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1. Introduction

In 1965 Zadeh [16] introduced the concept of fuzzy sets. Using the concept
of fuzzy sets, Chang introduced the concept of fuzzy topological spaces. After that
there have been a number of generalizations of this fundamental concept. Atanassov
[1] introduced the notion of intuitionistic fuzzy sets. Using the notion of intuition-
istic fuzzy sets, Coker [2] introduced the notion of intuitionistic fuzzy topological
spaces. Joen et al [6] obtained some interesting results about the intuitionistic α
continuity and intuitionistic fuzzy pre continuity. Continuity plays an important
role in the study of Topological spaces. A new weaker form of continuity called
as completely continuity was introduced by I.M.Hanafy [5] in intuitionistic fuzzy
topological spaces. In this paper we introduce Intuitionistic fuzzy completely gener-
alized alpha continuous mappings and studied some of their properties. We provide
some characterizations of intuitionistic fuzzy completely generalized alpha continu-
ous mappings.
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2. Preliminaries

Definition 2.1 ([1]). Let X be a non empty fixed set. An intuitionistic fuzzy set
(IFS in short) A in X is an object having the form A = {⟨x, µA(x), γA(x)⟩|x ∈ X}
where the functions µA(x) : X → [0, 1] and γA(x) : X → [0, 1] denote the degree of
membership (namely µA(x)) and the degree of non-membership (namely γA(x)) of
each element x ∈ X to the set A, respectively, and 0 ≤ µA(x) + γA(x) ≤ 1 for each
x ∈ X.

Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2 ([1]). Let A and B be IFSs of the form A = {⟨x, µA(x), γA(x)⟩|x ∈
X} and B = {⟨x, µB(x), γB(x)⟩|x ∈ X} Then

(a) A ⊆ B if and only if µA(x) ≤ µB(x) and γA(x) ≥ γB(x) for all x ∈ X.
(b) A = B if and only if A ⊆ B and B ⊆ A.
(c) Ac = {⟨x, γA(x), µA(x)⟩|x ∈ X}
(d) A ∩B = {⟨x, µA(x) ∧ µB(x), γA(x) ∨ γB(x)⟩|x ∈ X}
(e) A ∪B = {⟨x, µA(x) ∨ µB(x), γA(x) ∧ γB(x)⟩|x ∈ X}.

For the sake of simplicity, we shall use the notation A = ⟨x, µA, γA⟩ instead of
A = {⟨x, µA(x), γA(x)⟩|x ∈ X}

Definition 2.3 ([2]). An intuitionistic fuzzy topology (IFT in short) on X is a family
τ of IFSs in X satisfying the following axioms.

(i) 0∼, 1∼ ∈ τ .
(ii) G1 ∩G2 ∈ τ , for any G1, G2 ∈ τ .
(iii) ∪Gi ∈ τ for any family {Gi|i ∈ J} ⊆ τ .

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in
short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short)
in X. The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic
fuzzy closed set (IFCS in short) in X.

Definition 2.4 ([1]). Let (X, τ) be an IFTS and A = ⟨x, µA, γA⟩ be an IFS in X.
Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined
by

(i) int(A) = ∪{G|G is an IFOS in X and G ⊆ A},
(ii) cl(A) = ∩{K|K is an IFCS in X and A ⊆ K}.

Note that for any IFS A in (X, τ), we have cl(Ac) = (int(A))c and int(Ac) =
(cl(A))c.

Definition 2.5 ([7]). An IFS A = ⟨x, µA, γA⟩ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A,
(ii) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) ⊆ A,
(iii) intuitionistic fuzzy ?-closed set (IFαCS in short) if cl(int(cl(A)) ⊆ A,
(iv) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)) ,

The family of all IFCS (respectively IFSCS, IFαCS, IFRCS) of an IFTS (X, τ) is
denoted by IFC(X) (respectively IFSC(X), IFαC(X), IFRC(X)).

