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1. Introduction

The concept of fuzzy set was first introduced by [24] and since then it has wide
applications in the field of basic sciences[18] [1] [25], engineering , technology and
social sciences. The fuzzy number theory was enriched by [4]. Among some of the
important fields in fuzzy set theory, the fuzzy similarity relation and the construction
of similarity class is described by [16]. The concept of relation plays an important
role in the fuzzy set theory. The fuzzy relation was defined by [24], [22] [19] et al.
Fuzzy logic is an integral part of the fuzzy mathematical machine [26]. As far as
the automata theory is concerned, the classical automata theory was described by
[10]. The automata theory was presented by [9] from the algebraic point of view.
It is also studied from the algebraic view point by [11] [5] [12] [20] [17]. The crisp
automata theory is used in many interesting fields like the study of mutation of the
genes by [13]. Fuzzy automata is a generalised version of the crisp automata. The
properties of the fuzzy set theory is used with great success in describing a more
naturalistic and conceptually potent version of the crisp automata. The theory of
fuzzy automata was studied by fuzzy sub systems [23],fuzzy finite state machines
and fuzzy automata was studied by [2] [3], topology [21] [15],tree structure [6] and
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formal languages [7]. Basic ideas of fuzzy sets is given in Section 2. This section
has informations required for the next sections. Section 3 deals with some algebraic
results about the states and inputs of a fuzzy mathematical machine. In Section
4 some generalised results regarding the states and inputs of a fuzzy automata is
established.

2. Preliminaries

2.1. Fuzzy Set. The fuzzy set is used to represent the vague concepts of human
understanding in a particular form. The concept of fuzzy set is operationally power-
ful enough to use in computers. Fuzzy set theory is an extension of the crisp set. In
the crisp set theory, a characteristic function µA is defined as µA : U → {0, 1} where
A is a crisp set defined on the universe U . If x ∈ A, then µA(x) = 1, otherwise
µA(x) = 0. In the fuzzy set theory, the characteristic function is generalised by a
membership function. The membership function assigns to every x ∈ U a real value
from the unit interval [0, 1] instead of the two member set {0, 1}. The fuzzy set A
is determined by the set of tuples,
A = {x;µA(x)|x ∈ U}. If the universe U is discrete, A can be expressed as,

A =
∑
x∈U

µA(x)/x. If U is uncountable or continuous, A can be written as,

A =

∫
U

µA(x)

x
.

Standard operations on fuzzy sets:
(i) Fuzzy Complement : Let c(A(x)) denote a fuzzy complement of A(x). c(A(x))
can be interpreted as the degree to which x does not belong to A. Mathematically,
c(a(x)) = 1−A(x).
(ii) Fuzzy Intersection : Let A and B be two fuzzy sets over the universe U .
The fuzzy intersection of A and B is denoted as A ∩ B and is defined by (A ∩
B)(x) = min(A(x), B(x)) for every x in U . A ∩ B is also defined by a function
i : [0, 1]× [0, 1] → [0, 1], such that, (A ∩B)(x) = i[A(x), B(x)], ∀x ∈ U .
(iii) Fuzzy Union : The general fuzzy union of two fuzzy sets A and B is specified
by a function u : [0, 1] × [0, 1] → [0, 1]. The function has the membership grade of
the element as in the set A ∪B. Therefore, (A ∪B)(x) = u[A(x), B(x)] ∀x ∈ X.

Definition 2.1. Let S be a fuzzy set defined over the universe U . A family of fuzzy
sets τ = {Q} is said to be a fuzzy cover of S if S = ∪Q∈τ{Q}. Each Q is a fuzzy
subset of S [16].

Definition 2.2. For any fuzzy cover τ = {Q} of S, a fuzzy binary relation Rτ is
defined by [16]

(2.1) Rτ (si, sj) = ∨Q∈τ{µQ(si) ∧ µQ(sj)}

3. Fuzzy mathematical machine without output

Definition 3.1. A fuzzy sequential machine without output is a four tuple S =<
S,Σk, M̃ , a > where S is the set of internal states, Σk is a fixed non-empty set called
the input alphabet {σ0, σ1, ..., σk−1}. M̃ is a function from S×Σk×S → [0, 1] called
the transition function and a is an member of S called the initial state.
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A fuzzy word is a fuzzy subset over the input alphabet. The collection of all
fuzzy words over the input alphabet is called fuzzy dictionary and is denoted by
Σ∗. A finite sequence of fuzzy input words is called a fuzzy input tape. A null
tape is denoted by λ. The transition function M̃ is given in the form of matri-
ces, one each for the input symbols σ0, σ1, ..., σk−1 . The matrices are denoted by

