi(xi) ≥ α, i = 1, 2, · · · , n}
= {(x1, x2, · · · , xn) ∈ Rn : xi ∈ [ãi]α, i = 1, 2, · · · , n}

=
n∏

i=1

[ãi]α.

¤
The following proposition shows a relationship between fuzzy product sets and

generators of fuzzy sets which construct the fuzzy product sets.

Proposition 6.3. Let {Siα}α∈]0,1] ∈ S(R), i = 1, 2, · · · , n, and let ãi = M({Siα

}α∈]0,1]), i = 1, 2, · · · , n. In addition, let ã = (ã1, ã2, · · · , ãn) ∈ Fn(R). Then,
ã = M({∏n

i=1 Siα}α∈]0,1]).

Proof. It follows that [ã]α =
∏n

i=1[ãi]α =
∏n

i=1

(∩β∈]0,α[Siβ

) ⊃ ∏n
i=1 Siα for any

α ∈]0, 1] from Propositions 2.2 and 6.2, and that ã ≥ M({∏n
i=1 Siα}α∈]0,1]) from

the decomposition theorem (2.1) and Proposition 2.1. Suppose that there exists
x = (x1, x2, · · · , xn) ∈ Rn such that ã(x) > M({∏n

i=1 Siα}α∈]0,1])(x). We set
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β = M({∏n
i=1 Siα}α∈]0,1])(x) = sup{α ∈]0, 1] : x ∈ ∏n

i=1 Siα}. Since ã(x) =
mini=1,2,··· ,n ãi(xi) > β, it follows that mini=1,2,··· ,n ãi(xi) > β + 2ε for sufficiently
small ε > 0. For each i ∈ {1, 2, · · · , n}, since ãi(xi) > β + 2ε, it follows that
xi ∈ [ãi]β+2ε = ∩γ∈]0,β+2ε[Siγ ⊂ Si,β+ε from Proposition 2.2. Therefore, we have
x = (x1, x2, · · · , xn) ∈ ∏n

i=1 Si,β+ε, which contradicts the definition of β. ¤

The following proposition shows properties of the convexity, closedness, and com-
pactness with respect to fuzzy product sets.

Proposition 6.4. Let ã = (ã1, ã2, · · · , ãn) ∈ Fn(R).
(i) hgt(ã1) = · · · = hgt(ãn), ã ∈ FK(Rn) ⇒ ãi ∈ FK(R), i = 1, 2, · · · , n.
(ii) ã ∈ FK(Rn) ⇐ ãi ∈ FK(R), i = 1, 2, · · · , n.
(iii) hgt(ã1) = · · · = hgt(ãn), ã ∈ FC(Rn) ⇒ ãi ∈ FC(R), i = 1, 2, · · · , n.
(iv) ã ∈ FC(Rn) ⇐ ãi ∈ FC(R), i = 1, 2, · · · , n.
(v) hgt(ã1) = · · · = hgt(ãn), ã ∈ FBC(Rn) ⇒ ãi ∈ FBC(R), i = 1, 2, · · · , n.
(vi) ã ∈ FBC(Rn) ⇐ ãi ∈ FBC(R), i = 1, 2, · · · , n.

Proof. We show only (i) and (ii). (iii) and (v) can be shown in the similar way to
(i). (iv) and (vi) can be shown in the similar way to (ii).

(i) We set α0 = hgt(ã1) = · · · = hgt(ãn). If α0 = 0, then ãi ∈ FK(R) for
any i ∈ {1, 2, · · · , n}. Assume that α0 > 0. If α ∈]α0, 1], then [ãi]α = ∅ for any
i ∈ {1, 2, · · · , n}. Fix any α ∈]0, α0[. Then, [ãi]α 6= ∅ for any i ∈ {1, 2, · · · , n},
and [ã]α =

∏n
i=1[ãi]α ∈ K(Rn) from Proposition 6.2 and the assumption. From

Proposition 3.5 (i), it follows that [ãi]α ∈ K(R) for any i ∈ {1, 2, · · · , n}. Thus,
it follows that [ãi]α0 = ∩β∈]0,α0[[ãi]β ∈ K(R) for any i ∈ {1, 2, · · · , n} from the
decomposition theorem (2.1) and Proposition 2.2. Therefore, we have ãi ∈ FK(R)
for any i ∈ {1, 2, · · · , n}.