Definition 2.6 ([7]). An IFS A = ⟨x, µA, γA⟩ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy semi open set (IFSOS in short) if A ⊆ cl(int(A)),
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(ii) intuitionistic fuzzy pre open set (IFPOS in short) if A ⊆ int(cl(A)),
(iii) intuitionistic fuzzy α-open set (IFαOS in short) if A ⊆ int(cl(int(A))),
(iv) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),

The family of all IFOS (respectively IFSOS, IFαOS, IFROS) of an IFTS (X, τ) is
denoted by IFO(X) (respectively IFSO(X), IFαO(X), IFRO(X)).

Definition 2.7 ([7]). Let an IFS A of an IFTS. Then αintA) = ∪{K|K is an IFαOS
in X and K ⊆ A}.
αcl(A) = ∩{K|K is an IFαCS in X and A ⊆ K}.
Note that for any IFS A in(X, τ) , we have αcl(Ac) = (αint(A))c and αint(Ac) =
(αcl(A))c.

Definition 2.8. An IFS A of an IFTS (X, τ) is an

(i) intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) ⊆ U
whenever A ⊆ U and U is an IFOS in X.[15]

(ii) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if cl(A) ⊆
U whenever A ⊆ U and U is an IFROS in X.[14]

(iii) intuitionistic fuzzy semi generalized closed set (IFSGCS in short) if scl(A) ⊆
U whenever A ⊆ U and U is an IFSOS in X.[11]

(iv) intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if scl(A) ⊆
U whenever A ⊆ U and U is an IFOS in X.[10]

(v) intuitionistic fuzzy α generalized closed set (IFαGCS in short) if αcl(A) ⊆ U
whenever A ⊆ U and U is an IFOS in X.

(vi) intuitionistic fuzzy generalized pre closed set (IFGPCS in short) if pcl(A) ⊆
U whenever A ⊆ U and U is an IFOS in X.[8]

Definition 2.9 ([7]). An IFS A of an IFTS (X, τ) is said to be an intuitionistic
fuzzy generalized α closed set (IFGαCS in short) if αcl(A) ⊆ U whenever A ⊆ U
and U is an IFαOS in X.

Example 2.10 ([7]). Let X = {a, b} and let τ = {0∼, G, 1∼} is an IFT on X, where
G = ⟨x, (0.2, 0.3), (0.8, 0.7)⟩. Here the only α open sets are 0∼, 1∼ and G. Then the
IFS A = ⟨x, (0.6, 0.7), (0.4, 0.3)⟩ is an IFGαCS in (X, τ).

Result 2.11 ([7]). Every IFCS,IFGCS,IFRCS, IFαCS is an IFGαCS but the con-
verses are not true in general.

Definition 2.12 ([7]). An IFS A of an IFTS (X, τ) is said to be an intuitionistic
fuzzy generalized α open set (IFGαOS in short) if the complement Ac is an IFGαCS
in X.

Definition 2.13 ([7]). Let an IFS A of an IFTS (X, τ). Then gαint(A) = ∪{K|K
is an IFGαOS in X and K ⊆ A}.
gαcl(A) = ∩{K|K is an IFGαCS in X and A ⊆ K}.

Definition 2.14. Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ).Then
f is said to be an:

(a) intuitionistic fuzzy continuous(IF continuous in short) if f−1(B) ∈ IFO(X)
for every B ∈ σ.[4]
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(b) intuitionistic fuzzy α continuous (IFα continuous in short) if f−1(B) ∈
IFαO(X) for every B ∈ σ.[6]

(c) intuitionistic fuzzy generalized continuous (IFG continuous in short) if f−1(B)
∈ IFGO(X) for every B ∈ σ.[13]

(d) intuitionistic fuzzy semi generalized continuous (IFSG continuous in short)
if f−1(B) ∈ IFSGO(X) for every B ∈ σ. [12]

(e) intuitionistic fuzzy generalized semi continuous (IFGS continuous in short)
if f−1(B) ∈ IFGSO(X) for every B ∈ σ. [10]

(f) intuitionistic fuzzy generalized α continuous (IFGα continuous in short) if
f−1(B) ∈ IFGαO(X) for every B ∈ σ. [3] (g) intuitionistic fuzzy α gener-
alized continuous (IFαG continuous in short) if f−1(B) ∈ IFαGO(X) for
every B ∈ σ.[9]

Definition 2.15 ([5]). Let f be a mapping from an IFTS (X, τ) into an IFTS
(Y, σ).Then f is said to be an Intuitionistic fuzzy completely continuous if f−1(B) ∈
IFRO(X) for every B ∈ σ.

