Annals of Fuzzy Mathematics and Informatics Volume 9, No. 5, (May 2015), pp. 683–691

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Some remarks on pairwise fuzzy Baire spaces

GANESAN THANGARAJ, SUBBIAH SETHURAMAN

Received 19 July 2014; Revised 17 September 2014; Accepted 30 September 2014

ABSTRACT. In this paper several characterizations of pairwise fuzzy Baire bitopological spaces are studied. The conditions underwhich a fuzzy bitopological space becomes a pairwise fuzzy Baire space, are established.

2010 AMS Classification: 54A40, 03E72

Keywords: Fuzzy bitopological spaces, Pairwise fuzzy Baire space, Pairwise fuzzy second category space, Pairwise fuzzy nodec space, Pairwise fuzzy submaximal space, Pairwise fuzzy strongly irresolvable space.

Corresponding Author: G. Thangaraj (g.thangaraj@rediffmail.com)

1. Introduction

In order to deal with uncertainties, the idea of fuzzy sets and fuzzy set operations was introduced by L. A. Zadeh in his classical paper [15] in the year 1965. This inspired mathematicians to fuzzify Mathematical Structures. The first notion of fuzzy topological space had been defined by C. L. Chang [4] in 1968. Since then much attention has been paid to generalize the basic concepts of general topology in fuzzy setting and thus a modern theory of fuzzy topology has been developed. The concepts of bitopological Baire spaces have been studied extensively in classical topology in [1], [2], [5] and [6]. In 1989, A. Kandil [8] introduced the concept of fuzzy bitopological space as an extension of fuzzy topological space and as a generalization of bitopological space. The concept of Baire space in fuzzy setting was introduced and studied by G. Thangaraj and S. Anjalmose in [11]. The concept of bitopological Baire space in fuzzy setting was introduced and studied by the authors in [12]. The concept of pairwise dense sets was introduced and studied by Biswanath and Bandyopadhyay in [7]. In this paper we study under what conditions a fuzzy bitopological space becomes a pairwise fuzzy Baire space and pairwise fuzzy strongly irresolvable space, pairwise fuzzy submaximal space, pairwise fuzzy P-space are considered for this work.

2. Preliminaries

Now we introduce some basic notions and results used in the sequel. In this work, by a fuzzy bitopological space (Kandil, 1989), we mean an ordered triple (X, T_1, T_2) where T_1 and T_2 are fuzzy topologies on the non-empty set X. The complement λ' of a fuzzy set λ is defined by $\lambda'(x) = 1 - \lambda(x)$.

Definition 2.1. Let λ and μ be any two fuzzy sets in a fuzzy topological space (X,T). Then we define $\lambda \vee \mu : X \to [0,1]$ as follows : $(\lambda \vee \mu)(x) = \max\{\lambda(x), \mu(x)\}$. Also we define $\lambda \wedge \mu : X \to [0,1]$ as follows : $(\lambda \wedge \mu)(x) = \min\{\lambda(x), \mu(x)\}$.

For a family $\{\lambda_i/i \in I\}$ of fuzzy sets in (X,T), the $union \psi = \vee_i \lambda_i$ and $intersection \delta = \wedge_i \lambda_i$ are defined respectively as $\psi(x) = \sup_i \{\lambda_i(x) \mid x \in X\}$ and $\delta(x) = \inf_i \{\lambda_i(x) \mid x \in X\}$.

Definition 2.2. Let (X,T) be a fuzzy topological space and λ be any fuzzy set in (X,T). We define the interior and closure of λ as $int(\lambda) = \bigvee \{\mu/\mu \leq \lambda, \mu \in T\}$ and $cl(\lambda) = \bigwedge \{\mu/\lambda \leq \mu, 1-\mu \in T\}$.

Lemma 2.3 ([3]). Let λ be any fuzzy set in a fuzzy topological space (X,T). Then $1 - cl(\lambda) = int(1 - \lambda)$ and $1 - int(\lambda) = cl(1 - \lambda)$.

Definition 2.4 ([9]). A fuzzy set λ in a fuzzy topological space (X,T) is called fuzzy dense if there exists no fuzzy closed set μ in (X,T) such that $\lambda < \mu < 1$.

Definition 2.5 ([10]). Let (X, T_1, T_2) be a fuzzy bitopological space. A fuzzy set λ in (X, T_1, T_2) is called a *pairwise fuzzy dense set* if $cl_{T_1}(cl_{T_2}(\lambda)) = cl_{T_2}(cl_{T_1}(\lambda)) = 1$.

