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1. Introduction

Crisp ordering, in many situation, can be made into a linear (total) ordering by
adding some new necessary comparabilities to it. Szpilrajn’s theorem [22] (see also
[10, 19]) asserts that any partial ordering can be linearized (or is contained in a linear
ordering): For any partial ordering ≤, there exists a linear ordering ¹ which extends
≤ in the sense that, for all x, y ∈ X, x ≤ y ⇒ x ¹ y. In 1971, Zadeh [26] introduced
the concept of fuzzy ordering as a generalization of the concept of crisp ordering
and generalized the Szpilrajn theorem for this concept. Other fuzzy generalizations
or versions of this theorem for various definitions of linearity/completeness can be
found in Bodenhofer and Klawonn [4]; Georgescu [11], Gottwald [12] and Höhle and
Blanchard [14]. In this paper, we generalize the Szpilrajn theorem to intuitionistic
fuzzy orderings. This result has allowed us to characterize every partial intuitionistic
fuzzy ordering by the intuitionistic fuzzy intersection of their linear extensions.

This paper is organized as follows. In the second section, we recall some well
know definitions and results, also we obtain some examples of intuitionistic fuzzy
ordering. In the third section, we first give the key result of the present paper
(see Lemma 3.1). By using this result and the crisp Zorn’s Lemma, we give the
Szpilrajn theorem for intuitionistic fuzzy partial orderings (see Theorem 3.2). This
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is an intuitionistic fuzzy generalization (or version) of the Szpilrajn theorem. We
conclude by a theorem that characterize every partial intuitionistic fuzzy ordering
by the intuitionistic fuzzy intersection of their linear extensions (see Theorem 4.1).

2. Preliminaries

Let X be a universe of discourse. Then, a fuzzy set A = {〈x, µA(x)〉 | x ∈ X}
defined by Zadeh [25] is characterized by a membership function µA : X → [0, 1],
where µA(x) is interpreted as the degree of membership of the element x in the fuzzy
subset A for each x ∈ X. In [1], Atanassov introduced another fuzzy object, called
intuitionistic fuzzy subset (briefly IFS) as a generalization of the concept of fuzzy
subset, shown as follows A = {〈x, µA(x), νA(x)〉 | x ∈ X}, which is characterized by a
membership function µA : X → [0, 1] and a non-membership function νA : X → [0, 1]
with the condition 0 ≤ µA(x) + νA(x) ≤ 1 for all x ∈ X, where the numbers µA(x)
and νA(x) represent, respectively, the membership degree and the non-membership
degree of the element x in the intuitionistic fuzzy subset A for each x ∈ X. Then,
many researchers worked on this subject, for example see [13, 15, 16, 17, 18, 20, 27].

In fuzzy set theory, the non-membership degree of an element x of the universe is
defined as νA(x) = 1− µA(x) (using the standard negation) and thus it is fixed. In
intuitionistic fuzzy set theory, the non-membership degree is a more-or-less indepen-
dent degree: the only condition is that νA(x) < 1− µA(x). Certainly fuzzy subsets
are intuitionistic fuzzy subsets by setting νA(x) = 1− µA(x), but not conversely.

We know that an intuitionistic fuzzy relation (shortly IFR) from a universe X to
a universe Y is an intuitionistic fuzzy subset in X × Y , that is, is an expression R
given by

R = {〈(x, y), µR(x, y), νR(x, y)〉 | x ∈ X, y ∈ Y },
where µR : X × Y → [0, 1] and νA : X × Y → [0, 1] satisfy the condition

0 ≤ µR(x, y) + νR(x, y) ≤ 1, for every (x, y) ∈ X × Y.

Next, we need the following definitions.
Let R and P be two IFRs from a universe X to a universe Y . R is said to be

contained in P or we say that P contains R (notation R ⊆ P ) if and only if for all
(x, y) ∈ X × Y : µR(x, y) ≤ µP (x, y) and νR(x, y) ≥ νP (x, y).

The intersection and the union of two IFRs R and P from a universe X to a
universe Y are defined as the IFR

R ∩ P = {〈(x, y), min(µR(x, y), µP (x, y)), max(νR(x, y), νP (x, y))〉 | x ∈ X, y ∈ Y },
R ∪ P = {〈(x, y), max(µR(x, y), µP (x, y)),min(νR(x, y), νP (x, y))〉 | x ∈ X, y ∈ Y }.

In general, if A is a set of IFRs from a universe X to a universe Y , the intersection
(resp. the union) is defined as

⋂
R∈A

R = {〈(x, y), infR∈A µR(x, y), supR∈A νR(x, y)〉 | x ∈ X, y ∈ Y }

(resp.
⋃

R∈A

R = {〈(x, y), supR∈A µR(x, y), infR∈A νR(x, y)〉 | x ∈ X, y ∈ Y }).