Definition 2.16 ([5]). Let X,Y be nonempty sets and A = {⟨x, µA(x), γA(x)⟩},
B = {⟨x, µB(x), γB(x)⟩} be IFSs of X and Y respectively. Then A×B is an IFS of
X × Y defined by

(A×B)(x, y) = {(A×B)(x, y) = {⟨(x, y),min(µA(x), µB(y)),max(γA(x), γB(y)}.
Definition 2.17 ([5]). Let f1 : X1 → Y1 and f2 : X2 → Y2. The product f1 × f2 :
X1 × X2 → Y1 × Y2 is defined by (f1 × f2)(x1, x2) = (f1(x1), f2(x2), ∀(x1, x2) ∈
X1 ×X2.

Definition 2.18 ([5]). Let f : X → Y be a function. The graph g : X → X × Y of
f is defined by g(x) = (x, f(x)),∀x ∈ X.

Result 2.19 ([13]). Every IF continuous mapping is an IFG continuous mapping.

Definition 2.20 ([12]). Let X be a non empty set and c ∈ X a fixed element in
X. If α ∈ (0, 1] and β ∈ [0, 1) are two real numbers such that α + β ≤ 1 then
c(α, β) = ⟨x, cα, c1−β⟩ is called an intuitionistic fuzzy point in X, where α denotes
the degree of membership of c(α, β) and β denotes the degree of non membership of
c(α, β).

Definition 2.21 ([12]). Two IFSs A and B in X are said to be q-coincident (AqBin
short) if and only if there exists an element x ∈ X such that µA(x) > γB(x) or
γA(x) < µB(x).

Definition 2.22 ([3]). An IFTS (X, τ) is said to be an intuitionistic fuzzy αkT 1
2

(IF αkT 1
2
in short ) space if every IFGαCS in X is an IFCS in X.

Definition 2.23 ([3]). An IFTS (X, τ) is said to be an intuitionistic fuzzy αlT 1
2
(IF

αlT 1
2
in short ) space if every IFGαCS in X is an IFαCS in X.

3. Intuitionistic fuzzy completely generalized alpha continuous
mappings

In this section we introduce intuitionistic fuzzy completely generalized alpha con-
tinuous mappings and studied some of its properties.
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Definition 3.1. A mapping f : (X, τ) → (Y, σ) is called an intuitionistic fuzzy
completely generalized alpha continuous (IF completely Gα continuous in short) if
f−1(B) is an IFRCS in (X, τ) for every IFGαCS B of (Y, σ).

Theorem 3.2. Every IF completely Gα continuous mapping is an IFGα continuous
mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFGαCS, f−1(B) is an IFGαCS
in X. Hence f is an IFGα continuous mapping. □

Example 3.3. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.2, 0.3), (0.7, 0.6)⟩,
and G2 = ⟨y, (0.4, 0.4), (0.5, 0.6)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼}
are IFTS on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by
f(a) = u, f(b) = v. Then f is an IFGα continuous mapping but not IF com-
pletely Gα continuous mapping. Here G2 is an IFGαCS in Y but not IFRCS in X
since cl(int(f−1(Gc

2))) = Gc
1 ̸= f−1(Gc

2)

Theorem 3.4. Every IF completely Gα continuous mapping is an IF continuous
mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFCS, f−1(B) is an IFCS in X.
Hence is an IF continuous mapping. □

