Sum of fuzzy ideals of Γ-near-rings

P. Narasimha Swamy, K. Vijay Kumar, T. Nagaiah, T. Srinivas

Received 21 August 2014; Accepted 14 October 2014
Abstract. In the present paper we introduce the concept on sum of fuzzy ideals of a Γ-near-ring and the sum of anti fuzzy ideals of a Γ-nearring.

2010 AMS Classification: 16Y30, 03E72
Keywords: Γ-near-ring, Sum of fuzzy ideals, Direct sum of fuzzy ideals.
Corresponding Author: T. Srinivas (thotasrinivas.srinivas@gmail.com)

1. Introduction

In 1965, Zadeh [10] has initiated the notion of fuzzy set. Then many researchers were applying it in various branches of mathematics (see [1, 2, 3, 6]). The algebraic system Γ-near-ring was introduced by Satyanarayana 8]. Later several mathematicians worked on this algebraic system. The notion of an anti fuzzy ideals of Γ-nearring was studied by Srinivas, etc., 9 . Kim and Jun 4 has studied the concept of an anti fuzzy ideals in near-rings. The sum of the fuzzy ideals of a near-ring was studied by Narasimha swamy [7. Now we are introducing the sum of fuzzy ideals of a Γ-near-ring and also the sum of anti fuzzy ideals of a Γ-near-ring. Also studied the concept of direct sum in both cases.

2. Preliminaries

A non-empty set N with two binary operations " + " and "." is said to be a left near-ring (see [5]) if it satisfies the following three conditions;
(i) $(N,+)$ is a group (not necessarily abelian),
(ii) (N, \cdot) is a semigroup,
(iii) $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in N$.

We will use the word "near-ring" to mean "left near-ring". We denote $x y$ instead of $x \cdot y$. Moreover, a near-ring N is said to be a zero-symmetric if $0 \cdot n=0$ for all $n \in N$, where 0 is the additive identity in N.

Definition 2.1. Let $(M,+)$ be a group (not necessarily abelian) and Γ be a non empty set. Then M is said to be a Γ-near-ring, if there exist a mapping $M \times \Gamma \times$ $M \longrightarrow M$ (the image of (x, α, y) is $x \alpha y)$ satisfying the following conditions;
(i) $x \alpha(y+z)=x \alpha y+x \alpha z$,
(ii) $(x \alpha y) \beta z=x \alpha(y \beta z)$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.2. A Γ-near-ring M is said to be a zero symmetric Γ-near-ring if $0 \alpha n=0$ for every $n \in M, \alpha \in \Gamma$, where 0 is the additive identity in M.
Definition 2.3. Let M be a Γ-near-ring. A normal subgroup $(I,+)$ of $(M,+)$ is called
(i) a right ideal, if $(x+i) \alpha y-x \alpha y \in I$ for all $x, y \in M, \alpha \in \Gamma, i \in I$,
(ii) a left ideal, if $x \alpha i \in I$ for all $x \in M, \alpha \in \Gamma, i \in I$,
(iii) an ideal, if it is both a left ideal and a right ideal.

A fuzzy set μ on a non-empty A is a mapping $\mu: A \rightarrow[0,1]$.
Definition 2.4. A fuzzy set μ of a Γ-near-ring M is called a fuzzy ideal of M if
(i) $\mu(x-y) \geq \operatorname{Min}\{\mu(x), \mu(y)\}$,
(ii) $\mu(y+x-y) \geq \mu(x)$,
(iii) $\mu((x+i) \alpha y-x \alpha y) \geq \mu(i)$ (or equivalently, $\mu(z \alpha y-x \alpha y) \geq \mu(z-x)$),
(iv) $\mu(x \alpha y) \geq \mu(y)$ for all $x, y, z, i \in M$ and $\alpha \in \Gamma$.

If μ satisfies (i), (ii) and (iii) then μ is called a fuzzy right ideal of M. If μ satisfies (i), (ii) and (iv) then μ is called a fuzzy left ideal of M.

Definition 2.5 (9). A fuzzy set μ of a Γ-near-ring M is called an anti fuzzy ideal of M, if
(i) $\mu(x-y) \leq \operatorname{Max}\{\mu(x), \mu(y)\}$,
(ii) $\mu(y+x-y) \leq \mu(x)$,
(iii) $\mu((x+i) \alpha y-x \alpha y) \leq \mu(i)$ (or equivalently, $\mu(z \alpha y-x \alpha y) \leq \mu(z-x))$,
(iv) $\mu(x \alpha y) \leq \mu(y)$ for all $x, y, z, i \in M$ and $\alpha \in \Gamma$.

If μ satisfies (i), (ii) and (iii) then μ is called an anti fuzzy right ideal of a Γ-nearring M. If μ satisfies (i), (ii) and (iv), then μ is called an anti fuzzy left ideal of a Γ-near-ring M.