More details and some important properties of the intuitionistic fuzzy relations
are studied in [2, 3, 5, 6, 7, 8, 9, 21, 23, 24].
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Definition 2.1 ([7]). Let X be a non-empty crisp set and

R = {〈(x, y), µR(x, y), νR(x, y)〉 | x, y ∈ X}
be an intuitionistic fuzzy relation on X. We will say that R is

(i) reflexive, if for every x ∈ X, µR(x, x) = 1. Just notice that for every x ∈ X,
νR(x, x) = 0;

(ii) antisymmetrical intuitionistic, if for all x, y ∈ X, x 6= y, then µR(x, y) 6=
µR(y, x), νR(x, y) 6= νR(y, x) and πR(x, y) = πR(y, x), where πR(x, y) =
1− µR(x, y)− νR(x, y);

(iii) perfect antisymmetrical intuitionistic, if for all x, y ∈ X with x 6= y and
µR(x, y) > 0 or (µR(x, y) = 0 and νR(x, y) < 1), then µR(y, x) = 0 and
νR(y, x) = 1;

(iv) transitive, if R ⊇ R ◦α,β
λ,ρ R;

(v) intuitionistic fuzzy ordering, if it is reflexive, transitive and antisymmetrical
intuitionistic.

Notice that in [7], Bustince and Burillo mentioned that the definition of intuition-
istic antisymmetry does not recover the fuzzy antisymmetry for the case in which the
relation R considered is fuzzy. However, the definition of perfect antisymmetrical
intuitionistic does recover the definition of fuzzy antisymmetry given by Zadeh [26]
when the considered relation is fuzzy. This note justify the following definition of
intuitionistic fuzzy ordering used in this paper.

Definition 2.2. Let X be a non-empty crisp set and

R = {〈(x, y), µR(x, y), νR(x, y)〉 | x, y ∈ X}
an intuitionistic fuzzy relation on X. Then, R is called an intuitionistic fuzzy order-
ing or a partial intuitionistic fuzzy ordering if it is reflexive, transitive and perfect
antisymmetrical intuitionistic.

A non-empty set X with a partial intuitionistic fuzzy ordering R defined on it is
called partially intuitionistic fuzzy ordered set (for short, IF-poset) and we denote
it by (X,µR, νR).

Notice that any partially ordered set (X,≤) and generally any fuzzy ordered set
(X, r) can be regarded as partially intuitionistic fuzzy ordered sets.

The composition R ◦α,β
λ,ρ R in the above definition of transitivity means that

{〈(x, z), αy∈X{β[µR(x, y), µR(y, z)], λy∈X{ρ[νR(x, y), νR(y, z)]〉 | x, z ∈ X},
where α, β, λ and ρ are t-norms or t-conorms taken under the intuitionistic fuzzy
condition:

0 ≤ αy∈X{β[µR(x, y), µR(y, z)] + λy∈X{ρ[νR(x, y), νR(y, z)] ≤ 1,

for every (x, z) ∈ X2. The properties of this composition and the choice of α, β,
λ and ρ for which this composition fulfills a maximal number of properties are
investigated in [6]. If no other conditions are imposed, in the sequel we will take
α = sup, β = min, λ = inf and ρ = max.
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Example 2.3. Let X = {a, b, c, d, e}. Then, the intuitionistic fuzzy subset R defined
on X ×X by

R = {〈(x, y), µR(x, y), νR(x, y)〉 | x, y ∈ X},
where µR and νR given by the following tables:

µR(·, ·) a b c d e
a 1 0 0 0.55 0.40
b 0 1 0 0.35 0.45
c 0 0 1 0 0.70
d 0 0 0 1 0
e 0 0 0 0 1

νR(·, ·) a b c d e
a 0 1 0.40 0.45 0.25
b 0.30 0 0.20 0.35 0.10
c 1 1 0 0.85 0.15
d 1 1 1 0 1
e 1 1 1 0.90 0

is an intuitionistic fuzzy ordering on X.

Example 2.4. Let m, n ∈ IN. Then, the intuitionistic fuzzy relation R defined by

µR(m,n) =





1 if m = n
1− m

n if m < n
0 if m > n

and νR(m,n) =





0 if m = n
m
2n if m < n
1 if m > n,

for all m, n ∈ IN, is an intuitionistic fuzzy ordering on IN.

Based on the definition of perfect antisymmetrical intuitionistic we define linear
or total intuitionistic fuzzy ordering as follows:

Definition 2.5. An intuitionistic fuzzy ordering R is linear (or total) on X if for
every x, y ∈ X, we have [µR(x, y) > 0 and νR(x, y) = 0] or [µR(y, x) > 0 and
νR(y, x) = 0].

An intuitionistic fuzzy ordered set (X,µR, νR) in which R is linear is called a
linearly intuitionistic fuzzy ordered set or an intuitionistic fuzzy chain.

Conversely, we obtain the following definition of incomparable elements.

Definition 2.6. Let (X, µR, νR) be a non-empty intuitionistic fuzzy ordered set and
let a, b be two elements of X. We say that a and b are incomparable in (X, µR, νR) if

[µR(a, b) = 0 or νR(a, b) > 0] and [µR(b, a) = 0 or νR(b, a) > 0].

Definition 2.7. Let X be a non-empty set and R, P be two intuitionistic fuzzy
orderings on X. P is called a linear extension of R if P is linear and contains R.