(ii) Fix any α ∈]0, 1]. Since [ãi]α ∈ K(R) for any i ∈ {1, 2, · · · , n}, it follows that
[ã]α =

∏n
i=1[ãi]α ∈ K(Rn) from Propositions 3.5 (ii) and 6.2. Therefore, we have

ã ∈ FK(Rn) by the arbitrariness of α ∈]0, 1]. ¤

The following proposition shows properties of the (strict) fuzzy max order on
Fn(R).

Proposition 6.5. Let ã = (ã1, ã2, · · · , ãn), b̃ = (̃b1, b̃2, · · · , b̃n) ∈ Fn(R).

(i) I(ã1) = · · · = I(ãn) = I (̃b1) = · · · = I (̃bn), ã ¹ b̃ ⇒ ãi ¹ b̃i, i = 1, 2, · · · , n.
(ii) ã ¹ b̃ ⇐ ãi ¹ b̃i, i = 1, 2, · · · , n.
(iii) I(ã1) = · · · = I(ãn) = I (̃b1) = · · · = I (̃bn), ã ≺ b̃ ⇒ ãi ≺ b̃i, i = 1, 2, · · · , n.
(iv) ã ≺ b̃ ⇐ ãi ≺ b̃i, i = 1, 2, · · · , n.

Proof. We show only (i) and (ii). (iii) and (iv) can be shown in the similar ways to
(i) and (ii), respectively.

(i) We set I = I(ã1) = · · · = I(ãn) = I (̃b1) = · · · = I (̃bn), and fix any α ∈]0, 1].
If α /∈ I, then [ãi]α = ∅ ≤ ∅ = [̃bi]α for any i ∈ {1, 2, · · · , n}. If α ∈ I, then
[ãi]α ≤ [̃bi]α for any i ∈ {1, 2, · · · , n} from Proposition 3.5 (x) since

∏n
i=1[ãi]α =

[ã]α ≤ [b̃]α =
∏n

i=1 [̃bi]α from Proposition 6.2. Therefore, we have ãi ¹ b̃i for any
i ∈ {1, 2, · · · , n} by the arbitrariness of α ∈]0, 1].
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(ii) Fix any α ∈]0, 1]. Since [ãi]α ≤ [̃bi]α for any i ∈ {1, 2, · · · , n}, it follows that
[ã]α =

∏n
i=1[ãi]α ≤

∏n
i=1 [̃bi]α = [b̃]α from Propositions 3.5 (xi) and 6.2. Therefore,

we have ã ¹ b̃ by the arbitrariness of α ∈]0, 1]. ¤
The following three propositions show properties of the fuzzy inner product on

Fn(R).

Proposition 6.6. Let ã = (ã1, ã2, · · · , ãn), b̃ = (̃b1, b̃2, · · · , b̃n) ∈ Fn(R). Then,

(6.4) 〈ã, b̃〉 =
n∑

i=1

〈ãi, b̃i〉.

Proof.

〈ã, b̃〉 = M({〈[ã]α, [b̃]α〉}α∈]0,1])
(from the decomposition theorem (2.1) and Proposition 5.2)

= M




{〈
n∏

i=1

[ãi]α,

n∏

i=1

[̃bi]α

〉}

α∈]0,1]


 (from Proposition 6.2)

= M




{
n∑

i=1

〈[ãi]α, [̃bi]α〉
}

α∈]0,1]


 (from Proposition 3.5 (ix))

=
n∑

i=1

M({〈[ãi]α, [̃bi]α〉}α∈]0,1]) (from Proposition 4.3 (i))

=
n∑

i=1

〈ãi, b̃i〉

(from the decomposition theorem (2.1) and Proposition 5.2).

¤
The following proposition can be shown in the similar way to Proposition 6.6.