Definition 2.6 ([9]). A fuzzy set λ in a fuzzy topological space (X,T) is called fuzzy nowhere dense if there exists no non - zero fuzzy open set μ in (X,T) such that $\mu < cl(\lambda)$. That is, $intcl(\lambda) = 0$.

Definition 2.7 ([12]). A fuzzy set λ in a fuzzy bitopological space (X, T_1, T_2) is called *pairwise fuzzy nowhere dense* if $int_{T_1}(cl_{T_2}(\lambda)) = int_{T_2}(cl_{T_1}(\lambda)) = 0$.

Definition 2.8 ([12]). A fuzzy set λ in (X, T_1, T_2) is called a pairwise fuzzy open set if $\lambda \in T_i$ (i = 1, 2) and a pairwise fuzzy closed set if $1 - \lambda \in T_i$ (i = 1, 2).

Definition 2.9 ([12]). Let (X, T_1, T_2) be a fuzzy bitopological space. A fuzzy set λ in (X, T_1, T_2) is called a *pairwise fuzzy first category set* if $\lambda = \bigvee_{k=1}^{\infty} (\lambda_k)$, where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) . A fuzzy set which is not of pairwise fuzzy first category, is called a *pairwise fuzzy second category set* in (X, T_1, T_2) .

Definition 2.10 ([12]). If λ is a pairwise fuzzy first category set in a fuzzy bitopological space (X, T_1, T_2) , then the fuzzy set $1 - \lambda$ is called a *pairwise fuzzy residual* set in (X, T_1, T_2) .

Definition 2.11 ([11]). A fuzzy topological space (X,T) is called a *fuzzy Baire* space if $int(\bigvee_{k=1}^{\infty}(\lambda_k)) = 0$, where (λ_k) 's are fuzzy nowhere dense sets in (X,T).

Lemma 2.12 ([3]). For a family $\mathscr{A} = \{\lambda_{\alpha}\}$ of fuzzy sets of a fuzzy space X, $\forall cl(\lambda_{\alpha}) \leq cl(\forall \lambda_{\alpha})$. In case \mathscr{A} is a finite set, $\forall cl(\lambda_{\alpha}) = cl(\forall \lambda_{\alpha})$. Also $\forall int(\lambda_{\alpha}) \leq int(\forall \lambda_{\alpha})$.

3. Pairwise fuzzy Baire spaces

Definition 3.1 ([12]). A fuzzy bitopological space (X, T_1, T_2) is called a *pairwise fuzzy Baire space* if $int_{T_i}(\bigvee_{k=1}^{\infty}(\lambda_k)) = 0$, (i = 1, 2) where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) .

Theorem 3.2 ([12]). Let (X, T_1, T_2) be a fuzzy bitopological space. Then the following are equivalent:

- (i). (X, T_1, T_2) is a pairwise fuzzy Baire space.
- (ii). $int_{T_i}(\lambda) = 0$, (i=1,2) for every pairwise fuzzy first category set λ in (X, T_1, T_2) .
- (iii). $cl_{T_i}(\mu) = 1$, (i=1,2) for every pairwise fuzzy residual set μ in (X, T_1, T_2) .

Proposition 3.3. If $int_{T_i}(\lambda) = 0$, (i = 1, 2) for a fuzzy set λ in a fuzzy bitopological space (X, T_1, T_2) , then $int_{T_1}int_{T_2}(\lambda) = 0$ and $int_{T_2}int_{T_1}(\lambda) = 0$.

Proof. Let $int_{T_i}(\lambda) = 0$, (i = 1, 2) in (X, T_1, T_2) . Then $int_{T_1}int_{T_2}(\lambda) = int_{T_1}(0) = 0$. Also, $int_{T_2}int_{T_1}(\lambda) = int_{T_2}(0) = 0$. Hence $int_{T_1}int_{T_2}(\lambda) = int_{T_2}int_{T_1}(\lambda) = 0$.

Proposition 3.4. If $cl_{T_i}(\lambda) = 1$, (i = 1, 2) for a fuzzy set λ in a fuzzy bitopological space (X, T_1, T_2) , then λ is a pairwise fuzzy dense set in (X, T_1, T_2) .