M̃(σ0), M̃(σ1), ..., M̃(σk−1). µM̃ (si, σk, sj) is a real number indicating the member-

ship of the triplet of M̃ where si, sj ∈ S and σk ∈ Σk.
If a fuzzy machine is taken into account whose states are fuzzy as well as the

inputs also belong to the fuzzy dictionary, it is called the most general fuzzy fi-
nite state machine(mgffsm). The transition matrix M̃ of the mgffsm is defined

by M̃ : F(S) × F (Σ∗) → F(S) determined from the fuzzy transition matrices

M̃(σ0), M̃(σ1), ..., M̃(σk−1). The algorithm for the state transition used here is
studied by [8]. Some authors [14] studied some properties of fuzzy Mealy machines.

Definition 3.2. Concatenation of two tapes x and y is defined by the tape obtained
by writing x followed by y and is defined by xy.

Definition 3.3. The length of an input tape x is denoted by lg(x) .

Example 3.4. Let x = σ0σ1σ2σ3. Then lg(x) = 4.

Definition 3.5. The response function of a fuzzy mathematical machine S =<
S,Σ∗, M̃ , a,>, denoted by rpS(x) is a function from S × Σ∗ → S defined by (∀x) ∈
Σ∗, rpS(x) = M̃(a, x) [8].

Definition 3.6. M̃(s̃, i) =
k−1∨
j=0

{M̃(s̃, µ(σj)/σj}, where

s̃ =

n−1∑
i=0

µ(si)/si, i =

m−1∑
t=0

µ(σt)/σt.

Theorem 3.7.

M̃(s, σ0σ1...σn−1, t) = ∨tn−2∈S ∨tn−3∈S ... ∨t0∈S {M̃(s, σ0, t0) ∧ M̃(t0, σ1, t1) ∧ ...

∧ M̃(tn−2, σn−1, t)}

Proof. We have,

M̃(s, σ0σ1...σn−1, t) = ∨tn−2∈S{M̃(s, σ0σ1...σn−2, tn−2) ∧ M̃(tn−2, σn−1, t)}

= ∨tn−2∈S{∨tn−3∈S{M̃(s, σ0σ1...σn−3, tn−3)

∧ M̃(tn−3, σn−2, tn−2)} ∧ M̃(tn−2, σn−1, t)}
...

= ∨tn−2∈S ∨tn−3∈S ... ∨t0∈S {M̃(s, σ0, t0) ∧ M̃(t0, σ1, t1)∧

... ∧ M̃(tn−2, σn−1, t)}
□

Observation 3.8.

M̃(s, σ0σ1σ2, t) = ∨r∈S ∨r′∈S {M̃(s, σ0, r
′) ∧ M̃(r′, σ1, r) ∧ M̃(r, σ2, t)}.
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It is to be noted that,
M̃(s, λ, t) = 1, if s = t

= 0, if s ̸= t

Theorem 3.9. In a fuzzy mathematical machine without output S̃ =< S̃,Σk, M̃ , ã >,
M̃(ũ1, σ) ∪ M̃(ũ2, σ) = M̃(ũ1 ∪ ũ2, σ), ∀ũ1, ũ2 ∈ S̃ and ∀σ ∈ Σk.

Proof. Let ũ1 = µu1(s0)/s0+µu1(s1)/s1+...+µu1(sn−1)/sn−1 and ũ2 = µu2(s0)/s0+
µu2(s1)/s1 + ... + µu2(sn−1)/sn−1 ∀s0, s1, ...sn−1 ∈ S. The membership value of s0
in M̃(ũ1, σ) is given by,

(3.1) µM̃(ũ1,σ)
(s0) = max{min(µu1(si), µ(si, σ, s0)}, i = 0, 1, ...n− 1.

Similarly, the membership value of s0 in M̃(ũ2, σ) is given by,

(3.2) µM̃(ũ2,σ)
(s0) = max{min(µu2(si), µ(si, σ, s0)}, i = 0, 1, ...n− 1.