Proposition 6.7. Let ã = (ã1, ã2, · · · , ãn) ∈ Fn(R), and let b = (b1, b2, · · · , bn) ∈
Rn. Then,

(6.5) 〈ã, b〉 =
n∑

i=1

biãi.

The following proposition can be obtained from Propositions 4.4 and 6.7.

Proposition 6.8. Let ã = (ã1, ã2, · · · , ãn) ∈ Fn(R). Assume that hgt(ã1) = · · · =
hgt(ãn). Then,

(6.6) 〈ã,ei〉 = ãi, i = 1, 2, · · · , n.

The following proposition shows properties of operations and the equality on
Fn(R).

Proposition 6.9. Let ã = (ã1, ã2, · · · , ãn), b̃ = (̃b1, b̃2, · · · , b̃n) ∈ Fn(R), and let
λ ∈ R.
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(i) ã + b̃ = (ã1 + b̃1, ã2 + b̃2, · · · , ãn + b̃n).
(ii) λã = (λã1, λã2, · · · , λãn).
(iii) hgt(ã1) = · · · = hgt(ãn), hgt(̃b1) = · · · = hgt(̃bn), ã = b̃ ⇒ ãi = b̃i, i = 1, 2,

· · · , n.
(iv) ã = b̃ ⇐ ãi = b̃i, i = 1, 2, · · · , n.

Proof. We show only (i). (ii) can be shown in the similar way to (i). (iii) can be
obtained from Proposition 6.8. (iv) is trivial.

ã + b̃ = M




{
n∏

i=1

[ãi]α

}

α∈]0,1]


 + M




{
n∏

i=1

[̃bi]α

}

α∈]0,1]




(from the decomposition theorem (2.1) and Proposition 6.2)

= M




{
n∏

i=1

[ãi]α +
n∏

i=1

[̃bi]α

}

α∈]0,1]


 (from Proposition 4.3 (i))

= M




{
n∏

i=1

([ãi]α + [̃bi]α)

}

α∈]0,1]


 (from Proposition 3.5 (vii))

= (M({[ã1]α + [̃b1]α}α∈]0,1]), · · · ,M({[ãn]α + [̃bn]α}α∈]0,1]))
(from Proposition 6.3)

= (ã1 + b̃1, · · · , ãn + b̃n)
(from the decomposition theorem (2.1) and Proposition 4.3 (i)).

¤
Example 6.10. Let ãi, b̃i ∈ F(R), i = 1, 2 be fuzzy sets defined as ã1(x) = max{
0, 1− |x− 1|}, ã2(x) = max{0, 1− |x− 2|}, b̃1(x) = max{0, 1− |x− 4|}, and b̃2(x) =
max{0, 1−|x−1|} for each x ∈ R. We set ã = (ã1, ã2), b̃ = (̃b1, b̃2) ∈ F2(R). Then, ã

and b̃ are the fuzzy sets ã and b̃ defined in Example 5.4, respectively. We consider ã+
b̃ and 2ã. Since (ã1+b̃1)(x) = max

{
0, 1− |x−5|

2

}
, (ã2+b̃2)(x) = max

{
0, 1− |x−3|

2

}
,

(2ã1)(x) = max
{

0, 1− |x−2|
2

}
, and (2ã2)(x) = max

{
0, 1− |x−4|

2

}
for each x ∈ R,

we have

(ã + b̃)(x, y) = min
{

max
{

0, 1− |x− 5|
2

}
, max

{
0, 1− |y − 3|

2

}}
,

(2ã)(x, y) = min
{

max
{

0, 1− |x− 2|
2

}
, max

{
0, 1− |y − 4|

2

}}

for each (x, y) ∈ R2 from Proposition 6.9 (i), (ii).

The following proposition can be shown easily.

Proposition 6.11. For 0̃ ∈ F(Rn) and (0̃, 0̃, · · · , 0̃) ∈ Fn(R), 0̃ = (0̃, 0̃, · · · , 0̃).