Proof. Let $cl_{T_i}(\lambda) = 1$, (i = 1, 2) in (X, T_1, T_2) . Then $cl_{T_1}cl_{T_2}(\lambda) = cl_{T_1}(1) = 1$. Also, $cl_{T_2}cl_{T_1}(\lambda) = cl_{T_2}(1) = 1$. Hence we have $cl_{T_1}cl_{T_2}(\lambda) = cl_{T_2}cl_{T_1}(\lambda) = 1$. Therefore λ is a pairwise fuzzy dense set in (X, T_1, T_2) .

Proposition 3.5. If (X, T_1, T_2) is a pairwise fuzzy Baire space, then,

- (i). $int_{T_1}int_{T_2}(\lambda) = 0 = int_{T_2}int_{T_1}(\lambda)$, for a pairwise fuzzy first category set λ in (X, T_1, T_2) .
- (ii). $cl_{T_1}cl_{T_2}(\lambda) = 1 = cl_{T_2}cl_{T_1}(\lambda)$, for a pairwise fuzzy residual set λ in (X, T_1, T_2) .

Proof. Proof follows from theorem 3.2, propositions 3.3 and 3.4.

Proposition 3.6. If the fuzzy bitopological space (X, T_1, T_2) is a pairwise fuzzy Baire space, then no pairwise fuzzy closed set other than 1, is a pairwise fuzzy residual set in (X, T_1, T_2) .

Proof. Let $\lambda(\neq 1)$, be a pairwise fuzzy closed set in a pairwise fuzzy Baire space (X, T_1, T_2) . Then $cl_{T_i}(\lambda) = \lambda$, (i = 1, 2). Suppose λ is a pairwise fuzzy residual set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy Baire space, by theorem 3.2, $cl_{T_i}(\lambda) = 1$. This implies that $cl_{T_i}(\lambda) \neq \lambda$, a contradiction to λ being a pairwise fuzzy closed set. Hence no pairwise fuzzy closed set other than 1, is a pairwise fuzzy residual set in (X, T_1, T_2) .

Theorem 3.7 ([13]). If the fuzzy bitopological space (X, T_1, T_2) is a pairwise fuzzy Baire space, then no non-zero pairwise fuzzy open set is a pairwise fuzzy first category set in (X, T_1, T_2) .

Proposition 3.8. If λ is a non-zero pairwise fuzzy open set in a pairwise fuzzy Baire space (X, T_1, T_2) , then $\lambda \neq \bigvee_{k=1}^{\infty} (\lambda_k)$, where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) .

Proof. Let λ be a non-zero pairwise fuzzy open set in a pairwise fuzzy Baire space (X, T_1, T_2) . Then, by theorem 3.7, λ is not a pairwise fuzzy first category set in (X, T_1, T_2) . Hence, $\lambda \neq \bigvee_{k=1}^{\infty} (\lambda_k)$, where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) .

4. Inter-relations between pairwise fuzzy strongly irresolvable spaces, pairwise fuzzy submaximal spaces and pairwise fuzzy Baire spaces.

Definition 4.1 ([13]). A fuzzy bitopological space (X, T_1, T_2) is said to be a *pairwise* fuzzy strongly irresolvable space if $cl_{T_1}int_{T_2}(\lambda) = 1 = cl_{T_2}int_{T_1}(\lambda)$ for each pairwise fuzzy dense set λ in (X, T_1, T_2) .

Proposition 4.2. Let (X, T_1, T_2) be a pairwise fuzzy strongly irresolvable space. If λ is a pairwise fuzzy dense set in (X, T_1, T_2) , then $1 - \lambda$ is a pairwise fuzzy nowhere dense set.

Proof. Let λ be a pairwise fuzzy dense set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, $cl_{T_1}int_{T_2}(\lambda) = 1 = cl_{T_2}int_{T_1}(\lambda)$. This implies that $1 - cl_{T_1}int_{T_2}(\lambda) = 0 = 1 - cl_{T_2}int_{T_1}(\lambda)$. Therefore $int_{T_1}cl_{T_2}(1 - \lambda) = 0 = int_{T_2}cl_{T_1}(1 - \lambda)$ and hence $1 - \lambda$ is a pairwise fuzzy nowhere dense set.

Theorem 4.3 ([12]). If λ is a pairwise fuzzy nowhere dense set in a fuzzy bitopological space (X, T_1, T_2) then $1 - \lambda$ is a pairwise fuzzy dense set in (X, T_1, T_2) .