3. Szpilrajn theorem for intuitionistic fuzzy orderings

In this section, we shall show that any partial intuitionistic fuzzy ordering R on
a non-empty set X can be extended to a linear intuitionistic fuzzy ordering. First,
we need to establish the following lemma.

Lemma 3.1. Let (X, µR, νR) be a non-empty intuitionistic fuzzy ordered set and
let a, b be two incomparable elements in (X, µR, νR). Then, there exists at least
an intuitionistic fuzzy ordering P on X containing R such that a, b are comparable
elements in (X, µP , νP ), (i.e., either

[µP (a, b) > 0 and νP (a, b) = 0] or [µP (b, a) > 0 and νP (b, a) = 0]).
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Proof. Let (X, µR, νR) be an intuitionistic fuzzy ordered set and let a, b ∈ X be two
incomparable elements, i.e.,

[µR(a, b) = 0 or νR(a, b) > 0] and [µR(b, a) = 0 or νR(b, a) > 0].

Let P be the fuzzy relation defined on X by setting

P = {〈(x, y), µP (x, y), νP (x, y)〉 | x, y ∈ X},
where

µP (x, y) = max{µR(x, y), min(µR(x, a), µR(b, y))}
and

νP (x, y) = min{νR(x, y), max(νR(x, a), νR(b, y))}.
Let us verify that P is an intuitionistic fuzzy ordering on X containing R such

that either [µP (a, b) > 0 and νP (a, b) = 0] or [µP (b, a) > 0 and νP (b, a) = 0].
(i) The intuitionistic fuzzy relation P is reflexive. Indeed, for all x ∈ X, we have

µP (x, x) = max{µR(x, x), min(µR(x, a), µR(b, x))} = µR(x, x) = 1.

Thus, P is reflexive.
(ii) The intuitionistic fuzzy relation P is perfect antisymmetrical intuitionistic.

Indeed, let x, y ∈ X such that x 6= y. We shall show that If µP (x, y) > 0 or
[µP (x, y) = 0 and νP (x, y) < 1], then µP (y, x) = 0 and νP (y, x) = 1. We can
distinguish two cases:

First case. Assume that µP (x, y) > 0. Since

µP (x, y) = max{µR(x, y), min(µR(x, a), µR(b, y))},
we distinguish also the following two subcases:

(a) µP (x, y) = µR(x, y) > 0;
(b) µP (x, y) = min(µR(x, a), µR(b, y))} > 0.

(a) If µP (x, y) = µR(x, y) > 0, then it follows from the perfect antisymmetrical
intuitionistic of R that µR(y, x) = 0 and νR(y, x) = 1. Hence,

µP (y, x) = max{µR(y, x), min(µR(y, a), µR(b, x))}
= min{µR(y, a), µR(b, x)}.

On the other hand, the transitivity of R implies that

µR(b, a) ≥ min(µR(b, y), µR(y, a)).

Since µR(b, a) = 0, it follows that it holds that µR(y, a)) = 0 or µR(b, y) = 0.
(a1) If µR(y, a)) = 0, then it follows that µP (y, x) = min{µR(y, a), µR(b, x)} = 0.
(a2) If µR(b, y) = 0, then it follows from the transitivity of R that µR(b, y) ≥

min(µR(b, x), µR(x, y)). Since µR(b, y) = 0 and µR(x, y) > 0, it follows that it holds
that µR(b, x) = 0. Thus,

µP (y, x) = min{µR(y, a), µR(b, x)} = 0.

In the same way, we show that

νP (y, x) = min{νR(y, x), max(νR(y, a), νR(b, x))} = 1.
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Indeed, since νR(y, x) = 1, we have

νP (y, x) = min{1, max(νR(y, a), νR(b, x))}
= max(νR(y, a), νR(b, x)).

On the other hand, the transitivity of R implies that

νR(y, x) ≤ max(νR(y, a), νR(a, x)).

Since νR(y, x) = 1, then it holds that νR(y, a) = 1 or νR(a, x) = 1. Thus, νP (y, x) =
max(νR(y, a), νR(b, x)) = 1. Therefore,

µP (y, x) = 0 and νP (y, x) = 1.

(b) If µP (x, y) = min(µR(x, a), µR(b, y)) > 0, then it holds that µR(x, a) > 0 and
µR(b, y) > 0. We have also by the transitivity of R that

µR(b, a) ≥ min(µR(b, x), µR(x, a)).

Since µR(b, a) = 0 and µR(x, a) > 0, then it holds that µR(b, x) = 0. This implies
that

µP (y, x) = min{µR(y, a), µR(b, x)} = 0.

In the same way, we get that

νP (y, x) = min{νR(y, x), max(νR(y, a), νR(b, x))} = 1.

Therefore,
µP (y, x) = 0 and νP (y, x) = 1.