The following proposition shows that Fn(R) is not a vector space, but Fn(R) has
nearly properties of vector spaces. From Propositions 6.9 and 6.11, it is a special
case of Proposition 4.4 in Kon [7].
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Proposition 6.12. Let ã, b̃, c̃ ∈ Fn(R), and let λ, µ ∈ R.

(i) ã + b̃ = b̃ + ã.
(ii) (ã + b̃) + c̃ = ã + (b̃ + c̃).
(iii) 0̃ + ã = ã.
(iv) There does not always exist d̃ ∈ Fn(R) such that ã + d̃ = 0̃.
(v) It does not always hold that (λ + µ)ã = λã + µã.
(vi) λ(ã + b̃) = λã + λb̃.
(vii) (λµ)ã = λ(µã).
(viii) 1ã = ã.

7. Fuzzy set-valued convex mapping

In this section, the definition of fuzzy set-valued convex mappings is presented,
and its properties are investigated.

We define fuzzy set-valued convex mappings.

Definition 7.1. (Kon [7]) Let F̃ : Rn → F(Rm).

(i) F̃ is called a fuzzy set-valued convex mapping if

(7.1) F̃ (λx + (1− λ)y) ¹ λF̃ (x) + (1− λ)F̃ (y)

for any x,y ∈ Rn and any λ ∈]0, 1[.
(ii) F̃ is called a fuzzy set-valued strictly convex mapping if

(7.2) F̃ (λx + (1− λ)y) ≺ λF̃ (x) + (1− λ)F̃ (y)

for any x,y ∈ Rn, x 6= y and any λ ∈]0, 1[.

Let FM(Rn → F(Rm)) be the set of all fuzzy set-valued mappings from Rn

to F(Rm), and let FKM(Rn → F(Rm)) be the set of all fuzzy set-valued convex
mappings from Rn to F(Rm). In addition, let FSKM(Rn → F(Rm)) be the set of
all fuzzy set-valued strictly convex mappings from Rn to F(Rm).

A fuzzy set-valued mapping F̃ ∈ FM(Rn → F(Rm)) is said to be convex-valued,
closed-valued, or compact-valued if F̃ (x) ∈ FK(Rm), F̃ (x) ∈ FC(Rm), or F̃ (x) ∈
FBC(Rm) for any x ∈ Rn, respectively.

Example 7.2. Let F̃ , G̃ ∈ FM(R→ F(R2)) be fuzzy set-valued mappings defined
as F̃ (x)(y, z) = min{max{0, 1 − |y − (x + x2)|}, max{0, 1 − |z − (−x + x2)|}} and
G̃(x)(y, z) = min{max{0, 1− |y − (x + |x|)|}, max{0, 1− |z − (−x + |x|)|}} for each
x ∈ R and each (y, z) ∈ R2. Let x1, x2 ∈ R, and let λ ∈]0, 1[. Since [F̃ (x)]α =
[x + x2 − (1 − α), x + x2 + (1 − α)] × [−x + x2 − (1 − α),−x + x2 + (1 − α)] and
[G̃(x)]α = [x+ |x|− (1−α), x+ |x|+(1−α)]× [−x+ |x|− (1−α),−x+ |x|+(1−α)]
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for each x ∈ R and each α ∈]0, 1], it follows that

[
F̃ (λx1 + (1− λ)x2)

]
α

=
[
λx1 + (1− λ)x2 + (λx1 + (1− λ)x2)2 − (1− α),

λx1 + (1− λ)x2 + (λx1 + (1− λ)x2)2 + (1− α)
]

× [−(λx1 + (1− λ)x2) + (λx1 + (1− λ)x2)2 − (1− α),

− (λx1 + (1− λ)x2) + (λx1 + (1− λ)x2)2 + (1− α)
]
,[

G̃(λx1 + (1− λ)x2)
]

α

= [λx1 + (1− λ)x2 + |λx1 + (1− λ)x2| − (1− α),
λx1 + (1− λ)x2 + |λx1 + (1− λ)x2|+ (1− α)]

× [−(λx1 + (1− λ)x2) + |λx1 + (1− λ)x2| − (1− α),
− (λx1 + (1− λ)x2) + |λx1 + (1− λ)x2|+ (1− α)]

and
[
λF̃ (x1) + (1− λ)F̃ (x2)