Example $2.6([9])$. Let $M=\{0, a, b, c\}$ and $\Gamma=\{\alpha, \beta\}$. Define a binary operation " + " on M and a mapping $M \times \Gamma \times M \rightarrow M$ by the following tables;

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

α	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	0	0

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	a	a

Clearly $(M,+)$ is a group and (i) $x \gamma(y+z)=x \gamma y+x \gamma z$, for every $x, y, z \in M$, $\gamma \in \Gamma$, (ii) $(x \gamma y) \omega z=x \gamma(y \omega z)$ for every $x, y, z \in M$ and $\gamma, \omega \in \Gamma$. Thus M is a Γ-near-ring. Define a fuzzy set $\mu: M \rightarrow[0,1]$ by $\mu(0)<\mu(a)=\mu(b)=\mu(c)$.
The routine calculation shows that, μ is an anti fuzzy ideal of M.

3. Sum and direct sum of fuzzy ideals

Definition 3.1. Let μ and ν be two fuzzy ideals of a zero symmetric Γ-near-ring M. Then the sum $\mu+\nu$ is a fuzzy subset of M defined by

$$
(\mu+\nu)(x)= \begin{cases}\operatorname{Sup}(\min (\mu(y), \nu(z))) & : x=y+z \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 3.2. If μ and ν are two fuzzy ideals of a zero symmetric Γ-near-ring M, then $\mu+\nu$ is also a fuzzy ideal of M.
Proof. Let $x, y, u \in M$ and $\alpha \in \Gamma$.
(i) Put $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ where $x_{1}, x_{2}, y_{1}, y_{2} \in M$. Then

$$
\begin{aligned}
x-y & =x_{1}+x_{2}-\left(y_{1}+y_{2}\right) \\
& =x_{1}-y_{1}+y_{1}+x_{2}-\left(y_{1}+y_{2}\right) \\
(\mu+\nu)(x-y) & =(\mu+\nu)\left(x_{1}-y_{1}+y_{1}+x_{2}-y_{1}-y_{2}\right) \\
& =\bigvee\left(\mu\left(x_{1}-y_{1}\right) \wedge \nu\left(y_{1}+x_{2}-y_{1}-y_{2}\right)\right) \\
& \geq \bigvee\left[\left(\mu\left(x_{1}\right) \wedge \mu\left(y_{1}\right)\right) \wedge\left(\nu\left(y_{1}+x_{2}-y_{1}\right) \wedge \nu\left(y_{2}\right)\right)\right] \\
& \geq \bigvee\left[\left(\mu\left(x_{1}\right) \wedge \mu\left(y_{1}\right)\right) \wedge\left(\nu\left(x_{2}\right) \wedge \nu\left(y_{2}\right)\right)\right] \\
& \geq\left(\bigvee\left(\mu\left(x_{1}\right) \wedge \nu\left(x_{2}\right)\right)\right) \wedge\left(\bigvee\left(\mu\left(y_{1}\right) \wedge \nu\left(y_{2}\right)\right)\right) \\
& =(\mu+\nu)(x) \wedge(\mu+\nu)(y)
\end{aligned}
$$

(ii) Put $x=x_{1}+x_{2}$ where $x_{1}, x_{2} \in M$. Then

$$
\begin{aligned}
y+x-y & =y+x_{1}+x_{2}-y=y+x_{1}-y+y+x_{2}-y . \\
(\mu+\nu)(y+x-y) & =(\mu+\nu)\left(y+x_{1}-y+y+x_{2}-y\right) \\
& =\bigvee\left[\mu\left(y+x_{1}-y\right) \wedge \nu\left(y+x_{2}-y\right)\right] \\
& \geq \bigvee\left[\mu\left(x_{1}\right) \wedge \nu\left(x_{2}\right)\right] \\
& =(\mu+\nu)(x) .
\end{aligned}
$$

(iii) Let $u-x=t_{1}+t_{2} ; t_{1}, t_{2} \in M$. Which implies $u=t_{1}+t_{2}+x$. Then

$$
\begin{aligned}
u \alpha y-x \alpha y & =\left(t_{1}+t_{2}+x\right) \alpha y-x \alpha y \\
& =\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y+\left(t_{2}+x\right) \alpha y-x \alpha y . \\
(\mu+\nu)(u \alpha y-x \alpha y) & =(\mu+\nu)\left(\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y+\left(t_{2}+x\right) \alpha y-x \alpha y\right) \\
& =\bigvee\left[\mu\left(\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y\right) \wedge \nu\left(\left(t_{2}+x\right) \alpha y-x \alpha y\right)\right] \\
& \geq \bigvee\left[\mu\left(t_{1}\right) \wedge \nu\left(t_{2}\right)\right] \\
& =(\mu+\nu)(u-x) .
\end{aligned}
$$