Proposition 4.4. Let (X, T_1, T_2) be a pairwise fuzzy strongly irresolvable space. Then λ is a pairwise fuzzy dense set in (X, T_1, T_2) if and only if $1 - \lambda$ is a pairwise fuzzy nowhere dense set.

Proof. Proof follows from proposition 4.2 and theorem 4.3.

Theorem 4.5 ([13]). If $cl_{T_i}(\wedge_{k=1}^{\infty}(\lambda_k)) = 1$ (i = 1, 2), where (λ_k) 's are pairwise fuzzy dense sets in a pairwise fuzzy strongly irresolvable space (X, T_1, T_2) , then (X, T_1, T_2) is a pairwise fuzzy Baire space.

Proposition 4.6. If (λ_k) 's are pairwise fuzzy dense sets in a pairwise fuzzy strongly irresolvable and pairwise fuzzy Baire space (X, T_1, T_2) , then $cl_{T_i}(\wedge_{k=1}^{\infty}(\lambda_k)) = 1$, (i = 1, 2).

Proof. Let (μ_k) 's $(k=1\ to\ \infty)$ be pairwise fuzzy nowhere dense sets in a pairwise fuzzy strongly irresolvable and pairwise fuzzy Baire space (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy Baire space, $int_{T_i}(\vee_{k=1}^\infty(\mu_k))=0$. Then $1-int_{T_i}(\vee_{k=1}^\infty(\mu_k))=1$. This implies that $cl_{T_i}(\wedge_{k=1}^\infty(1-\mu_k))=1\longrightarrow (1)$. Since (μ_k) 's are pairwise fuzzy nowhere dense sets in a pairwise fuzzy strongly irresolvable space (X,T_1,T_2) , by proposition 4.4, $(1-\mu_k)$'s are pairwise fuzzy dense sets in (X,T_1,T_2) . Let $\lambda_k=1-\mu_k$. Then we have from $(1),\ cl_{T_i}(\wedge_{k=1}^\infty(\lambda_k))=1,\ (i=1,2)$ where (λ_k) 's are pairwise fuzzy dense sets in (X,T_1,T_2) .

Proposition 4.7. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, then (X, T_1, T_2) is a pairwise fuzzy Baire space if and only if $cl_{T_i}(\wedge_{k=1}^{\infty}(\lambda_k)) = 1$, (i = 1, 2).

Proof. Proof follows from proposition 4.6 and theorem 4.5.

Proposition 4.8. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space and $\lambda = \bigwedge_{k=1}^{\infty} (\lambda_k)$ is a pairwise fuzzy dense set in (X, T_1, T_2) , then $1 - \lambda$ is a pairwise fuzzy first category set in (X, T_1, T_2) .

Proof. Let $\lambda = \wedge_{k=1}^{\infty}(\lambda_k)$ be a pairwise fuzzy dense set in (X, T_1, T_2) . Then $cl_{T_1}cl_{T_2}\left(\wedge_{k=1}^{\infty}(\lambda_k)\right) = 1 = cl_{T_2}cl_{T_1}\left(\wedge_{k=1}^{\infty}(\lambda_k)\right)$. But $cl_{T_1}\left(\wedge_{k=1}^{\infty}(\lambda_k)\right) \leq \wedge_{k=1}^{\infty}\left(cl_{T_1}(\lambda_k)\right)$ and hence $cl_{T_2}cl_{T_1}\left(\wedge_{k=1}^{\infty}(\lambda_k)\right) \leq cl_{T_2}\left[\wedge_{k=1}^{\infty}\left(cl_{T_1}(\lambda_k)\right)\right]$. Thus $1 \leq cl_{T_2}\left[\wedge_{k=1}^{\infty}\left(cl_{T_1}(\lambda_k)\right)\right] \leq \wedge_{k=1}^{\infty}\left[cl_{T_2}\left(cl_{T_1}(\lambda_k)\right)\right]$. Then $\wedge_{k=1}^{\infty}\left[cl_{T_2}\left(cl_{T_1}(\lambda_k)\right)\right] = 1$. This implies that, $cl_{T_2}\left(cl_{T_1}(\lambda_k)\right) = 1$. Similarly, we can show that $cl_{T_1}\left(cl_{T_2}(\lambda_k)\right) = 1$. Thus (λ_k) 's are pairwise fuzzy dense sets in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, by proposition 4.2, $(1 - \lambda_k)$'s are pairwise fuzzy nowhere dense sets. Therefore, we have $1 - \lambda = \vee_{k=1}^{\infty}(1 - \lambda_k)$, where $(1 - \lambda_k)$'s are pairwise fuzzy nowhere dense sets. Hence $1 - \lambda$ is a pairwise fuzzy first category set in (X, T_1, T_2) .