]
α

=
[
λx1 + (1− λ)x2 + λx2

1 + (1− λ)x2
2 − (1− α),

λx1 + (1− λ)x2 + λx2
1 + (1− λ)x2

2 + (1− α)
]

× [−(λx1 + (1− λ)x2) + λx2
1 + (1− λ)x2

2 − (1− α),

− (λx1 + (1− λ)x2) + λx2
1 + (1− λ)x2

2 + (1− α)
]
,[

λG̃(x1) + (1− λ)G̃(x2)
]

α

= [λx1 + (1− λ)x2 + λ|x1|+ (1− λ)|x2| − (1− α),
λx1 + (1− λ)x2 + λ|x1|+ (1− λ)|x2|+ (1− α)]

× [−(λx1 + (1− λ)x2) + λ|x1|+ (1− λ)|x2| − (1− α),
− (λx1 + (1− λ)x2) + λ|x1|+ (1− λ)|x2|+ (1− α)]

for each α ∈]0, 1]. Thus, it follows that [F̃ (λx1 + (1 − λ)x2)]α ≤ [λF̃ (x1) + (1 −
λ)F̃ (x2)]α and [G̃(λx1 + (1− λ)x2)]α ≤ [λG̃(x1) + (1− λ)G̃(x2)]α for any α ∈]0, 1],
and that [F̃ (λx1 + (1 − λ)x2)]α < [λF̃ (x1) + (1 − λ)F̃ (x2)]α for any α ∈]0, 1] if
x1 6= x2. These relations imply that F̃ (λx1+(1−λ)x2) ¹ λF̃ (x1)+(1−λ)F̃ (x2) and
G̃(λx1+(1−λ)x2) ¹ λG̃(x1)+(1−λ)G̃(x2), and that F̃ (λx1+(1−λ)x2) ≺ λF̃ (x1)+
(1−λ)F̃ (x2) if x1 6= x2. On the other hand, we can see that [G̃(λx1 +(1−λ)x2)]α 6<
[λG̃(x1) + (1 − λ)G̃(x2)]α for any α ∈]0, 1] if x1, x2 ≥ 0, x1 6= x2 or x1, x2 ≤ 0,
x1 6= x2. It means that G̃(λx1 + (1− λ)x2) 6≺ λG̃(x1) + (1− λ)G̃(x2) if x1, x2 ≥ 0,
x1 6= x2 or x1, x2 ≤ 0, x1 6= x2. Therefore, we have F̃ , G̃ ∈ FKM(R → F(R2)),
F̃ ∈ FSKM(R→ F(R2)), and G̃ /∈ FSKM(R→ F(R2)).

The following proposition shows properties of fuzzy product set-valued mappings.
767



Masamichi Kon/Ann. Fuzzy Math. Inform. 9 (2015), No. 5, 753–769

Proposition 7.3. Let F̃i ∈ FM(Rn → F(R)), i = 1, 2, · · · ,m, and let F̃ =
(F̃1, F̃2, · · · , F̃m) ∈ FM(Rn → Fm(R)) be a fuzzy set-valued mapping defined as
F̃ (x) = (F̃1(x), F̃2(x), · · · , F̃m(x)) for each x ∈ Rn.

(i) Assume that hgt(F̃1(x)) = · · · = hgt(F̃m(x)) for any x ∈ Rn. If F̃ is convex-
valued, then F̃i, i = 1, 2, · · · ,m are also convex-valued.