(iv) Put $y=y_{1}+y_{2} ; y_{1}, y_{2} \in M$. Then

$$
\begin{aligned}
(\mu+\nu)(x \alpha y) & =(\mu+\nu)\left(x \alpha y_{1}+x \alpha y_{2}\right) \\
& =\bigvee\left[\mu\left(x \alpha y_{1}\right) \wedge \nu\left(x \alpha y_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \geq \bigvee\left[\mu\left(y_{1}\right) \wedge \nu\left(y_{2}\right)\right] \\
& =(\mu+\nu)(y)
\end{aligned}
$$

Hence $\mu+\nu$ is a fuzzy ideal of M.
Example 3.3. From example 2.6, M is a zero symmetric Γ-near-ring. Now define two fuzzy sets $\mu: M \rightarrow[0,1]$ and $\nu: M \rightarrow[0,1]$ by

$$
\mu(x)=\left\{\begin{array}{rr}
0.8 & : x=0 \\
0.5 & \text { : otherwise }
\end{array}\right.
$$

and

$$
\nu(x)=\left\{\begin{array}{lr}
1 & : x=0 \\
0.2 & : \text { otherwise }
\end{array}\right.
$$

The routine calculation shows that, μ and ν are fuzzy ideals of M. Now for any $y, z \in M$,

$$
\begin{aligned}
& (\mu+\nu)(0)=\bigvee_{0=y+z}\{\min (\mu(y), \nu(z))\} \\
& =\bigvee\{\min (\mu(0), \nu(0)), \min (\mu(a), \nu(a)), \min (\mu(b), \nu(b)), \min (\mu(c), \nu(c))\} \\
& =\bigvee\{0.8,0.2,0.2,0.2\}=0.8 \\
& (\mu+\nu)(a)=\bigvee_{a=y+z}\{\min (\mu(y), \nu(z))\} \\
& =\bigvee\{\min (\mu(0), \nu(a)), \min (\mu(a), \nu(0)), \min (\mu(b), \nu(c)), \min (\mu(c), \nu(b))\} \\
& =\bigvee\{0.2,0.5,0.2,0.2\}=0.5 \\
& (\mu+\nu)(b)=\bigvee_{b=y+z}\{\min (\mu(y), \nu(z))\} \\
& =\bigvee\{\min (\mu(0), \nu(b)), \min (\mu(a), \nu(c)), \min (\mu(b), \nu(0)), \min (\mu(c), \nu(a))\} \\
& =\bigvee\{0.2,0.2,0.5,0.2\}=0.5, \\
& (\mu+\nu)(c)=\bigvee \bigvee_{c=y+z}\{\min (\mu(y), \nu(z))\} \\
& =\bigvee\{\min (\mu(0), \nu(c)), \min (\mu(a), \nu(b)), \min (\mu(b), \nu(a)), \min (\mu(c), \nu(0))\} \\
& =\bigvee\{0.2,0.2,0.2,0.5\}=0.5 .
\end{aligned}
$$

Therefore

$$
(\mu+\nu)(x)=\left\{\begin{array}{rr}
0.8 & : x=0 \\
0.5 & : \text { otherwise }
\end{array}\right.
$$

The routine calculation shows that, $\mu+\nu$ is a fuzzy ideal of M.
Now we extend the above theorem 3.2 to the sum of finite number of fuzzy ideals of a zero symmetric Γ-near-ring M.