Proposition 4.9. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space and $\lambda = \bigwedge_{k=1}^{\infty} (\lambda_k)$ is a pairwise fuzzy dense set in (X, T_1, T_2) , then λ is a pairwise fuzzy residual set in (X, T_1, T_2) .

Proof. Let $\lambda = \bigwedge_{k=1}^{\infty}(\lambda_k)$ be a pairwise fuzzy dense set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, by proposition 4.8, $1 - \lambda$ is a pairwise fuzzy first category set in (X, T_1, T_2) . Therefore λ is a pairwise fuzzy residual set in (X, T_1, T_2) .

Definition 4.10 ([13]). A fuzzy bitopological space (X, T_1, T_2) is called a *pairwise* fuzzy submaximal space if each pairwise fuzzy dense set in (X, T_1, T_2) , is a pairwise fuzzy open set in (X, T_1, T_2) . That is., if λ is a pairwise fuzzy dense set in a fuzzy bitopological space (X, T_1, T_2) , then $\lambda \in T_i$ (i = 1, 2).

Proposition 4.11. If (X, T_1, T_2) is a pairwise fuzzy submaximal space and λ is a pairwise fuzzy first category set, then $1 - \lambda$ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) .

Proof. Let λ be a pairwise fuzzy first category set in (X, T_1, T_2) . Then $\lambda = \bigvee_{k=1}^{\infty} (\lambda_k)$, where (λ_k) 's are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) . By theorem 4.3, $(1 - \lambda_k)$'s are pairwise fuzzy dense sets in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy submaximal space, $(1 - \lambda_k)$'s are pairwise fuzzy open sets in (X, T_1, T_2) . Also $1 - \lambda = 1 - (\bigvee_{k=1}^{\infty} (\lambda_k)) = \bigwedge_{k=1}^{\infty} (1 - \lambda_k)$, where $(1 - \lambda_k)$'s are pairwise fuzzy open sets in (X, T_1, T_2) . Therefore $1 - \lambda$ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) .

Proposition 4.12. If (X, T_1, T_2) is a pairwise fuzzy submaximal space, then every pairwise fuzzy first category set is a pairwise fuzzy F_{σ} -set in (X, T_1, T_2) .

Proof. Let λ be a pairwise fuzzy first category set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy submaximal space, by proposition 4.11, $1 - \lambda$ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) and hence λ is a pairwise fuzzy F_{σ} -set in (X, T_1, T_2) .

Theorem 4.13 ([13]). If (X, T_1, T_2) is a pairwise fuzzy Baire space, then every pairwise fuzzy residual set is a pairwise fuzzy dense set in (X, T_1, T_2) .

Definition 4.14 ([14]). A fuzzy bitopological space (X, T_1, T_2) is called a *pairwise* fuzzy P-space if every non-zero pairwise fuzzy G_{δ} -set in (X, T_1, T_2) , is a pairwise fuzzy open set in (X, T_1, T_2) . That is, if (X, T_1, T_2) is a pairwise fuzzy P-space if $\lambda \in T_i$, (i = 1, 2) for $\lambda = \wedge_{k=1}^{\infty}(\lambda_k)$, where λ_k 's are pairwise fuzzy open sets in (X, T_1, T_2) .

Proposition 4.15. If (X, T_1, T_2) is a pairwise fuzzy submaximal and pairwise fuzzy P-space, then every pairwise fuzzy residual set is a pairwise fuzzy open set in (X, T_1, T_2) .

Proof. Let λ be a pairwise fuzzy residual set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy submaximal space, by proposition 4.12, λ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy P-space, λ is a pairwise fuzzy open set in (X, T_1, T_2) . Hence every pairwise fuzzy residual set is a pairwise fuzzy open set in a pairwise fuzzy submaximal and pairwise fuzzy P-space.

Definition 4.16 ([13]). A fuzzy bitopological space (X, T_1, T_2) is called a *pairwise* fuzzy nodec space if every non-zero pairwise fuzzy nowhere dense set in (X, T_1, T_2) , is a pairwise fuzzy closed set in (X, T_1, T_2) . That is., if λ is a pairwise fuzzy nowhere dense set in a fuzzy bitopological space (X, T_1, T_2) , then $1 - \lambda \in T_i$ (i = 1, 2).