Example 3.5. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.2, 0.2), (0.3, 0.7)⟩,
and G2 = ⟨x, (0.5, 0.4), (0.4, 0.6)⟩ and G3 = ⟨y, (0.5, 0.4), (0.4, 0.6)⟩. Then τ =
{0∼, G1, G2, 1∼} and σ = {0∼, G3, 1∼} are IFTS on X and Y respectively. Define
a mapping f : (X, τ) → (Y, σ) by f(a) = u, f(b) = v. Then f is an IF continuous
mapping but not IF completely Gα continuous mapping. Here G3 is an IFGαCS in
Y but not an IFRCS in X since cl(int(f−1(Gc

3))) = Gc
1 ̸= f−1(Gc

3).

Theorem 3.6. Every IF completely Gα continuous mapping is an IF α continuous
mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFαCS, f−1(B) is an IFαCS in
X. Hence f is an IFα continuous mapping. □

Example 3.7. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.2, 0.4), (0.8, 0.6)⟩,
and G2 = ⟨y, (0.2, 0.4), (0.8, 0.6)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼}
are IFTS on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by
f(a) = u, f(b) = v. Then f is an IF α continuous mapping but not IF completely
Gα continuous mapping. Since A = ⟨y, (0.1, 0.2), (0.9, 0.8)⟩ is an IFGαCS in Y but
not IFRCS in X, cl(int(f−1(Ac))) = Gc

1 = ̸= Ac.

Theorem 3.8. Every IF completely Gα continuous mapping is an IFαG continuous
mapping but not conversely.
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Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFαGCS, f−1(B) is an IFαGCS
in X. Hence f is an IFαG continuous mapping. □

Example 3.9. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.8, 0.8), (0.2, 0.1)⟩,
and G2 = ⟨y, (0.1, 0.3), (0.9, 0.7)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼}
are IFTS on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by
f(a) = u, f(b) = v. Then f is an IFαG continuous mapping but not an IF com-
pletely Gα continuous mapping. Here G2 is an IFGαCS in Y but not IFRCS in X
since cl(int(f−1(Gc

2)) = 0 ̸= f−1(Gc
2).

Theorem 3.10. Every IF completely Gα continuous mapping is an IF generalized
semi continuous but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFGSCS, f−1(B) is an IFGSCS
in X. Hence f is an IF generalized semi continuous mapping. □

Example 3.11. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.2, 0.2), (0.4, 0.5)⟩,
and G2 = ⟨y, (0, 0.1), (0.9, 0.8)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼}
are IFTs on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by
f(a) = u, f(b) = v. Clearly f is an intuitionistic fuzzy generalized semi- continuous
mapping, but not an intuitionistic fuzzy completely Gα continuous mapping. Here
Gc

2 is an IFGαCS in Y but not IFRCS in X since cl(int(f−1(Gc
2)) = Gc

1 ̸= f−1(Gc
2).

Theorem 3.12. Every IF completely Gα continuous mapping is an IF semi gener-
alized continuous mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFSGCS, f−1(B) is an IFSGCS
in X. Hence f is an IF semi generalized continuous mapping. □

Example 3.13. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.3, 0.3), (0.4, 0.4)⟩,
and G2 = ⟨y, (0.1, 0.1), (0.5, 0.6)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼} are
IFTs on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by f(a) =
u, f(b) = v. Then f is an intuitionistic fuzzy semi generalized continuous mapping,
but not an intuitionistic fuzzy completely Gα continuous mapping. Here Gc

2 is an
IFGαCS in Y but not an IFRCS in X since cl(int(f−1(Gc

2)) = Gc
1 ̸= f−1(Gc

2)..