Definition 3.4. Let M be a zero symmetric Γ-near-ring and let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the fuzzy ideals of a Γ-near-ring M. For any $x \in M$, put
$S(x)=\left\{\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x_{2}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}\right): x=x_{1}+x_{2}+\ldots+x_{n}, x_{i} \in M, i=1\right.$ to $\left.n\right\}$. Define $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(x)=\operatorname{SupS}(x)=\operatorname{Sup}\left\{\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x_{2}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}\right): x=\right.$ $\left.x_{1}+x_{2}+\ldots+x_{n}\right\}$.
Remark $3.5([7])$. Let $x=x_{1}+x_{2}+\ldots+x_{n}$. Consider a transposition of the indices $(1, k), k>1$. Then $x=x_{1}+x_{2}+\ldots+x_{k-1}+x_{k}+x_{k+1}+\ldots+x_{n}=y+x_{k}-y+x_{1}+x_{2}+$ $\ldots+x_{k-1}+x_{k+1}+\ldots+x_{n}\left(\right.$ where $\left.y=x_{1}+x_{2}+\ldots+x_{k-1}\right)=\left(y+x_{k}-y\right)+z-z+x_{1}+z+$ $x_{k+1}+\ldots+x_{n}\left(\right.$ where $\left.z=x_{2}+\ldots+x_{k-1}\right)=x_{k}^{\prime}+z+x_{1}^{\prime}+x_{k+1}+\ldots+x_{n}\left(\right.$ where $x_{k}^{\prime}=$ $\left.y+x_{k}-y, x_{1}^{\prime}=-z+x_{1}+z\right)=x_{k}^{\prime}+x_{2}+\ldots+x_{k-1}+x_{1}^{\prime}+x_{k+1}+\ldots+x_{n}$. Thus $\mu_{1}\left(x_{k}^{\prime}\right) \wedge \mu_{2}\left(x_{2}\right) \wedge \ldots \wedge \mu_{k-1}\left(x_{k-1}\right) \wedge \mu_{k}\left(x_{1}^{\prime}\right) \wedge \mu_{k+1}\left(x_{k+1}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}\right)=$ $\mu_{1}\left(x_{k}\right) \wedge \mu_{2}\left(x_{2}\right) \wedge \ldots \wedge \mu_{k-1}\left(x_{k-1}\right) \wedge \mu_{K}\left(x_{1}\right) \wedge \mu_{k+1}\left(x_{k+1}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}\right) \in S(x)$. This is true for every transposition (i, j) of the indices. Since every permutation is a product of transpositions, then for any permutation $\left(\begin{array}{cccccc}1 & 2 & . & . & . & n \\ i_{1} & i_{2} & . & . & . & i_{n}\end{array}\right)$ we have $\mu_{1}\left(x_{i_{1}}\right) \wedge \mu_{2}\left(x_{i_{2}}\right) \wedge \ldots \wedge \mu_{n}\left(x_{i_{n}}\right)$ belongs to $S(x)$ for $x=x_{1}+x_{2}+\ldots+x_{n}$. Hence $\mu_{1}+\mu_{2}+\ldots+\mu_{n}=\mu_{i_{1}}+\mu_{i_{2}}+\ldots+\mu_{i_{n}}$.
Theorem 3.6. Let M be a zero symmetric Γ-near-ring. If $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the fuzzy ideals of M, then $\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ is also a fuzzy ideal of M.
Proof. Put $\mu=\mu_{1}+\mu_{2}+\ldots+\mu_{n}$.
(i) Let $x=x_{1}+x_{2}+\ldots+x_{n}, y=y_{1}+y_{2}+\ldots+y_{n} ; x_{i}, y_{i} \in M, i=1,2, \ldots, n$.Then $x-y=x_{1}+x_{2}+\ldots+x_{n}-y_{1}-y_{2}-\ldots-y_{n}$. This can be expressed as $x-y=$ $x_{1}^{\prime}-y_{1}^{\prime}+x_{2}^{\prime}-y_{2}^{\prime}+\ldots+x_{n}^{\prime}-y_{n}^{\prime}$, where x_{i}^{\prime} is a conjugate of x_{i} and y_{i}^{\prime} is a conjugate of y_{i}. Therefore $x-y=\left(x_{1}^{\prime}-y_{1}^{\prime}\right)+\left(x_{2}^{\prime}-y_{2}^{\prime}\right)+\ldots+\left(x_{n}^{\prime}-y_{n}^{\prime}\right)$. Which implies $\mu(x-y)=$ $\mu\left(\left(x_{1}^{\prime}-y_{1}^{\prime}\right)+\left(x_{2}^{\prime}-y_{2}^{\prime}\right)+\ldots+\left(x_{n}^{\prime}-y_{n}^{\prime}\right)\right)=\bigvee\left[\mu_{1}\left(x_{1}^{\prime}-y_{1}^{\prime}\right) \wedge \mu_{2}\left(x_{2}^{\prime}-y_{2}^{\prime}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}^{\prime}-y_{n}^{\prime}\right)\right] \geq$ $\bigvee\left[\mu_{1}\left(x_{1}^{\prime}\right) \wedge \mu_{1}\left(y_{1}^{\prime}\right) \wedge \mu_{2}\left(x_{2}^{\prime}\right) \wedge \mu_{2}\left(y_{2}^{\prime}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}^{\prime}\right) \wedge \mu_{n}\left(y_{n}^{\prime}\right)\right]=\left[\bigvee\left(\mu_{1}\left(x_{1}^{\prime}\right) \wedge \mu_{2}\left(x_{2}^{\prime}\right) \wedge\right.\right.$ $\left.\left.\ldots \wedge \mu_{n}\left(x_{n}^{\prime}\right)\right)\right] \wedge\left[\bigvee\left(\mu_{1}\left(y_{1}^{\prime}\right) \wedge \mu_{2}\left(y_{2}^{\prime}\right) \wedge \ldots \wedge \mu_{n}\left(y_{n}^{\prime}\right)\right)\right]=\operatorname{Sup} S(x) \wedge S u p S(y)=\mu(x) \wedge \mu(y)$.
(ii) Let $x, y \in M$ and $x=x_{1}+x_{2}+\ldots+x_{n} ; x_{i} \in M, i=1,2, \ldots, n$. Then $y+x-y=y+x_{1}+x_{2}+\ldots+x_{n}-y=y+x_{1}-y+y+x_{2}-y+y+x_{3}-y+\ldots+y+x_{n}-y$. This implies that $\mu(y+x-y)=\mu\left(y+x_{1}-y+y+x_{2}-y+\ldots+y+x_{n}-y\right)=$ $\bigvee\left[\mu_{1}\left(y+x_{1}-y\right) \wedge \mu_{2}\left(y+x_{2}-y\right) \wedge \ldots \wedge \mu_{n}\left(y+x_{n}-y\right)\right] \geq \bigvee\left[\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x_{2}\right) \wedge \ldots \wedge \mu_{n}\left(x_{n}\right)\right] .=$ SupS $(x)=\mu(x)$.
(iii) Let $x, y, u \in M$ and $\alpha \in \Gamma$. And let $u-x=t_{1}+t_{2}+\ldots+t_{n} ; t_{i} \in M, i=$ $1,2, \ldots, n$. Which implies $u=t_{1}+t_{2}+\ldots+t_{n}+x$. And so $u \alpha y-x \alpha y=\left(t_{1}+t_{2}+\ldots+\right.$ $\left.t_{n}+x\right) \alpha y-x \alpha y=\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y+\left(t_{2}+t_{3}+\ldots+t_{n}+\right.$ $x) \alpha y-\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y+\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y-\ldots+\left(t_{n}+x\right) \alpha y-x \alpha y$. Now $\mu(u \alpha y-x \alpha y)=\mu\left\{\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y+\left(t_{2}+t_{3}+\ldots+\right.\right.$ $\left.\left.t_{n}+x\right) \alpha y-\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y+\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y-\ldots+\left(t_{n}+x\right) \alpha y-x \alpha y\right\}=$ $\bigvee\left\{\mu_{1}\left(\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y\right) \wedge \mu_{2}\left(\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y-\right.\right.$ $\left.\left.\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y\right) \wedge \ldots \wedge \mu_{n}\left(\left(t_{n}+x\right) \alpha y-x \alpha y\right)\right\} \geq \bigvee\left(\mu_{1}\left(t_{1}\right) \wedge \mu_{2}\left(t_{2}\right) \wedge \ldots \wedge \mu_{n}\left(t_{n}\right)\right)=$ SupS $(u-x)=\mu(u-x)$.
(iv) Let $x, y \in M$ and $\alpha \in \Gamma$. Put $y=y_{1}+y_{2}+\ldots+y_{n} ; y_{i} \in M, i=1,2, \ldots, n$. Then $\mu(x \alpha y)=\mu\left(x \alpha\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right)=\mu\left(x \alpha y_{1}+x \alpha y_{2}+\ldots+x \alpha y_{n}\right)=\bigvee\left(\mu_{1}\left(x \alpha y_{1}\right) \wedge\right.$ $\left.\mu_{2}\left(x \alpha y_{2}\right) \wedge \ldots \wedge \mu_{n}\left(x \alpha y_{n}\right)\right) \geq \bigvee\left(\mu_{1}\left(y_{1}\right) \wedge \mu_{2}\left(y_{2}\right) \wedge \ldots \wedge \mu_{n}\left(y_{n}\right)\right)=\operatorname{Sup} S(y)=\mu(y)$. Hence μ is a fuzzy ideal of M.