Second case. Assume that [µP (x, y) = 0 and νP (x, y) < 1]. Since

µP (x, y) = max{µR(x, y), min(µR(x, a), µR(b, y))}
and

νP (x, y) = min{νR(x, y), max(νR(x, a), νR(b, y))},
so we get

[µR(x, y) = 0 and νR(x, y) < 1]
or

[µR(x, y) = 0 and max(νR(x, a), νR(b, y))}].
Now the perfect antisymmetrical intuitionistic of R implies that [µR(y, x) = 0 and
νR(y, x) = 1]. Hence,

µP (y, x) = max{µR(y, x), min(µR(y, a), µR(b, x))}
= min{µR(y, a), µR(b, x)},

and
νP (y, x) = min{νR(y, x), max(νR(y, a), νR(b, x))}

= max(νR(y, a), νR(b, x))}.
Now since we have the same data as the first case above, then we take the same
subcases and we apply the same proof. Therefore,

µP (y, x) = 0 and νP (y, x) = 1.

(iii) The intuitionistic fuzzy relation P is transitive. Indeed, suppose that x, y, z ∈
X. We shall show that

µP (x, z) ≥ sup
y∈X

[min{µP (x, y), µP (y, z)}],
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and
νP (x, z) ≤ inf

y∈X
[max{νP (x, y), νP (y, z)}].

For the first condition

µP (x, z) ≥ sup
y∈X

[min{µP (x, y), µP (y, z)}],

we can distinguish two cases:
First case. If µP (x, y) = µR(x, y) and µP (y, z) = µR(y, z), then

µP (x, y) ∧ µP (y, z) = µR(x, y) ∧ µR(y, z).

By the transitivity of R we have µR(x, z) ≥ µR(x, y) ∧ µR(y, z). Hence, µR(x, z) ≥
µP (x, y) ∧ µP (y, z). On the other hand, since µP = µR(x, z) ∨ (µR(x, a) ∧ µR(b, z)),
then it holds that µP (x, z) ≥ µR(x, z). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

Second case. If µP (x, y) = µR(x, y) and µP (y, z) = µR(y, a) ∧ µR(b, z), then
µP (x, y) ∧ µP (y, z) = µR(x, y) ∧ µR(y, a) ∧ µR(b, z). On the other hand, as

µP (x, z) = µR(x, z) ∨ (µR(x, a) ∧ µR(b, z))

so µP (x, z) ≥ µR(x, a) ∧ µR(b, z). By the transitivity of R we have

µR(x, a) ≥ µR(x, y) ∧ µR(y, a).

Hence, µP (x, z) ≥ µR(x, y) ∧ µR(y, a) ∧ µR(b, z). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

Third case. If µP (x, y) = µR(x, a) ∧ µR(b, y) and µP (y, z) = µR(y, z), then we
get that

µP (x, y) ∧ µP (y, z) = µR(x, a) ∧ µR(b, y) ∧ µR(y, z).
On the other hand, as µP (x, z) = µR(x, z) ∨ (µR(x, a) ∧ µR(b, z)) so

µP (x, z) ≥ µR(x, a) ∧ µR(b, z).

Also, by the transitivity of R we have µR(b, z) ≥ µR(b, y) ∧ µR(y, z). Hence,
µP (x, z) ≥ µR(x, a) ∧ µR(b, y) ∧ µR(y, z). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

Fourth case. If µP (x, y) = µR(x, a) ∧ µR(b, y) and µP (y, z) = µR(y, a) ∧ µR(b, z),
then it follows that

µP (x, y) ∧ µP (y, z) = µR(x, a) ∧ µR(b, y) ∧ µR(y, a) ∧ µR(b, z).

We have by the transitivity of R that µR(b, a) ≥ µR(b, y)∧µR(y, a). Since µR(b, a) =
0 then it holds that µR(b, y) ∧ µR(y, a) = 0. Hence, µP (x, y) ∧ µP (y, z) = 0. Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

The same proof by cases has to be done in a completely analogous way to show
the second condition of transitivity:

νP (x, z) ≤ inf
y∈X

[max{νP (x, y), νP (y, z)}].

Consequently, P is transitive. Therefore, P is an intuitionistic fuzzy ordering on X.
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(iv) P is an extension of R. Indeed, for all (x, y) ∈ X2, we have

µP (x, y) = max{µR(x, y), min(µR(x, a), µR(b, y))} ≥ µR(x, y),

and
νP (x, y) = νR(x, y) ≤ νR(x, y).

Hence, P is an extension of R on X.
(v) Either (µP (a, b) > 0 and νP (a, b) = 0) or (µP (b, a) > 0 and νP (b, a) = 0).

Indeed, we have

µP (a, b) = max{µR(a, b),min(µR(a, a), µR(b, b))} = max{µR(a, b), 1} = 1 > 0,

and

νP (a, b) = min{νR(a, b), max(νR(a, a), νR(b, b))} = min{νR(a, b), 0} = 0.

In the same way, we take

µP (x, y) = max{µR(x, y), min(µR(x, b), µR(a, y))},
and

νP (x, y) = min{νR(x, y), max(νR(x, b), νR(a, y))}.
Then, we get that

µP (b, a) = max{µR(b, a), min(µR(b, b), µR(a, a))} = 1 > 0,

and
νP (b, a) = min{νR(b, a),max(νR(b, b), νR(a, a))} = 0.

¤
Theorem 3.2 (Szpilrajn theorem for intuitionistic fuzzy orderings). Let X be a
non-empty set. Then, any partial intuitionistic fuzzy ordering on X can be extended
to a linear intuitionistic fuzzy ordering.