Taking max over 3.1 and 3.2 we have the membership value of s0 in M̃(ũ1, σ) ∪
M̃(ũ2, σ) as

max[max{min(µu1(si), µ(si, σ, s0)},max{min(µu2(si), µ(si, σ, s0)}]
= max[min(µu1(si), µ(si, σ.s0)),min(µu2(si), µ(si, σ.s0))]
= min[max{(µu1(si), µ(si, σ.s0)), (µu2(si), µ(si, σ.s0))
= min[max{µu1(si), µu2(si)}, µ(si, σ.s0)

Similarly, the membership value of s1 in

M̃(ũ1, σ) ∪ M̃(ũ2, σ) =min[max{µu1(si), µu2(si)}, µ(si, σ.s1)

...
and the membership value of sn−1 in

M̃(ũ1, σ) ∪ M̃(ũ2, σ)= min[max{µu1(si), µu2(si)}, µ(si, σ.sn−1)

Therefore,

(3.3) M̃(ũ1, σ) ∪ M̃(ũ2, σ) =
n−1∑
r=0

min[max{µu1(si), µu2(si)}, µ(si, σ, sr)]/sr

i = 0, 1, ...n− 1
Again,

ũ1 ∪ ũ2 = max{µu1(s0), µu2(s0)}/s0 +max{µu1(s1), µu2(s1)}/s1 + ...

+max{µu1(sn−1), µu2(sn−1)}/sn−1.

Therefore,

(3.4) M̃(ũ1 ∪ ũ2, σ) =
n−1∑
r=0

min[max{µu1(si), µu2(si)}, µ(si, σ, sr)]/sr

i = 0, 1, ...n− 1. Comparing 3.3 and 3.4 we have,

M̃(ũ1, σ) ∪ M̃(ũ2, σ) = M̃(ũ1 ∪ ũ2, σ)

□
722
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Theorem 3.10. In a fuzzy mathematical machine without output S̃ =< S̃,Σ, M̃ , ã >,
M̃(ũ1, i) ∪ M̃(ũ2, i) = M̃(ũ1 ∪ ũ2, i), ∀ũ1, ũ2 ∈ S̃ and ∀i ∈ Σ .

Theorem 3.11. In a fuzzy mathematical machine without output S̃ =< S̃,Σ∗, M̃ , ã >,
M̃(ũ1, x) ∪ M̃(ũ2, x) = M̃(ũ1 ∪ ũ2, x), ∀ũ1, ũ2 ∈ S̃ and ∀x ∈ Σ∗.

Theorem 3.12. In a fuzzy mathematical machine without output S̃ =< S̃,Σk, M̃ , ã >,
M̃(ũ1, σ) ∩ M̃(ũ2, σ) ̸= M̃(ũ1 ∩ ũ2, σ), ∀ũ1, ũ2 ∈ S̃ and ∀σ ∈ Σk.

Proof. We have the membership value of sr in M̃(ũ1, σ) as,

(3.5) µM̃(ũ1,σ)
(sr) = max{min(µu1(si), µ(si, σ, sr)}, i = 0, 1, ..., n− 1.

and the membership value of sr in M̃(ũ2, σ) as

(3.6) µM̃(ũ2,σ)
(sr) = max{min(µu2(si), µ(si, σ, sr)}, i = 0, 1, ..., n− 1.

Therefore,

M̃(ũ1, σ) ∩ M̃(ũ2, σ) =

n−1∑
r=0

[max{min(µu1(si), µ(si, σ, sr))},

max{min(µu2(si), µ(si, σ, sr))}]/sr

(3.7)

i = 0, 1, ..., n− 1. Also the membership of sr in ũ1 ∩ ũ2 is

(3.8) µ(ũ1∩ũ2)(sr) = min(µũ1(sr), µũ2(sr))

Therefore,

(3.9) M̃(ũ1 ∩ ũ2, σ) =

n−1∑
r=0

[min{min(µu1(sr), µu2(sr)), µ(si, σ, sr)}]/sr

i = 0, 1, ..., n− 1. Comparing 3.7 and 3.9 we have the result. □
Example 3.13. Let ũ0 and ũ1 be two fuzzy states defined on the universe of dis-
course S = {s0, s1, s2}. Let ũ0 = 0.1/s0+0.8/s1+0.3/s2 and ũ1 = 0.9/s0+0.2/s1+
0.1/s2. Therefore, ũ0∪ ũ1 = 0.9/s0+0.8/s1+0.3/s2 and ũ0∩ ũ1 = 0.1/s0+0.2/s1+
0.1/s2. Let x = i0i1, where i0 = 0.8/σ0 + 0.4/σ1, and i1 = 0.4/σ0 + 0.7/σ1 .