Definition 3.7. Let M be a zero symmetric Γ-near-ring and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the fuzzy ideals of M. Then the sum $\mu=\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ is said to be direct, if $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{i-1}+\mu_{i+1}+\ldots+\mu_{n}\right) \wedge \mu_{i}=0$.
Theorem 3.8. Let $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$ be the direct sum of Γ-near-rings $M_{1}, M_{2}, \ldots, M_{n}$ with left or right identity $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and μ be a fuzzy ideal of M. Then there exists fuzzy ideals $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of M such that $\mu=\mu_{1} \oplus \mu_{2} \oplus \ldots \oplus \mu_{n}$.
Proof. Let $x_{i}=\left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right)$ and $e_{i}=\left(0,0, \ldots, 0, e_{i}, 0, \ldots, 0\right), \alpha \in \Gamma$. Then for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}$, we have $\mu(x)=\mu\left(x_{1}+x_{2}+\ldots+x_{n}\right) \geq$ $\mu\left(x_{1}\right) \wedge \mu\left(x_{2}\right) \wedge \ldots \wedge \mu\left(x_{n}\right)$. But $\mu\left(x_{i}\right)=\mu\left(e_{i} \alpha x\right) \geq \mu(x)$, for $i=1,2, \ldots, n$. That is $\mu\left(x_{1}\right) \wedge \mu\left(x_{2}\right) \wedge \ldots \wedge \mu\left(x_{n}\right) \geq \mu(x)$ Thus $\mu(x)=\mu\left(x_{1}\right) \wedge \mu\left(x_{2}\right) \wedge \ldots \wedge \mu\left(x_{n}\right)$. Define μ_{i} on M by

$$
\mu_{i}(x)=\left\{\begin{array}{lr}
\mu(x) & : x \in M_{i} \\
0 & : \text { otherwise } .
\end{array}\right.
$$