Proposition 4.17. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable and pairwise fuzzy nodec space, then (X, T_1, T_2) is a pairwise fuzzy submaximal space.

Proof. Let (X, T_1, T_2) be a pairwise fuzzy strongly irresolvable and pairwise fuzzy nodec space. Let λ be a pairwise fuzzy dense set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, by proposition 4.2, $1 - \lambda$ is a pairwise fuzzy nowhere dense set. Since (X, T_1, T_2) is a pairwise fuzzy nodec space, $1 - \lambda$ is a pairwise fuzzy closed set. Then λ is a pairwise fuzzy open set in (X, T_1, T_2) . Hence every pairwise fuzzy dense set is pairwise fuzzy open set in (X, T_1, T_2) . Therefore (X, T_1, T_2) is a pairwise fuzzy submaximal space.

Proposition 4.18. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable and pairwise fuzzy second category space, then $\wedge_{k=1}^{\infty}(\lambda_k) \neq 0$ where (λ_k) 's are pairwise fuzzy dense sets in (X, T_1, T_2) .

Proof. Let (X, T_1, T_2) be a pairwise fuzzy second category space. Let us assume that $\wedge_{k=1}^{\infty}(\lambda_k) = 0$. Since (λ_k) 's are pairwise fuzzy dense sets in (X, T_1, T_2) , by proposition 4.2, $(1 - \lambda_k)$'s are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) . Now $1 - \wedge_{k=1}^{\infty}(\lambda_k) = 1$, implies that $\vee_{k=1}^{\infty}(1 - \lambda_k) = 1$ and $(1 - \lambda_k)$'s are pairwise fuzzy nowhere dense sets in (X, T_1, T_2) . Hence (X, T_1, T_2) is a pairwise fuzzy first category space which is a contradiction. Therefore $\wedge_{k=1}^{\infty}(\lambda_k) \neq 0$ where (λ_k) 's are pairwise fuzzy dense sets in (X, T_1, T_2) .

Proposition 4.19. If λ is a pairwise fuzzy first category set in a pairwise fuzzy submaximal and pairwise fuzzy P-space (X, T_1, T_2) , then λ is not a pairwise fuzzy dense set in (X, T_1, T_2) .

Proof. Let λ be a pairwise fuzzy first category set in a pairwise fuzzy submaximal and pairwise fuzzy P-space (X, T_1, T_2) . Hence $1 - \lambda$ is a pairwise fuzzy residual set in (X, T_1, T_2) . Then, by proposition 4.15, $1 - \lambda$ is a pairwise fuzzy open set in

 (X, T_1, T_2) , so λ is a pairwise fuzzy closed set. Hence $cl_{T_1}(\lambda) = cl_{T_2}(\lambda) = \lambda$ implies that $cl_{T_1}cl_{T_2}(\lambda) = cl_{T_2}cl_{T_1}(\lambda) = \lambda \neq 1$ and therefore λ is not a pairwise fuzzy dense set in (X, T_1, T_2) .

Remark 4.20. If $int_{T_1}int_{T_2}(\lambda) = 0$ and $int_{T_2}int_{T_1}(\lambda) = 0$ do not imply $int_{T_1}(\lambda) = 0$ and $int_{T_2}(\lambda) = 0$ in a fuzzy bitopological space (X, T_1, T_2) .

Proposition 4.21. If $int_{T_1}int_{T_2}(\lambda) = 0$ and $int_{T_2}int_{T_1}(\lambda) = 0$ for a fuzzy set λ in a pairwise fuzzy strongly irresolvable space (X, T_1, T_2) , then $int_{T_1}(\lambda) = 0$ and $int_{T_2}(\lambda) = 0$ in (X, T_1, T_2) .