Let the fuzzy transition matrices M̃(σ0) and M̃(σ1) be given by the Table 1 and
Table 2.

Table 1.

σ0 s0 s1 s2
s0 0.1 0.2 1.0
s1 0.8 0.2 0.3
s2 0.0 0.9 0.2

The corresponding transitions are given by, M̃(ũ0, x) = 0.3/s0 + 0.3/s1 + 0.4/s2,

and M̃(ũ1, x) = 0.3/s0 + 0.4/s1 + 0.3/s2.
We have,

M̃(ũ0 ∪ ũ1, x) = 0.3/s0 + 0.4/s1 + 0.4/s2
= M̃(ũ0, x) ∪ M̃(ũ1, x)
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Table 2.

σ1 s0 s1 s2
s0 1.0 0.2 0.1
s1 0.3 0.9 0.2
s2 0.1 0.3 0.8

and,
M̃(ũ0 ∩ ũ1, x) = 0.2/s0 + 0.2/s1 + 0.2/s2

̸= M̃(ũ0, x) ∩ M̃(ũ1, x)

Corollary 3.14. M̃(ũ1, x) ∪ M̃(ũ2, x) ∪ ...M̃(ũk, x) = M̃(ũ1 ∪ ũ2... ∪ ũk, x).

Definition 3.15. The mapping ϕ : [0, 1]× S → [0, 1]× S is called fuzzy homomor-
phism if it satisfies

(i) ϕ{µ(si)/si} = µ(si)/ϕ(si) ∀si ∈ S̃ [Preservation of degree of easeness]

(ii) ϕ(
∑

{µ(si)/si}) =
∑

µ(si)/ϕ(si) ∀si ∈ S̃
(iii) defuzzy[M{ϕ(u), σ}] = defuzzyϕ[ M(u, σ)]

Theorem 3.16. In a fuzzy mathematical machine without output S̃ =< S̃,Σk, M̃ , ã >,
M{ϕ(ũ1 ∪ ũ2), σ} = M{ϕ(ũ1), σ} ∪M{ϕ(ũ2), σ}, ũ1, ũ2 ∈ S̃, σ ∈ Σk

Proof. Let ũ1 =
∑
i

µu1(si)/si, ũ2 =
∑
i

µu2(si)/si. Therefore

ũ1 ∪ ũ2 =
∑

max(µu1(si), µu2(si))/si.

Also, ϕ(ũ1∪ ũ2) = ϕ(
∑

max(µu1(si), µu2(si))/si) =
∑

max(µu1(si), µu2(si))/ϕ(si).
Therefore,

M{ϕ(ũ1 ∪ ũ2), σ}

= (
n−1∑
r=0

min[max{µu1(si), µu2(si)}, µ(ϕ(si), σ, ϕ(sr))]/ϕ(sr),
(3.10)

i = 0, 1, ..., n− 1. By Theorem 3.9 we have,

M{ϕ(ũ1), σ} ∪M{ϕ(ũ2), σ}

= (
n−1∑
r=0

min[max{µu1(si), µu2(si)}, µ(ϕ(si), σ, ϕ(sr)]/ϕ(sr)
(3.11)

i = 0, 1, ..., n− 1. So, we have by 3.10 and 3.11,
M{ϕ(ũ1 ∪ ũ2), σ} = M{ϕ(ũ1), σ} ∪M{ϕ(ũ2), σ} □