Hence $\mu_{1} \oplus \mu_{2} \oplus \ldots \oplus \mu_{n}=\mu$.

4. Sum, Direct sum of anti fuzzy ideals

Definition 4.1. Let μ and ν be two anti fuzzy ideals of a zero symmetric Γ-near-ring M. Then the sum $\mu+\nu$ is a fuzzy set of M defined by

$$
(\mu+\nu)(x)= \begin{cases}\operatorname{Inf}(\max (\mu(y), \nu(z))) & : x=y+z \\ 0 & : \text { otherwise } .\end{cases}
$$

Theorem 4.2. If μ and ν are two anti fuzzy ideals of a zero symmetric Γ-near-ring M, then $\mu+\nu$ is also an anti fuzzy ideal of M.
Proof. Let $x, y, u \in M$ and $\alpha \in \Gamma$.
(i) Put $x=x_{1}+x_{2}, y=y_{1}+y_{2} ; x_{1}, x_{2}, y_{1}, y_{2} \in M$. Then

$$
\begin{aligned}
x-y & =x_{1}+x_{2}-\left(y_{1}+y_{2}\right) \\
& =x_{1}-y_{1}+y_{1}+x_{2}-\left(y_{1}+y_{2}\right) . \\
(\mu+\nu)(x-y) & =(\mu+\nu)\left(x_{1}-y_{1}+y_{1}+x_{2}-y_{1}-y_{2}\right) \\
& =\bigwedge\left(\mu\left(x_{1}-y_{1}\right) \vee \nu\left(y_{1}+x_{2}-y_{1}-y_{2}\right)\right) \\
& \leq \bigwedge\left[\left(\mu\left(x_{1}\right) \vee \mu\left(y_{1}\right)\right) \vee\left(\nu\left(y_{1}+x_{2}-y_{1}\right) \vee \nu\left(y_{2}\right)\right)\right] \\
& \leq \bigwedge\left[\left(\mu\left(x_{1}\right) \vee \mu\left(y_{1}\right)\right) \vee\left(\nu\left(x_{2}\right) \vee \nu\left(y_{2}\right)\right)\right] \\
& =\left[\bigwedge\left(\mu\left(x_{1}\right) \vee \nu\left(x_{2}\right)\right)\right] \vee\left[\bigwedge\left(\mu\left(y_{1}\right) \vee \nu\left(y_{2}\right)\right)\right] \\
& =(\mu+\nu)(x) \vee(\mu+\nu)(y) .
\end{aligned}
$$

(ii) Put $x=x_{1}+x_{2} ; x_{1}, x_{2} \in M$. Then

$$
\begin{aligned}
y+x-y & =y+x_{1}+x_{2}-y=y+x_{1}-y+y+x_{2}-y . \\
(\mu+\nu)(y+x-y) & =(\mu+\nu)\left(y+x_{1}-y+y+x_{2}-y\right) \\
& =\bigwedge\left[\mu\left(y+x_{1}-y\right) \vee \nu\left(y+x_{2}-y\right)\right] \\
& \leq \bigwedge\left[\mu\left(x_{1}\right) \vee \nu\left(x_{2}\right)\right] \\
& =(\mu+\nu)(x) .
\end{aligned}
$$

(iii) Let $u-x=t_{1}+t_{2} ; t_{1}, t_{2} \in M$. Which implies $u=t_{1}+t_{2}+x$. Then

$$
\begin{aligned}
u \alpha y-x \alpha y & =\left(t_{1}+t_{2}+x\right) \alpha y-x \alpha y \\
& =\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y+\left(t_{2}+x\right) \alpha y-x \alpha y . \\
(\mu+\nu)(u \alpha y-x \alpha y) & =(\mu+\nu)\left(\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y+\left(t_{2}+x\right) \alpha y-x \alpha y\right) \\
& =\bigwedge\left[\mu\left(\left(t_{1}+t_{2}+x\right) \alpha y-\left(t_{2}+x\right) \alpha y\right) \vee \nu\left(\left(t_{2}+x\right) \alpha y-x \alpha y\right)\right] \\
& \leq \bigwedge\left\{\mu\left(t_{1}\right) \vee \nu\left(t_{2}\right)\right\} \\
& =(\mu+\nu)(u-x) .
\end{aligned}
$$