Proof. Let X be a non-empty set and let R be an intuitionistic fuzzy ordering on X.
Let ΣR be the set of all intuitionistic fuzzy orderings on X containing R. We know
that ΣR is a non-empty crisp ordered set under intuitionistic fuzzy set inclusion and
R its smallest element.

We claim that ΣR has at least a maximal element and this maximal element is
linear.

Claim 1. Every non-empty chain in ΣR has an upper bound in ΣR. Indeed, let
C be a non-empty chain in ΣR and let RC be the intuitionistic fuzzy relation on X
defined for all x, y ∈ X by RC =

⋃
S∈C S, i.e.,

µRC (x, y) = sup
S∈C

µS(x, y)

and
νRC (x, y) = inf

S∈C
νS(x, y).

We have
µRC

(x, y) + νRC
(x, y) = sup

S∈C
µS(x, y) + inf

S∈C
νS(x, y) ≤ 1.

Now let us show that RC is an upper bound of C in ΣR. In view of the definition of
RC , it suffices to show that RC ∈ ΣR. That is RC is an intuitionistic fuzzy ordering
on X containing R.
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(a) The intuitionistic fuzzy relation RC is reflexive. Indeed, for all x ∈ X, we
have

µRC (x, x) = sup
S∈C

µS(x, x) = 1.

Thus, RC is reflexive.
(b) The intuitionistic fuzzy relation RC is perfect antisymmetrical intuitionistic.

Indeed, let x, y ∈ X such that x 6= y. We can distinguish the following two cases:
(b1) µRC

(x, y) > 0;
(b2) µRC

(x, y) = 0 and νRC
(x, y) < 1.

(b1) If µRC (x, y) > 0, then there exists S0 ∈ C such that µS0(x, y) > 0. Since S0 is
perfect antisymmetrical intuitionistic, it follows that µS0(y, x) = 0 and νS0(y, x) = 1.

Also we get, µS(x, y) > 0 for all S ∈ C satisfying S0 ⊆ S. Hence, the perfect
antisymmetrical intuitionistic of S implies that

µS(y, x) = 0 and νS(y, x) = 1, for all S ∈ C satisfying S0 ⊆ S.

On the other hand, since µS0(y, x) = 0 and νS0(y, x) = 1, we get that

µS(y, x) = 0 and νS(y, x) = 1, for all S ∈ C satisfying S ⊆ S0.

Combining the foregoing, we obtain µS(y, x) = 0 and νS(y, x) = 1 for all S ∈ C.
Thus,

µRC (y, x) = sup
S∈C

µS(y, x) = 0

and
νRC

(y, x) = inf
S∈C

νS(y, x) = 1 .

(b2) If µRC
(x, y) = 0 and νRC

(x, y) < 1, then µS(x, y) = 0 for all S ∈ C and
there exists S0 ∈ C such that νS0(x, y) < 1.

Also, we have νS(x, y) < 1 for all S ∈ C satisfying S0 ⊆ S. Since µS(x, y) = 0 and
νS(x, y) < 1 for all S ∈ C satisfying S0 ⊆ S, then by the perfect antisymmetrical
intuitionistic of S we obtain

µS(y, x) = 0 and νS(y, x) = 1, for all S ∈ C satisfying S0 ⊆ S.

On the other hand, since S0 ⊆ S0, it follows that νS0(y, x) = 1. This implies that
νS(y, x) = 1 for all S ∈ C satisfying S ⊆ S0.

Combining the foregoing, we obtain µS(y, x) = 0 and νS(y, x) = 1 for all S ∈ C.
Thus,

µRC
(y, x) = sup

S∈C
µS(y, x) = 0

and
νRC (y, x) = inf

S∈C
νS(y, x) = 1. .

Consequently, R is perfect antisymmetrical intuitionistic.
(c) The intuitionistic fuzzy relation RC is transitive. Indeed, from the definition

of transitivity we need to show that for all x, z ∈ X,

µRC (x, z) ≥ sup
y∈X

[min{µRC (x, y), µRC (y, z)}] ,

and
νRC

(x, z) ≤ inf
y∈X

[max{νRC
(x, y), νRC

(y, z)}] .
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Let us show the first condition

µRC
(x, z) ≥ sup

y∈X
[min{µRC

(x, y), µRC
(y, z)}] .

Let x, y, z ∈ X, we have
µRC (x, y) = sup

S∈C
µS(x, y);

µRC
(y, z) = sup

S∈C
µS(y, z);

and
µRC (x, z) = sup

S∈C
µS(x, z).

Let ε > 0 be given. Then, there exist S0, S1 ∈ C such that

µRC
(x, y)− ε < µS0(x, y) ≤ µRC

(x, y)

and
µRC

(y, z)− ε < µS1(y, z) ≤ µRC
(y, z).

As C is a chain and S0, S1 ∈ C, we have S1 ⊆ S0 or S0 ⊆ S1.
First case. Assume that S1 ⊆ S0. Then, it follows that

µRC
(x, y) < µS0(x, y) + ε

and
µRC

(y, z) < µS1(y, z) + ε ≤ µS0(y, z) + ε.