Example 3.17. Let

[0, 1]× S = {µ(s0)/s0, µ(s1)/s1, µ(s2)/s2, µ(s3)/s3, µ(s4)/s4, µ(s5)/s5},

where µ(si)/si ∈ [0, 1]. Let
724
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ϕ{µ(s0)/s0} = µ(s0)/ϕ(s0) = µ(s0)/s1
ϕ{µ(s1)/s1} = µ(s1)/ϕ(s1) = µ(s1)/s3
ϕ{µ(s2)/s2} = µ(s2)/ϕ(s2) = µ(s2)/s4
ϕ{µ(s3)/s3} = µ(s3)/ϕ(s3) = µ(s3)/s0
ϕ{µ(s4)/s4} = µ(s4)/ϕ(s4) = µ(s4)/s2
ϕ{µ(s5)/s5} = µ(s5)/ϕ(s5) = µ(s5)/s5.
Let,
ũ1 = 0.3/s0 + 0.4/s1 + 1.0/s2 + 0.2/s3 + 0.4/s4 + 0.3/s5,
ũ2 = 0.2/s0 + 0.9/s1 + 0.1/s2 + 0.2/s3 + 0.2/s4 + 0.1/s5.
Therefore,
ϕ(ũ1) = 0.2/s0 + 0.3/s1 + 0.4/s2 + 0.4/s3 + 1.0/s4 + 0.3/s5,
ϕ(ũ2) = 0.2/s0 + 0.2/s1 + 0.2/s2 + 0.9/s3 + 0.1/s4 + 0.1/s5.
Let the transition matrix of the fuzzy mathematical machine be given by Table

3,

Table 3.

σ s0 s1 s2 s3 s4 s5
s0 1.0 1.0 0.2 0.4 0.3 0.1
s1 0.2 0.3 0.4 0.8 0.2 0.3
s2 0.0 0.4 0.2 0.1 1.0 0.4
s3 0.9 0.2 0.1 0.3 0.3 0.2
s4 0.1 0.2 0.8 0.2 0.0 0.1
s5 0.0 0.2 0.3 0.4 0.2 1.0

M̃(ũ1, σ) = 0.2/s0 + 0.4/s1 + 0.4/s2 + 0.4/s3 + 1.0/s4 + 0.4/s5,

M̃(ũ2, σ) = 0.2/s0 + 0.3/s1 + 0.4/s2 + 0.8/s3 + 0.2/s4 + 0.3/s5,
Here,
defuzzyϕ{M̃(ũ1, σ)} = s2 = defuzzy[M̃{ϕ(ũ1), σ}]
defuzzyϕ{M̃(ũ2, σ)} = s0 = defuzzy[M̃{ϕ(ũ2), σ}].
Therefore ϕ is a homomorphism. Also,
ũ1 ∪ ũ2 = 0.3/s0 + 0.9/s1 + 1.0/s2 + 0.2/s3 + 0.4/s4 + 0.3/s5,
ϕ(ũ1 ∪ ũ2) = 0.2/s0 + 0.3/s1 + 0.4/s2 + 0.9/s3 + 1.0/s4 + 0.3/s5,

(3.12) M{ϕ(ũ1 ∪ ũ2), σ} = 0.9/s0 + 0.4/s1 + 0.8/s2 + 0.3/s3 + 0.4/s4 + 0.4/s5,

(3.13) M{ϕ(ũ1), σ} = 0.4/s0 + 0.4/s1 + 0.8/s2 + 0.3/s3 + 0.4/s4 + 0.4/s5,

(3.14) M{ϕ(ũ2), σ} = 0.9/s0 + 0.2/s1 + 0.2/s2 + 0.3/s3 + 0.3/s4 + 0.2/s5,

From 3.12, 3.13 and 3.14 it follows that,
M̃{ϕ(ũ1 ∪ ũ2), σ} = M̃{ϕ(ũ1), σ} ∪ M̃{ϕ(ũ2), σ}

Theorem 3.18. For a fuzzy mathematical machine S̃ =< S̃,Σk, M̃ , ã >, let τ =
{P̃} be a fuzzy cover of ã. If M̃(ã, σ) = ũ , where ũ ∈ S̃ then for any σ ∈ Σk,

∪P̃∈τ{M̃(P̃ , σ)} = ũ.
725
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Proof. Let ã = ∪p∈τ{P̃} = ∪{P̃1, P̃2, ...P̃k}(say). Then ã = P̃1 ∪ P̃2 ∪ ... ∪ P̃k.
Therefore,

∪P̃∈τ{M̃(P, σ)} = M̃(P̃1, σ) ∪ M̃(P̃2, σ)... ∪ M̃(P̃k, σ)

= M̃(P̃1 ∪ P̃2 ∪ ... ∪ P̃k, σ)

= M̃(∪kP̃k, σ)

= M̃(ã, σ)
= ũ.

□

Theorem 3.19. For a fuzzy mathematical machine S̃ =< S̃,Σ, M̃ , ã >, let τ =
{P̃} be a fuzzy cover of ã. If M̃(ã, i) = ũ , where ũ ∈ S̃ then for any i ∈ Σ,

∪P̃∈τ{M̃(P̃ , i)} = ũ.