(ii) If F̃i, i = 1, 2, · · · ,m are convex-valued, then F̃ is also convex-valued.
(iii) Assume that hgt(F̃1(x)) = · · · = hgt(F̃m(x)) for any x ∈ Rn. If F̃ is closed-

valued, then F̃i, i = 1, 2, · · · ,m are also closed-valued.
(iv) If F̃i, i = 1, 2, · · · ,m are closed-valued, then F̃ is also closed-valued.
(v) Assume that hgt(F̃1(x)) = · · · = hgt(F̃m(x)) for any x ∈ Rn. If F̃ is

compact-valued, then F̃i, i = 1, 2, · · · ,m are also compact-valued.
(vi) If F̃i, i = 1, 2, · · · ,m are compact-valued, then F̃ is also compact-valued.
(vii) Assume that F̃i, i = 1, 2, · · · ,m are compact-valued, and that I(F̃1(x)) =

· · · = I(F̃m(x)) = I(F̃1(y)) = · · · = I(F̃m(y)) for any x, y ∈ Rn. Then,

F̃ ∈ FKM(Rn → Fm(R)) ⇒ F̃i ∈ FKM(Rn → F(R)), i = 1, 2, · · · ,m.

(viii) F̃i ∈ FKM(Rn → F(R)), i = 1, 2, · · · , m ⇒ F̃ ∈ FKM(Rn → Fm(R)).
(ix) Assume that F̃i, i = 1, 2, · · · ,m are compact-valued, and that I(F̃1(x)) =

· · · = I(F̃m(x)) = I(F̃1(y)) = · · · = I(F̃m(y)) for any x, y ∈ Rn. Then,

F̃ ∈ FSKM(Rn → Fm(R)) ⇒ F̃i ∈ FSKM(Rn → F(R)), i = 1, 2, · · · ,m.

(x) F̃i ∈ FSKM(Rn → F(R)), i = 1, 2, · · · ,m ⇒ F̃ ∈ FSKM(Rn → Fm(R)).

Proof. (i)–(vi) follow from Proposition 6.4 (i)–(vi), respectively. We show only (vii)
and (viii). (ix) and (x) can be shown in the similar ways to (vii) and (viii), respec-
tively.

(vii) Let x, y ∈ Rn, and let λ ∈]0, 1[. We set I = I(F̃1(x)) = · · · = I(F̃m(x)).
Since F̃ (λx + (1 − λ)y) ¹ λF̃ (x) + (1 − λ)F̃ (y), it follows that (F̃1(λx + (1 −
λ)y), · · · , F̃m(λx+(1−λ)y)) ¹ (λF̃1(x)+(1−λ)F̃1(y), · · · , λF̃m(x)+(1−λ)F̃m(y))
from Proposition 6.9 (i), (ii). For each i ∈ {1, 2, · · · ,m}, it follows that I(F̃i(λx +
(1−λ)y)) = I from the assumption, and that I(λF̃i(x)+(1−λ)F̃i(y)) = {α ∈]0, 1] :
λ[F̃i(x)]α +(1−λ)[F̃i(y)]α 6= ∅} = I from Propositions 4.2 and 4.5 (vii). Therefore,
we have F̃i(λx + (1 − λ)y) ¹ λF̃i(x) + (1 − λ)F̃i(y) for any i ∈ {1, 2, · · · ,m} from
Proposition 6.5 (i).

(viii) Let x, y ∈ Rn, and let λ ∈]0, 1[. Since F̃i(λx + (1 − λ)y) ¹ λF̃i(x) +
(1 − λ)F̃i(y) for any i ∈ {1, 2, · · · ,m}, we have F̃ (λx + (1 − λ)y) = (F̃1(λx +
(1 − λ)y), · · · , F̃m(λx + (1 − λ)y)) ¹ (λF̃1(x) + (1 − λ)F̃1(y), · · · , λF̃m(x) + (1 −
λ)F̃m(y)) = λF̃ (x) + (1− λ)F̃ (y) from Propositions 6.5 (ii) and 6.9 (i), (ii). ¤

8. Conclusions

We dealt with general fuzzy sets. First, the fuzzy inner product was defined based
on Zadeh’s extension principle, and the (strict) fuzzy max order was characterized by
the fuzzy inner product. Next, in the fuzzy product space, properties of addition and
scalar multiplication, the (strict) fuzzy max order, and the fuzzy inner product were
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investigated. Finally, the definition of fuzzy set-valued (strictly) convex mappings
was presented, and its properties based on the fuzzy product space were investigated.
The obtained results can be expected to be useful for analyzing fuzzy mathematical
models using general fuzzy sets.
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