This implies that

min{µRC
(x, y), µRC

(y, z)} < min{µS0(x, y) + ε, µS0(y, z) + ε}.
Hence, we obtain

min{µRC (x, y), µRC (y, z)} < min{µS0(x, y), µS0(y, z)}+ ε.

On the other hand, we know that S0 is transitive. Then, it holds that

min{µS0(x, y), µS0(y, z)} ≤ µS0(x, z).

Therefore, we deduce that

min{µRC (x, y), µRC (y, z)} < µS0(x, z) + ε.

Now since µRC (x, z) = supS∈C µS(x, z), we get µS0(x, z) ≤ µRC (x, z). So, we obtain

min{µRC
(x, y), µRC

(y, z)} < µRC
(x, z) + ε, for every ε > 0.

Thus, min{µRC
(x, y), µRC

(y, z)} ≤ µRC
(x, z), for every y ∈ X.

Second case. Assume that S0 ⊆ S1. Then, we have

µRC (x, y) < µS0(x, y) + ε ≤ µS1(x, y) + ε.

and
µRC (y, z) < µS1(y, z) + ε.

This implies that

min{µRC
(x, y), µRC

(y, z)} < min{µS1(x, y) + ε, µS1(y, z) + ε}.
Hence, we have

min{µRC
(x, y), µRC

(y, z)} < min{µS1(x, y), µS1(y, z)}+ ε.
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On the other hand, we know that S1 is transitive, so it holds that

min{µS1(x, y), µS1(y, z)} ≤ µS1(x, z).

Therefore, we deduce that

min{µRC
(x, y), µRC

(y, z)} < µS1(x, z) + ε.

Now, since µRC (x, z) = sup
S∈C

µS(x, z), we get µS1(x, z) ≤ µRC (x, z). Thus, we obtain

min{µRC
(x, y), µRC

(y, z)} < µRC
(x, z) + ε, for everyε > 0.

Thus, min{µRC
(x, y), µRC

(y, z)} ≤ µRC
(x, z), for every y ∈ X.

The same proof by cases has to be done in a completely analogous way to show
the second condition of transitivity

νRC
(x, z) ≤ inf

y∈X
[max{νRC

(x, y), νRC
(y, z)}] .

Thus, RC is intuitionistic fuzzy transitive. Therefore, RC is an intuitionistic fuzzy
ordering on X.

Finally, we show that RC containing R. Since R ≤ S for all S ∈ C, it holds that
R ≤ ⋃

S∈C

S = RC . Therefore, RC ∈ ΣR.

Claim 2. ΣR has at least a maximal element. Indeed, from Claim 1, every non-
empty chain in ΣR has an upper bound in ΣR. Then, Zorn’s Lemma implies that
ΣR has at least a maximal element, M, say.

Claim 3. The maximal element M is linear. Indeed, by absurd assume that
M is not linear. This implies that there exists two incomparable elements a, b in
(X, µM , νM ). Then, by Lemma 3.1, there exist an intuitionistic fuzzy ordering M

′

on X which extend M and satisfies that either

[µM ′ (a, b) > 0 and νM ′ (a, b) = 0] or [µM ′ (b, a) > 0 and νM ′ (b, a) = 0].

Since R ⊆ M ⊆ M
′
, so M

′ ∈ ΣR. As M is a maximal element in ΣR, so we get
M = M

′
. That is a contradiction with the fact that

[µM (a, b) = 0 or νM (a, b) > 0] and [µM (b, a) = 0 or νM (b, a) > 0].

Therefore, M is a linear intuitionistic fuzzy ordering on X which extends R. ¤

Remark 3.3. If X is finite non-empty set, then Theorem 3.2 can be followed by a
finite number of applications of Lemma 3.1 (constructive answer).

4. Characterization of intuitionistic fuzzy orderings by
theirs linear extensions

The following theorem characterizes any partial intuitionistic fuzzy ordering by
the intuitionistic fuzzy intersection of their linear extensions.

Theorem 4.1. Any partial intuitionistic fuzzy ordering on a non-empty set X is
the intuitionistic fuzzy intersection of their linear extensions.

In order to prove Theorem 4.1, we need to show the following lemma.
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Lemma 4.2. Let (X, µR, νR) be a non-empty IF-poset and let a, b be elements of
X such that [µR(a, b) > 0 and νR(a, b) = 0]. Then, there exists at least a linear
intuitionistic fuzzy ordering P on X containing R such that [µP (a, b) = µR(a, b)
and νP (a, b) = νR(a, b)].

Proof. Let (X, µR, νR) be a non-empty IF-poset and let a, b be elements of X such
that [µR(a, b) > 0 and νR(a, b) = 0]. We can distinguish two cases:

First case. If R is linear, then we take P = R which is linear intuitionistic
fuzzy ordering on X containing R and satisfies [µP (a, b) = µR(a, b) and νP (a, b) =
νR(a, b)]. Hence, Lemma 4.2 is proved.