(iv) Put $y=y_{1}+y_{2}$. Then

$$
\begin{aligned}
(\mu+\nu)(x \alpha y) & =(\mu+\nu)\left(x \alpha y_{1}+x \alpha y_{2}\right) \\
& =\bigwedge\left[\mu\left(x \alpha y_{1}\right) \vee \nu\left(x \alpha y_{2}\right)\right] \\
& \leq \bigwedge\left[\mu\left(y_{1}\right) \vee \nu\left(y_{2}\right)\right] \\
& =(\mu+\nu)(y)
\end{aligned}
$$

Hence $\mu+\nu$ is an anti fuzzy ideal of M.
Example 4.3. Let $M=\{0, a, b, c\}$ and $\Gamma=\{\alpha, \beta\}$ be a non-empty set. Define a binary operation " + " on M and a mapping $M \times \Gamma \times M \rightarrow M$ by the following tables;

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

α	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	0	0

β	0	a	b	c
0	0	0	0	0
a	0	0	0	0
b	0	0	0	0
c	0	0	a	a

Clearly, $(M,+)$ is a group and
(i) $x \gamma(y+z)=x \gamma y+x \gamma z$, for every $x, y, z \in M, \gamma \in \Gamma$,
(ii) $(x \gamma y) \omega z=x \gamma(y \omega z)$ for every $x, y, z \in M$ and $\gamma, \omega \in \Gamma$.

And also $0 \alpha n=0$ for all $\alpha \in \Gamma, n \in M ; 0$ is the additive identity in M. Thus M is a zero symmetric Γ-near-ring. Define two fuzzy sets μ and ν on M as follows; $\mu: M \rightarrow[0,1]$ by

$$
\mu(x)=\left\{\begin{array}{rr}
0.5 & : x=0 \\
0.8 & \text { : otherwise }
\end{array}\right.
$$

and $\nu: M \rightarrow[0,1]$ by

$$
\nu(x)=\left\{\begin{array}{rr}
0.2 & : x=0 \\
0.9 & \text { : otherwise }
\end{array}\right.
$$

Then the routine calculation shows that μ and ν are anti fuzzy ideals of M. Now

$$
\begin{aligned}
& (\mu+\nu)(0)=\bigwedge_{0=y+z}\{\max (\mu(y), \nu(z))\} \\
& =\bigwedge\{\max (\mu(0), \nu(0)), \max (\mu(a), \nu(a)), \max (\mu(b), \nu(b)), \max (\mu(c), \nu(c))\} \\
& =\bigwedge\{0.5,0.9,0.9,0.9\}=0.5
\end{aligned}
$$

$$
\begin{aligned}
& (\mu+\nu)(a)=\bigwedge_{a=y+z}\{\max (\mu(y), \nu(z))\} \\
& =\bigwedge\{\max (\mu(0), \nu(a)), \max (\mu(a), \nu(0)), \max (\mu(b), \nu(c)), \max (\mu(c), \nu(b))\} \\
& =\bigwedge\{0.9,0.8,0.9,0.9\}=0.8 \\
& (\mu+\nu)(b)=\bigwedge_{b=y+z}\{\max (\mu(y), \nu(z))\} \\
& =\bigwedge\{\max (\mu(0), \nu(b)), \max (\mu(a), \nu(c)), \max (\mu(b), \nu(0)), \max (\mu(c), \nu(a))\} \\
& =\bigwedge\{0.9,0.9,0.8,0.9\}=0.8 \\
& (\mu+\nu)(c)=\bigwedge_{c=y+z}\{\min (\mu(y), \nu(z))\} \\
& =\bigwedge\{\max (\mu(0), \nu(c)), \max (\mu(a), \nu(b)), \max (\mu(b), \nu(a)), \max (\mu(c), \nu(0))\} \\
& =\bigwedge\{0.9,0.9,0.9,0.8\}=0.8
\end{aligned}
$$

Therefore,

$$
(\mu+\nu)(x)=\left\{\begin{array}{rr}
0.5 & : x=0 \\
0.8 & : \text { otherwise }
\end{array}\right.
$$