Theorem 3.14. Every IF completely Gα continuous mapping is an IF generalized
pre continuous mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Since every IFRCS is an IFGPCS, f−1(B) is an IFGPCS
in X. Hence f is an IF generalized pre continuous mapping. □
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Example 3.15. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.4, 0.5), (0.6, 0.5)⟩,
and G2 = ⟨y, (0.3, 0.3), (0.7, 0.7)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼}
are IFTs on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by
f(a) = u, f(b) = v. Then f is an intuitionistic fuzzy generalized pre continuous map-
ping but not an intuitionistic fuzzy completely Gα continuous mapping. Here Gc

2 is
an IFGαCS in Y but not an IFRCS in X since cl(int(f−1(Gc

2))) = Gc
1 ̸= f−1(Gc

2).

Theorem 3.16. Every IF completely Gα continuous mapping is an IF completely
continuous mapping but not conversely.

Proof. Let f : (X, τ) → (Y, σ) be an IF completely Gα continuous mapping. Let
B be an IFCS in Y. Since every IFCS is an IFGαCS, B is an IFGαCS in Y. Then
f−1(B) is an IFRCS in X. Then every IFCS in Y is an IFRCS in X. Hence f is an
IF completely continuous mapping. □

Example 3.17. Let us considerX = {a, b}, Y = {u, v}, G1 = ⟨x, (0.2, 0.3), (0.5, 0.7)⟩,
and G2 = ⟨y, (0.2, 0.3), (0.5, 0.7)⟩. Then τ = {0∼, G1, 1∼} and σ = {0∼, G2, 1∼} are
IFTs on X and Y respectively. Define a mapping f : (X, τ) → (Y, σ) by f(a) =
u, f(b) = v. Clearly f is an intuitionistic fuzzy completely continuous mapping but
not an IF completely Gα continuous mapping. But A = ⟨y, (0.4, 0.3), (0.6, 0.7)⟩ is
an IFGαCS in Y but not an IFRCS in X, since cl(int(f−1(Ac))) = Gc

1 ̸= f−1(Ac).

The following diagram implications are true:

IF comp cont. means Intuitionistic fuzzy completely continuous mapping

Theorem 3.18. A mapping f : (X, τ) → (Y, σ) is an IF completely Gα continuous
mapping if for every IFP c(α, β) ∈ X and for every IFN A of f(c(α, β)), there exists
an IFROS B ⊆ X such that c(α, β) ∈ B ⊆ f−1(A).

Proof. Let c(α, β) ∈ X and let A be an IFN of f(c(α, β)).Then there exists an IFOS
U in Y such that f(c(α, β)) ∈ U ⊆ A. Since every IFOS is an IFGαOS, U is an
IFGαOS in Y. Hence by hypothesis f−1(U) is an IFROS in X and c(α, β) ∈ f−1(U).
Let B = f−1(U). Therefore c(α, β) ∈ B ⊆ f−1(A). □

.

Theorem 3.19. A mapping f : (X, τ) → (Y, σ) is an IF completely Gα continuous
mapping then cl(int(cl(f−1(B))) ⊆ f−1(B) for every IFS B in Y.
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Proof. Let B be an IFS in Y. Then cl(B) is an IFCS in Y. Then cl(B) is an IFGαCS
in Y. By hypothesis f−1(cl(B)) is an IFRCS in X. Hence cl(int(cl(f−1(B))) ⊆
f−1(cl(B)) = f−1(B). □

Theorem 3.20. A mapping f : (X, τ) → (Y, σ) is an IF completely Gα continuous
mapping then the following are equivalent.

(i) for any IFGαOS A in Y and for any IFP c(α, β) ∈ X if f(c(α, β))qA then
c(α, β)qint(f

−1(A))
(ii) for any IFGαOS A in Y and for any c(α, β) ∈ X, if f(c(α, β))qA then there

exist an IFOS B in X such that c(α, β)qB and f(B) ⊆ A

Proof. (i) ⇒ (ii) Let A ⊆ Y be an IFGαOS and let c(α, β) ∈ X. Let f(c(α, β))qA.
Then c(α, β)qf

−1(A). (i) implies that c(α, β)qint(f
−1(A)), where int(f−1(A)), is an

IFOS in X. Let B = int(f−1(A)) since int(f−1(A)) ⊆ f−1(A),B ⊆ f−1(A). Then
f(B) ⊆ f(f−1(A)) ⊆ A.