Second case. If R is not linear, then it follows from Theorem 3.1 that there exists
a linear intuitionistic fuzzy ordering S on X containing R, i.e., [µR(x, y) ≤ µS(x, y)
and νR(x, y) ≥ νS(x, y)] for all x, y ∈ X. This implies that [µR(a, b) ≤ µS(a, b) and
νR(a, b) ≥ νS(a, b)]. Since νR(a, b) = 0, then it holds that νR(a, b) = νS(a, b). We
can distinguish the following two subcases:

(i) µR(a, b) = µS(a, b);
(ii) µR(a, b) < µS(a, b).

(i) If µR(a, b) = µS(a, b), then we take P = S. Hence, Lemma 4.2 is proved.
(ii) If µR(a, b) < µS(a, b) , then we set 0 < β = µR(a, b) < 1 and we define the

intuitionistic fuzzy relation P on X as

µP (x, y) =
{

µS(x, y) if µR(x, y) > β
β ∧ µS(x, y) if µR(x, y) ≤ β

and
νP (x, y) = νS(x, y).

It is clear that P containing R. In addition, since µR(a, b) = β ≤ β, then it holds
that

µP (a, b) = β ∧ µS(a, b) = µR(a, b) ∧ µS(a, b) = µR(a, b)

and
νP (a, b) = νS(a, b) = νR(a, b).

Now to complete the proof we need to show that the intuitionistic fuzzy relation P
defined on X as:

µP (x, y) =
{

µS(x, y) if µR(x, y) > β
β ∧ µS(x, y) if µR(x, y) ≤ β

and
νP (x, y) = νS(x, y)

is a linear intuitionistic fuzzy ordering.
(1) P is reflexive. Indeed, since µR(x, x) = 1 > β for all x ∈ X, then it holds that

µP (x, x) = µS(x, x) = 1. Thus, P is reflexive.
(2) P is perfect antisymmetrical intuitionistic. Indeed, let x, y ∈ X such that

x 6= y. We can distinguish the following two cases:
(i) µP (x, y) > 0;
(ii) µP (x, y) = 0 and νP (x, y) < 1.

714



L. Zedam et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 5, 703–718

(i) If µP (x, y) > 0, then it follows that µS(x, y) > 0. Since S is a perfect anti-
symmetrical intuitionistic, it holds that µS(y, x) = 0 and νS(y, x) = 1. This implies
that

µP (y, x) =
{

µS(y, x) if µR(y, x) > β
β ∧ µS(y, x) if µR(y, x) ≤ β

=
{

0 if µR(y, x) > β
β ∧ 0 if µR(y, x) ≤ β

= 0,

and
νP (y, x) = νS(y, x) = 1.

Thus, P is perfect antisymmetrical intuitionistic.
(ii) If µP (x, y) = 0 and νP (x, y) < 1, then from the fact that β > 0 we deduce

that µS(x, y) = 0 and νS(x, y) = νP (x, y) < 1. Since S is a perfect antisymmetrical
intuitionistic, then it holds that µS(y, x) = 0 and νS(y, x) = 1. This implies also that
µP (y, x) = 0 and νP (y, x) = 1. Thus, P is perfect antisymmetrical intuitionistic.

(3) P is transitive. Indeed, Let x, y, z ∈ X, we have four cases to study.
First case. If µP (x, y) = µS(x, y) and µP (y, z) = µS(y, z), then µR(x, y) > β and

µR(y, z) > β. Since R is transitive, we have µR(x, z) ≥ µR(x, y) ∧ µR(y, z). This
implies that µR(x, z) > β. Hence, µP (x, z) = µS(x, z). Now, from the transitivity
of S we have µS(x, z) ≥ µS(x, y) ∧ µS(y, z). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

Second case. If µP (x, y) = µS(x, y) and µP (y, z) = β∧µS(y, z), then µR(x, y) > β
and µR(y, z) ≤ β. So, µR(x, y)∧µR(y, z) ≤ β. Now we have two subcases to consider:

(a) If µR(x, z) > β, then it holds that µP (x, z) = µS(x, z). We have µS(x, z) ≥
µS(x, y) ∧ µS(y, z) (since S is transitive). Hence, we get that µS(x, z) ≥
µS(x, y) ∧ (β ∧ µS(y, z)). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

(b) If µR(x, z) ≤ β, then µP (x, z) = β∧µS(x, z). We have µS(x, z) ≥ µS(x, y)∧
µS(y, z) (since S is transitive). Hence, we get also that β ∧ µS(x, z) ≥
µS(x, y) ∧ (β ∧ µS(y, z)). Thus,

µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

Third case. If µP (x, y) = β∧µS(x, y) and µP (y, z) = µS(y, z) then it follows that
µR(x, y) ≤ β and µR(y, z) > β. So, µR(x, y) ∧ µR(y, z) ≤ β. In this case, we have
also two subcases to consider:

(a) If µR(x, z) > β, then µP (x, z) = µS(x, z). Since by the fuzzy transitivity
of S we have µS(x, z) ≥ µS(x, y) ∧ µS(y, z), so we get also that µS(x, z) ≥
(β ∧ µS(x, y)) ∧ µS(y, z). Thus, µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