Proof. Let $int_{T_1}int_{T_2}(\lambda)=0$ and $int_{T_2}int_{T_1}(\lambda)=0$ for a fuzzy set λ in a pairwise fuzzy strongly irresolvable space (X,T_1,T_2) . Then $1-int_{T_1}int_{T_2}(\lambda)=1$ and $1-int_{T_2}int_{T_1}(\lambda)=1$ imply that $cl_{T_1}cl_{T_2}(1-\lambda)=1$ and $cl_{T_2}cl_{T_1}(1-\lambda)=1$. That is., $1-\lambda$ is a pairwise fuzzy dense set in (X,T_1,T_2) . Since (X,T_1,T_2) is a pairwise fuzzy strongly irresolvable space, for the pairwise fuzzy dense set $1-\lambda$ in (X,T_1,T_2) , we have $cl_{T_1}int_{T_2}(1-\lambda)=1$ and $cl_{T_2}int_{T_1}(1-\lambda)=1$. Then we have, $int_{T_1}cl_{T_2}(\lambda)=0$ and $int_{T_2}cl_{T_1}(\lambda)=0$. Hence $int_{T_1}(\lambda)\leq int_{T_1}cl_{T_2}(\lambda)=0$ and $int_{T_2}(\lambda)=0$ implies that $int_{T_1}(\lambda)\leq 0$ and $int_{T_2}(\lambda)\leq 0$. That is., $int_{T_1}(\lambda)=0$ and $int_{T_2}(\lambda)=0$.

Proposition 4.22. If $cl_{T_1}cl_{T_2}(\lambda) = 1$ and $cl_{T_2}cl_{T_1}(\lambda) = 1$ for a fuzzy set λ in a pairwise fuzzy strongly irresolvable space (X, T_1, T_2) , then $cl_{T_1}(\lambda) = 1$ and $cl_{T_2}(\lambda) = 1$ in (X, T_1, T_2) .

Proof. Let $cl_{T_1}cl_{T_2}(\lambda) = 1$ and $cl_{T_2}cl_{T_1}(\lambda) = 1$ for a fuzzy set λ in a pairwise fuzzy strongly irresolvable space (X, T_1, T_2) . Hence $1-cl_{T_1}cl_{T_2}(\lambda) = 0$ and $1-cl_{T_2}cl_{T_1}(\lambda) = 0$. This implies that $int_{T_1}int_{T_2}(1-\lambda) = 0$ and $int_{T_2}int_{T_1}(1-\lambda) = 0$. Now, by proposition 4.21, $int_{T_1}(1-\lambda) = 0$ and $int_{T_2}(1-\lambda) = 0$ and hence $1-cl_{T_1}(\lambda) = 0$ and $1-cl_{T_2}(\lambda) = 0$. Therefore $cl_{T_1}(\lambda) = 1$ and $cl_{T_2}(\lambda) = 1$ in (X, T_1, T_2) .

Proposition 4.23. If (X, T_1, T_2) is a pairwise fuzzy strongly irresolvable space, then

- (i). $int_{T_1}int_{T_2}(\lambda) = 0 = int_{T_2}int_{T_1}(\lambda)$, for a fuzzy set λ in (X, T_1, T_2) implies that $int_{T_i}(\lambda) = 1$, (i = 1, 2).
- (ii). $cl_{T_1}cl_{T_2}(\lambda) = 1 = cl_{T_2}cl_{T_1}(\lambda)$, for a fuzzy set λ in (X, T_1, T_2) implies that $cl_{T_i}(\lambda) = 1$, (i = 1, 2).

Proof. Proof follows from propositions 4.21 and 4.22

Proposition 4.24. If (X, T_1, T_2) is a pairwise fuzzy submaximal space, then every pairwise fuzzy residual set is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) .

Proof. Let λ be a pairwise fuzzy residual set in (X, T_1, T_2) . Then $1 - \lambda$ is a pairwise fuzzy first category set (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy submaximal space, by proposition 4.12, $1 - \lambda$ is a pairwise fuzzy F_{σ} -set in (X, T_1, T_2) . Therefore λ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) .

Theorem 4.25 ([13]). If the fuzzy bitopological space (X, T_1, T_2) is a pairwise fuzzy submaximal space, then (X, T_1, T_2) is not a pairwise Baire space.

Proposition 4.26. If every pairwise fuzzy G_{δ} -set is fuzzy pairwise dense in a pairwise fuzzy submaximal and pairwise fuzzy strongly irresolvable space (X, T_1, T_2) , then (X, T_1, T_2) pairwise fuzzy Baire space.