(ii) ⇒ (i) Let A ⊆ Y be an IFGαOS and let c(α, β) ∈ X. Suppose f(c(α, β))qA,
then by (ii) there exists an IFOS B in X such that c(α, β)qB and f(B) ⊆ A. Now
B ⊆ f−1(f(B)) ⊆ f−1(A). That is int(B) ⊆ int(f−1(A)). Therefore c(α, β)qB
implies c(α, β)qint(f

−1(A)). □

Theorem 3.21. Let f : (X, τ) → (Y, σ) be a function and g : X → X ×X be the
graph of the function f . Then f is completely Gα intuitionistic fuzzy continuous if
is so.

Proof. Let us consider B ∈ σ, then f−1(B) = f−1(1×B) = 1∩f−1(B) = g−1(1×B).
Since B is an IFOS in Y, and every IFOS is an IFGαOS , 1×B is an IFGαOS inX×Y
. Also the fact that f is an completely IFGα continuous implies that g−1(1 × B)
is an IFROS in X. Hence f−1(B) is an IFROS in X. Hence f is completely Gα
intuitionistic fuzzy continuous mapping. □

Theorem 3.22. Let f : (X, τ) → (Y, σ) be a mapping. Then the following are
equivalent.

(i) f is an IF completely Gα continuous mapping
(ii) f−1(B) is an IFROS in X for every for every IFGαOS B in Y.
(iii) for every IFP c(α, β) ∈ X and for every IFGαOS B in Y such that if

f(c(α, β)) ∈ B there exists an IFROS A in X such that c(α, β) ∈ A and
f(A) ⊆ B.

Proof. (i) ⇒ (ii) is obvious.
(ii) ⇒ (iii) Let c(α, β) ∈ X. Let B be an IFGαOS in Y and f−1(B) is an IFROS
in X. Let f(c(α, β)) ∈ B and let A = f−1(B). Then c(α, β) ∈ f−1(f(c(α, β))) ∈
f−1(B) = A. Therefore c(α, β) ∈ A and f(A) = f(f−1(B)) ⊆ B . This implies
f(A) ⊆ B.
(iii) ⇒ (i) Let B be an IFGαOS in Y and let c(α, β) ∈ X and f(c(α, β))) ∈ B.Then
by hypothesis there exists an IFROS G in X such that c(α, β) ∈ G and f(G) ⊆ B.
Now c(α, β) ∈ f−1(B). But G ⊆ f−1(B), c(α, β) ∈ G and f(G) ⊆ B. This implies
G ⊆ f−1(f(G)) ⊆ f−1(B). That is f−1(B) =

∪
c(α,β)∈f−1(B) G ⊆ f−1(B). This
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implies f−1(B) =
∪

c(α,β)∈f−1(B) G where G is an IFROS and hence f−1(B) is an

IFROS in X. Hence is an IF completely Gα continuous mapping. □

Theorem 3.23. A mapping f : (X, τ) → (Y, σ) is intuitionistic fuzzy completely
Gα- continuous if and only if f−1(A) is an IFROS in X for every IFGαOS A in Y.

Proof. Necessity: Let A be an IFGαOS in Y. This implies Ac is an IFGαCS in Y.
Since f is an intuitionistic fuzzy completely Gα-continuous mapping, f−1(Ac) is an

IFRCS in X. Hence f−1(Ac) = f−1(A), f−1(A) is an IFROS in X.
Sufficiency : Let A be an IFGαCS in Y. This implies Ac is an IFGαOS in Y. By

hypothesis f−1(Ac) is an IFROS in X. Since f−1(Ac) = f−1(A), f−1(A) is an IFRCS
in X. Hence f is an intuitionistic fuzzy completely Gα- continuous mapping. □

Theorem 3.24. For any two intuitionistic fuzzy completely Gα continuous map-
pings f1, f2 : (X, τ) → (Y, σ), the mapping (f1, f2) : (X, τ) → (Y × Y, σ × σ) is also
an IF completely Gα continuous mapping, where (f1, f2)(x) = (f1(x), f2(x)),∀x ∈
X.