Table 4. M(σ0)

σ0 s0 s1 s2
s0 0.1 1.0 0.3
s1 0.8 0.2 0.1
s2 0.3 0.1 0.9

Table 5. M(σ1)

σ1 s0 s1 s2
s0 0.9 0.2 0.3
s1 0.1 0.7 0.2
s2 0.0 0.1 0.8

Example 3.20. Let S =< S,Σk,M, a >, S = {s0, s1, s2},Σk = {σ0, σ1}, ã =

0.1/s0 + 0.8/s1 + 0.2/s2, and i = 0.2/σ0 + 0.9/σ1. Let τ = {P̃1, P̃2, P̃3} be a set of

fuzzy covers of ã such that P̃1 = 0.0/s0 + 0.8/s1 + 0.1/s2, P̃2 = 0.1/s0 + 0.7/s1 +

0.2/s2, and P̃3 = 0.1/s0+0.6/s1+0.2/s2. Let us consider the transition matrices as

given in Table 4 and Table 5. We have, M(a, i) = 0.2/s0+0.7/s1+0.2/s2, M(P̃1, i) =

0.2/s0 + 0.7/s1 + 0.2/s2, M(P̃2, i) = 0.2/s0 + 0.7/s1 + 0.2/s2, M(P̃3, i) = 0.2/s0 +

0.6/s1 + 0.2/s2. It follows that, M(a, i) = M(P̃1, i) ∪M(P̃2, i) ∪M(P̃3, i).

Theorem 3.21. For a fuzzy mathematical machine S̃ =< S̃,Σ, M̃ , ã >, let τ =
{P̃} be a fuzzy cover of ã. If M̃(ã, x) = ũ , where ũ ∈ S̃ then for any x ∈ Σ∗,

∪P̃∈τ{M̃(P̃ , x)} = ũ.

Observation 3.22. M̃ : S̃ ×Σ → S̃ is a bijective mapping. Therefore, M̃(ũ1, σ) =

ũ′
1 and M̃(ũ2, σ) = ũ′

2 ⇒ M̃(ũ1 ∪ ũ2, σ) = ũ′
1 ∪ ũ′

2 = M̃(ũ1, σ)∪ M̃(ũ2, σ),∀ũ, ũ′ ∈ S̃
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4. Fuzzy mathematical machine with output

Definition 4.1. A fuzzy mathematical machine with output or a fuzzy automata
is a six tuple < S,Σk,∆l, M̃ , Z, a > where < S,Σk, M̃ , a > is a fuzzy mathematical
machine without output,∆l is the set of output symbols {δ0, δ1, ..., δl−1},and Z :
S × Σk ×∆ → [0, 1].

Z(s, σ, δ) = 1, if σ = ϵ
0 ≤ Z(s, σ, δ) < 1, otherwise, where σ ∈ Σk.

Definition 4.2. A fuzzy recognition device is a five tuple < S,Σk, M̃ , a, F > where
< S,Σk, M̃ , a > is a fuzzy mathematical machine without output and F ⊆ S called
the set of final states.

Definition 4.3. Z(s, σ0σ1, δ) =
∨
t∈S

{M̃(s, σ0, t) ∧ Z(t, σ1, δ)}, where s ∈ S and

σ0, σ1 ∈ Σk.

Definition 4.4. The domain of definition is extended from S×Σk×∆ → [0, 1] to S×
Σ×∆ → [0, 1] for non-fuzzy inputs by Z(s, i, δ) =

∨
t

{M̃(s, σj , t)∧Z(t, σj , δ)}, where

i =
∑

σj and j = 0, 1, ...n− 1.

Definition 4.5. The domain of definition is extended from S×Σk×∆ → [0, 1] to S×
Σ×∆ → [0, 1] for fuzzy inputs by Z(s, i, δ) =

∨
t

{M̃(s, σj , t) ∧ Z(t, σj , δ) ∧ µi(σj)},

where i =
∑

µi(σj)/σj and j = 0, 1, ...n− 1.

Definition 4.6. The domain of definition is extended from S×Σ×∆ → [0, 1] to S×
Σ∗ × ∆ → [0, 1] by Z(s, x, δ) =

∨
t

{M̃(s, ij , t) ∧ Z(t, ij , δ)}, j = 0, 1, ...p − 1, x =

i0i1...ip−1 .

Theorem 4.7. Z(s, xσ, δ) =
∨
t

{M̃(s, σ, t)∧Z(t, x, δ)}, σ ∈ Σk, x ∈ Σ, and s, t ∈ S.