Proof. Let (X, T_1, T_2) be a pairwise fuzzy submaximal space in which every pairwise fuzzy G_{δ} set is pairwise fuzzy dense in (X, T_1, T_2) . Let λ be a pairwise fuzzy residual set in (X, T_1, T_2) . Since (X, T_1, T_2) is a pairwise fuzzy submaximal space, by proposition 4.24, λ is a pairwise fuzzy G_{δ} -set in (X, T_1, T_2) . By hypothesis, λ is a pairwise fuzzy dense set in (X, T_1, T_2) . That is, $cl_{T_1}cl_{T_2}(\lambda) = 1 = cl_{T_2}cl_{T_1}(\lambda)$. Then, by proposition 4.22, $cl_{T_1}(\lambda) = 1$ and $cl_{T_2}(\lambda) = 1$ in (X, T_1, T_2) . Hence, by theorem 3.2, (X, T_1, T_2) is a pairwise fuzzy Baire space.

Theorem 4.27 ([13]). If the fuzzy bitopological space (X, T_1, T_2) is a pairwise fuzzy nodec space, then (X, T_1, T_2) is not a pairwise fuzzy Baire space.

Proposition 4.28. If every pairwise fuzzy G_{δ} -set is a pairwise fuzzy dense set in a pairwise fuzzy strongly irresolvable and pairwise fuzzy nodec space (X, T_1, T_2) , then (X, T_1, T_2) is a pairwise fuzzy Baire space.

Proof. Let λ be a pairwise fuzzy G_{δ} -set in a pairwise fuzzy strongly irresolvable and pairwise fuzzy nodec space (X, T_1, T_2) such that $cl_{T_1}cl_{T_2}(\lambda) = 1 = cl_{T_2}cl_{T_1}(\lambda)$. By proposition 4.17, (X, T_1, T_2) is a pairwise fuzzy submaximal space. Again, by proposition 4.26, (X, T_1, T_2) is a pairwise fuzzy Baire space.

5. Conclusions

In this paper several characterizations of pairwise fuzzy Baire spaces are studied. The conditions underwhich a fuzzy bitopological space becomes a pairwise fuzzy Baire space are investigated. For this work, pairwise fuzzy strongly irresolvable space, pairwise fuzzy submaximal space, pairwise fuzzy P-space are considered.

References

- C. Alegre, J. Ferrer and V. Gregori, On pairwise Baire bitopological spaces, Publ. Math. Debrecen 55 (1999) 3–15.
- [2] C. Alegre, Valencia, J. Ferrer, Burjassot and V. Gregori, On a class of real normed lattices, Czech. Math. J. 48(123) (1998) 785–792.
- [3] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182-190.
- [5] B. P. Dvalishvili, On various classes of bitopological spaces, Georgian Math. J. 19(3) (2012) 449–472.
- [6] B. P. Dvalishvili, Bitopology and the Baire category theorem, Abstr. Tartu Conf. Problems of Pure Appl. Math. (1990) 90–93.
- [7] B. Garai and C. Bandyopadhyay, On pairwise hyperconnected spaces, Soochow J. Math. 27(4) (2001) 391–399.
- [8] A. Kandil and M. E. El-Shafee, Biproximities and fuzzy bitopological spaces, Simon Stevin 63(1) (1989) 45–66.
- [9] G. Thangaraj and G. Balasubramanian, On somewhat fuzzy continuous functions, J. Fuzzy Math. 11(2) (2003) 725-736.
- [10] G. Thangaraj, On pairwise fuzzy resolvable and fuzzy irresolvable spaces, Bull. Calcutta Math. Soc. 102(1) (2010) 59–68.
- [11] G. Thangaraj and S. Anjalmose, On fuzzy Baire spaces, J. Fuzzy Math. 21(3) (2013) 667–676.

- $[12]\,$ G. Thangaraj and S. Sethuraman, On pairwise fuzzy Baire Bitopological spaces, Gen. Math. Notes 20(2)~(2014)~12–21.
- [13] G. Thangaraj and S. Sethuraman, A note on pairwise fuzzy Baire spaces, Ann. Fuzzy Math. Inform. 8(5) (2014) 729–737.
- $[14]\,$ G. Thangaraj and V. Chandiran, On pairwise fuzzy Volterra spaces, Ann. Fuzzy Math. Inform. 7(6)~(2014)~1005-1012.
- [15] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

GANESAN THANGARAJ (g.thangaraj@rediffmail.com)

Department of Mathematics, Thiruvalluvar University, Vellore - 632 115, Tamil Nadu, India

Subbiah Sethuraman (koppan60@gmail.com)

Department of Mathematics, T. K. Govt. Arts College, Vriddhachalam - 606 001, Tamil Nadu, India