Proof. Let A×B be an IFGαOS in Y × Y . Then

(f1, f2)
−1(A×B)(x) = (A×B)(f1(x), f2(x))

= ⟨x,min(µA(f1(x)), µB(f2(x))),max(γA(f1((x)), γB(f2(x)))⟩
= ⟨x,min(f−1

1 (µA(x)), f
−1
2 (µB(x))),max(f−1

1 (γA((x)), f
−1
2 (γB(x)))⟩

= (f−1
1 (A) ∩ f−1

2 (B))(x).

Since f1 and f2 are IF completely Gα continuous mappings, f−1
1 (A) and f−1

2 (B)
are IFROSs in X. Since intersection of IFROS is an IFROS, f−1

1 (A) ∩ f−1
2 (B) is an

IFROS in X. Hence (f1, f2) is an intuitionistic fuzzy Gα- continuous mapping. □

Theorem 3.25. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, δ) be any two mappings
where (Z, δ) is an IFαkT 1

2
space. Then the following statements hold.

(i) f be an IF completely Gα continuous mapping and g be an IF continuous
mapping. Then their composition g ◦ f : (X, τ) → (Z, δ) is an IF completely
Gα continuous mapping.

(ii) f be an IF completely Gα continuous mapping and g be an IFα continuous
mapping. Then their composition g ◦ f : (X, τ) → (Z, δ) is an IF completely
Gα continuous mapping.

(iii) f be an IF completely Gα continuous mapping and g be an IF completely
continuous mapping. Then their composition g ◦ f : (X, τ) → (Z, δ) is an IF
completely Gαcontinuous mapping.

(iv) f be an IF completely Gα continuous mapping and g be an IF continuous
mapping. Then their composition g ◦ f : (X, τ) → (Z, δ) is an IF completely
Gαcontinuous mapping.

Proof. (i) Let A be an IFGαCS in Z. Since Z is an IFαkT 1
2
space, A is IFCS in

Z. Then g−1(A) is an IFCS in Y, by hypothesis. Since every IFCS is an IFGαCS,
g−1(A) is an IFGαCS in Y. Therefore f−1(g−1(A)) is an IFRCS in X. Hence g ◦ f
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is an IF completely Gαcontinuous mapping.
The proof of (ii), (iii), (iv) is similar to (i). □

Theorem 3.26. Let f : (X, τ) → (Y, σ) be an IFGα continuous mapping. Then the
following statements hold.

(i) f(gα(cl(A))) ⊆ cl(f(A)), for every IFS A in X.
(ii) gαcl(f−1(B)) ⊆ f−1(cl(B)), for every IFS B in X.

Proof. (i) Let A ⊆ X . Then cl(f(A)) is an IFCS in Y. Since f is an IF com-
pletely Gα continuous mapping, f−1(cl(f(A))) is an IFGαCS in X . Since A ⊆
f−1(f(A)) ⊆ f−1(cl(f(A)) and f−1(cl(f(A))) is an IFGα- closed, implies gαcl(A) ⊆
f−1(cl(f(A))). Hence f(gα(cl(A))) ⊆ cl(f(A)).
(ii) Replacing A by f−1(B) in (i), we get f(gαcl(f−1(B))) ⊆ cl(f(f−1(B))) ⊆ cl(B).
Hence gαcl(f−1(B)) ⊆ f−1(cl(B)) for every IFS B in Y. □

Theorem 3.27. If f : (X, τ) → (Y, σ) be an IF completely Gα - continuous mapping
then f is an IF α continuous mapping.

Proof. Let A be an IFCS in Y. Since every closed set is an IFGαCS, A is an IFGαCS
in Y. By hypothesis,f−1(A) is an IFRCS and hence f−1(A) is an IFαCS in X. Hence
f is IF α continuous mapping. □
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