Proof. Let x = ϵ. Therefore lg(x) = 0, and so

Z(s, xσ, δ) =
∨
t

{M̃(s, σ, t) ∧ Z(t, ϵ, δ)}

= Z(s, σ, δ)
This completes the proof for the base case.
Let lg(x) = n− 1, n > 2.
Let y = xσ′, σ′ ∈ Σk.
Therefore,
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Z(s, σy, δ) = Z(s, σxσ′)

=
∨
r

{M̃(s, σx, r) ∧ Z(r, σ′, δ)}

=
∨
r

{
∨
t

{M̃(s, σ, t) ∧ M̃(t, x, r)} ∧ Z(r, σ′, δ)}

=
∨
r

{
∨
t

{M̃(s, σ, t) ∧ M̃(t, x, r) ∧ Z(r, σ′, δ)}

=
∨
t

{
∨
r

{M̃(s, σ, t) ∧ M̃(t, x, r) ∧ Z(r, σ′, δ)}

=
∨
t

{M̃(s, σ, t) ∧
∨
r

{M̃(t, x, r) ∧ Z(r, σ′, δ)}}

=
∨
t

{M̃(s, σ, t) ∧ Z(t, xσ′, δ)}

=
∨
t

{M̃(s, σ, t) ∧ Z(t, y, δ)}

□

Theorem 4.8. ∀x, y ∈ Σ∗, µZ(s, xy, δ) =
∨
u∈S

{µM̃ (s, x, u) ∧ µZ(u, y, δ)}.

Definition 4.9. Z(s, σ0σ1, δ0δ1) =
∨
s′∈S

{Z(s, σ0, δ0) ∧ M̃(s, σ0, s
′) ∧ Z(s′, σ1, δ1)},

where s ∈ S ; σ0, σ1 ∈ Σk; and δ0, δ1 ∈ ∆l.

Theorem 4.10. Z(s, x, y) = 0 if lg(x) ̸= lg(y), where x =
∑

µ(σi)/σi and y =∑
µ(δi)/δi.

Proof. There are two cases , (i) lg(x) > lg(y) and (ii) lg(x) < lg(y).
Let us consider the first case, that is let lg(x) > lg(y).

If lg(x) = 0, there is no y such that lg(y) < 0. So, the result is true.
If lg(x) = 1 then lg(y) = 0, that is y = λ. Now Z(s, x, y) = 0. So the result is true
for the base case. Let the result be true for lg(x) = n− 1,where n > 2.
Therefore, lg(y) < n− 1. Let x′ = xσ and y′ = yδ, where lg(x) = n− 1, lg(σ) = 1,
lg(y) < n− 1, lg(δ) = 1.
Therefore lg(x′) = n, lg(y′) < n and

Z(s, x′, y′) = Z(s, xσ, yδ) =
∨
s′∈S

{Z(s, x, y) ∧ M̃(s, σ, s′) ∧ Z(s′, σ, δ)}

=
∨
s′∈S

{0 ∧ M̃(s, σ, s′) ∧ 0} = 0.

Thus the result is true for lg(x′) = n.
Similarly the result can be proved for the second case, that is for lg(x) < lg(y)
Clearly, for a given sequence of inputs σ0, σ1, ..., σn−1, the fuzzy automata, rather the
fuzzy mathematical machine will produce a sequence of outputs δ0, δ1, ..., δn−1. □

Remark 4.11. 0 ≤ Z(s, x, y) < 1, if lg(x) = lg(y).

Let us generalise Definition 4.9. Let us consider n states s0, s1, ...sn−1 instead of
a single state s. Then,
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(4.1) Z(s0, σ0σ1, δ0δ1) =
n−1∨
i=0

{Z(s0, σ0, δ0) ∧ M̃(s0, σ0, si) ∧ Z(si, σ1, δ1)}

(4.2) Z(s1, σ0σ1, δ0δ1) =
n−1∨
i=0

{Z(s1, σ0, δ0) ∧ M̃(s1, σ0, si) ∧ Z(si, σ1, δ1)}

...

(4.3) Z(sn−1, σ0σ1, δ0δ1) =
n−1∨
i=0

{Z(sn−1, σ0, δ0) ∧ M̃(sn−1, σ0, si) ∧ Z(si, σ1, δ1)}

In a compact form we can write the above equations as

(4.4)

Z(sj , σ0σ1, δ0δ1) =
n−1∨
i=0

{Z(sj , σ0, δ0)∧ M̃(sj , σ0, si)∧Z(si, σ1, δ1)}, j = 0, 1, ...n− 1.