(b) If µR(x, z) ≤ β then µP (x, z) = β ∧ µS(x, z). Since by the fuzzy transitivity
of S we have µS(x, z) ≥ µS(x, y)∧µS(y, z), so we get also that β∧µS(x, z) ≥
(β ∧ µS(x, y)) ∧ µS(y, z). Thus, µP (x, z) ≥ µP (x, y) ∧ µP (y, z).
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Fourth case. If µP (x, y) = β ∧ µS(x, y) and µP (y, z) = β ∧ µS(y, z), then we get
µR(x, y) ≤ β and µR(y, z) ≤ β. So, µR(x, y) ∧ µR(y, z) ≤ β. In this case we have
also two subcases to consider:

(a) If µR(x, z) > β, then µP (x, z) = µS(x, z). Since by the fuzzy transitivity
of S, we have µS(x, z) ≥ µS(x, y) ∧ µS(y, z), so we get also that µS(x, z) ≥
(β ∧ µS(x, y)) ∧ (β ∧ µS(y, z)). Thus, µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

(b) If µR(x, z) ≤ β, then µP (x, z) = β∧µS(x, z). Since by the fuzzy transitivity
of S we have µS(x, z) ≥ µS(x, y)∧µS(y, z), so we get also that β∧µS(x, z) ≥
(β ∧ µS(x, y)) ∧ (β ∧ µS(y, z)). Thus, µP (x, z) ≥ µP (x, y) ∧ µP (y, z).

As consequence of the above fourth cases, we get that

µP (x, z) ≥ min{µP (x, y), µP (y, z)},
for all y ∈ X. Thus, P is transitive. Therefore, P is an intuitionistic fuzzy ordering
on X.

Moreover, let x, y ∈ X, such that x 6= y. Then, since S is a linear intuitionistic
fuzzy ordering we get that

[µS(x, y) > 0 and νS(x, y) = 0] or [µS(y, x) > 0 and νS(y, x) = 0].

Also, as β > 0 so we obtain that β ∧ µS(x, y) > 0 or β ∧ µS(y, x) > 0.
Hence, we get that

[µP (x, y) > 0 and νP (x, y) = 0] or [µP (y, x) > 0 and νP (y, x) = 0].

Thus, P is linear. Therefore, Lemma 4.2 is proved. ¤

Remark 4.3. The linear intuitionistic fuzzy ordering P always satisfies the following
condition:

R ⊆ P ⊆ S.

Now we are able to give the proof of Theorem 4.1.

Proof. (The proof of Theorem 4.1.) Let R be an intuitionistic fuzzy ordering on
X and LR be the set of all linear intuitionistic fuzzy orderings on X containing R.
Theorem 4.1 can be shown by setting S0 =

⋂
S∈LR

S and proving that R = S0. We

distinguish the following cases:
(i) If R linear, then the equality R = S0 follows trivially from the fact that

R ∈ LR.
(ii) If R isn’t linear. The first inclusion R ⊆ S0 follows trivially from the fact

that R ⊆ S, for all S ∈ LR.
Next, we show that S0 ⊆ R. That means that

µS0(x, y) = inf
S∈LR

µS(x, y) ≤ µR(x, y)

and
νS0(x, y) = sup

S∈LR

νS(x, y) ≥ νR(x, y).

Let a, b ∈ X. In order to simplify the proof, we distinguish two subcases:
First subcase. If a and b are incomparable in (X, µR, νR), then

[µR(a, b) = 0 or νR(a, b) > 0] and [µR(b, a) = 0 or νR(b, a) > 0].
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Hence, Lemma 3.1 and Theorem 3.2 allow to find two linear intuitionistic fuzzy
orderings P, Q on X containing R such that

[µP (a, b) > 0 and νP (a, b) = 0]

and
[µQ(b, a) > 0 and νQ(b, a) = 0].

Moreover, the perfect antisymmetrical intuitionistic of P and Q implies that

µP (b, a) = 0 and νP (b, a) = 1

and
µQ(a, b) = 0 and νQ(a, b) = 1.

Thus,
µS0(a, b) = inf

S∈LR

µS(a, b) = 0 ≤ µR(a, b)

and
νS0(a, b) = sup

S∈LR

νS(a, b) = 1 ≥ νR(a, b).

Therefore, S0 ⊆ R.
Second subcase. If a and b are comparable in (X,µR, νR), then

[µR(a, b) > 0 and νR(a, b) = 0] or [µR(b, a) > 0 and νR(b, a) = 0].

Assume, without loss of generality, that [µR(a, b) > 0 and νR(a, b) = 0]. Then, by
Lemma 4.2, there exists a linear intuitionistic fuzzy ordering P on X containing R
such that

[µP (a, b) = µR(a, b) and νP (a, b) = νR(a, b)].
Thus,

µS0(a, b) = inf
S∈LR

µS(a, b) = µR(a, b)

and
νS0(a, b) = sup

S∈LR

νS(a, b) = νR(a, b).

Analogously, we can show that µS0(a, b) = µR(a, b) and νS0(a, b) = νR(a, b) follows
from the converse assumption µR(b, a) > 0 and νR(b, a) = 0]. Therefore, S0 ⊆ R. ¤
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