We have then the following definition

Definition 4.12. Z(s0s1...sn−1, σ0σ1, δ0δ1) =
n−1∧
j=0

[
n−1∨
i=0

{Z(sj , σ0, δ0)∧M̃(sj , σ0, si)∧

Z(si, σ1, δ1)}] .

Let us consider a fuzzy set defined over the universe of discourse {s0, s1, ..., sn−1}.
Let s̃ =

∑
i

µ(si)/si. We have then the generalised definition as

Definition 4.13. Z(s̃, σ0σ1, δ0δ1) =
n−1∧
j=0

[
n−1∨
i=0

{(µZ(sj) ∧ Z(sj , σ0, δ0)) ∧ (µM̃ (sj) ∧

M̃(sj , σ0, si) ∧ µM̃ (si)) ∧ (µZ(si) ∧ Z(si, σ1, δ1))}].

Example 4.14. Let us consider the output function Z(s̃, σ0σ1, δ0δ1) where s̃ =

0.1/s0 + 0.8/s1 + 0.3/s2 and the let the fuzzy functions M̃ and Z be represented

respectively by the couple of transition matrices M̃(σ0), M̃(σ1), and Z(σ0), Z(σ1)
as given in the Table 6,Table 7,Table 8,and Table 9.

Table 6.

σ0 s0 s1 s2
s0 0.0 0.1 0.8
s1 0.9 0.2 0.3
s2 0.3 0.7 0.1

We have then Z(0.1/s0 + 0.8/s1 + 0.3/s2, σ0σ1, δ0δ1) = 0.1.
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Table 7.

σ1 s0 s1 s2
s0 0.2 1.0 0.3
s1 0.8 0.2 0.1
s2 0.0 0.2 1.0

Table 8.

σ0 δ0 δ1
s0 0.1 0.8
s1 0.2 0.3
s2 0.8 0.2

Table 9.

σ1 δ0 δ1
s0 0.9 0.1
s1 0.3 0.8
s2 0.2 0.3

We now extend the number of inputs and the number of output symbols from 2
to n, keeping the single non-fuzzy state in the fuzzy output function Z. We have
then the following definition.

Definition 4.15.

Z(s, σ0σ1...σn−1, δ0δ1...δn−1) =
∨

s,s0,...sn∈S

{Z(s, σ0, δ)) ∧ M̃(s, σ0, s1) ∧ Z(s1, σ1, δ1)

∧ M̃(s1, σ1, s2) ∧ Z(s2, σ2, δ2) ∧ ... ∧ Z(sn, σn, δn).

Pictorially it can be represented as in the Figure 1.

Definition 4.16. Z(s0s1...sn−1, σ0σ1...σn−1, δ0δ1...δn−1) =

n−1∧
j=0

[

n−1∨
i=0

{Z(sj , σ0, δ0)

∧n−2
k=0{M̃(sk, σk, sk+1) ∧ Z(sk+1, σk+1, δk+1)}}].

We now try to develop the definition of a most general output function of a fuzzy
automata. The states, inputs and outputs of this output functions are all fuzzy sets.

Definition 4.17.

Z(s̃, σ̃, δ̃) =

n−1∧
j=0

[

n−1∨
i=0

{(µZ(sj) ∧ Z(sj , σ0, δ0))∧n−2
k=0{(µM̃ (sk) ∧ M̃(sk, σk, sk+1)

∧ µM̃ (sk+1)) ∧ (µZ(sk+1) ∧ Z(sk+1, σk+1, δk+1))}}],

where s̃ =
n−1∑
i=0

µ(si)/si, σ̃ =
n−1∑
i=0

µ(σi)/σi, and δ̃ =
n−1∑
i=0

µ(δi)/δi.
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Figure 1. Output function with Multiple input and output symbols

5. Conclusion

In this paper we have studied the properties of fuzzy mathematical machines
and fuzzy automata. The states, inputs and outputs are studied under the regular
operations such as union and intersection. We have tried to move one step close
towards the generalisation of the behavior of the fuzzy mathematical machine and
fuzzy automata since more general theory helps to build up more flexible machines
for the practical purposes. Undoubtedly, much more work remains in this context.
We hope that the future works will extend the horizon of this field.
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