We can easily verify that, $\mu+\nu$ is an anti fuzzy ideal of M.
Now we extend the theorem 4.2 to the sum of finite number of anti fuzzy ideals of a zero symmetric Γ-near-ring M.
Definition 4.4. Let M be a zero symmetric Γ-near-ring and let $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the anti fuzzy ideals of a Γ-near-ring M. For any $x \in M$ put $I(x)=\left\{\mu_{1}\left(x_{1}\right) \vee \mu_{2}\left(x_{2}\right) \vee\right.$ $\ldots \mu_{n}\left(x_{n}\right): x=x_{1}+x_{2}+\ldots+x_{n}, x_{i} \in M, i=1$ to $\left.n\right\}$. Define $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{n}\right)(x)=$ $\operatorname{Inf} I(x)=\operatorname{Inf}\left\{\mu_{1}\left(x_{1}\right) \vee \mu_{2}\left(x_{2}\right) \vee \ldots \vee \mu_{n}\left(x_{n}\right): x=x_{1}+x_{2}+\ldots+x_{n}\right\}$.
Remark 4.5. Let $x=x_{1}+x_{2}+\ldots+x_{n}$. Consider a transposition of the indices $(1, k), k>1$. Then $x=x_{1}+x_{2}+\ldots+x_{k-1}+x_{k}+x_{k+1}+\ldots+x_{n}=y+x_{k}-y+x_{1}+x_{2}+$ $\ldots+x_{k-1}+x_{k+1}+\ldots+x_{n}\left(\right.$ where $\left.y=x_{1}+x_{2}+\ldots+x_{k-1}\right)=\left(y+x_{k}-y\right)+z-z+x_{1}+z+$ $x_{k+1}+\ldots+x_{n}\left(\right.$ where $\left.z=x_{2}+\ldots+x_{k-1}\right)=x_{k}^{\prime}+z+x_{1}^{\prime}+x_{k+1}+\ldots+x_{n}\left(\right.$ where $x_{k}^{\prime}=$ $\left.y+x_{k}-y, x_{1}^{\prime}=-z+x_{1}+z\right)=x_{k}^{\prime}+x_{2}+\ldots+x_{k-1}+x_{1}^{\prime}+x_{k+1}+\ldots+x_{n}$. Thus $\mu_{1}\left(x_{k}^{\prime}\right) \vee \mu_{2}\left(x_{2}\right) \vee \ldots \vee \mu_{k-1}\left(x_{k-1}\right) \vee \mu_{k}\left(x_{1}^{\prime}\right) \vee \mu_{k+1}\left(x_{k+1}\right) \vee \ldots \vee \mu_{n}\left(x_{n}\right)=$ $\mu_{1}\left(x_{k}\right) \vee \mu_{2}\left(x_{2}\right) \vee \ldots \vee \mu_{k-1}\left(x_{k-1}\right) \vee \mu_{K}\left(x_{1}\right) \vee \mu_{k+1}\left(x_{k+1}\right) \vee \ldots . . \vee \mu_{n}\left(x_{n}\right) \in I(x)$. This is true for every transposition (i, j) of the indices. As every permutation is a product of transpositions, then for any permutation $\left(\begin{array}{ccccc}1 & 2 & . & . & . \\ i_{1} & i_{2} & . & . & . \\ i_{n}\end{array}\right)$ we have $\mu_{1}\left(x_{i_{1}}\right) \vee \mu_{2}\left(x_{i_{2}}\right) \vee \ldots \vee \mu_{n}\left(x_{i_{n}}\right)$ belongs to $I(x)$ for any $x=x_{1}+x_{2}+\ldots+x_{n}$. Hence $\mu_{1}+\mu_{2}+\ldots+\mu_{n}=\mu_{i_{1}}+\mu_{i_{2}}+\ldots+\mu_{i_{n}}$.
Theorem 4.6. Let M be a zero symmetric Γ-near-ring. If $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ are the anti fuzzy ideals of M, then $\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ is an anti fuzzy ideal of M.
Proof. Put $\mu=\mu_{1}+\mu_{2}+\ldots+\mu_{n}$.
(i) Let $x=x_{1}+x_{2}+\ldots+x_{n}, y=y_{1}+y_{2}+\ldots+y_{n} ; x_{i}, y_{i} \in M, i=1,2, \ldots, n$.Then $x-y=x_{1}+x_{2}+\ldots+x_{n}-y_{1}-y_{2}-\ldots-y_{n}$. This can be expressed as $x-y=$ 672
$x_{1}^{\prime}-y_{1}^{\prime}+x_{2}^{\prime}-y_{2}^{\prime}+\ldots+x_{n}^{\prime}-y_{n}^{\prime}$, where x_{i}^{\prime} is a conjugate of x_{i} and y_{i}^{\prime} is a conjugate of y_{i}. Therefore $x-y=\left(x_{1}^{\prime}-y_{1}^{\prime}\right)+\left(x_{2}^{\prime}-y_{2}^{\prime}\right)+\ldots+\left(x_{n}^{\prime}-y_{n}^{\prime}\right)$. Which implies $\mu(x-y)=$ $\mu\left(\left(x_{1}^{\prime}-y_{1}^{\prime}\right)+\left(x_{2}^{\prime}-y_{2}^{\prime}\right)+\ldots+\left(x_{n}^{\prime}-y_{n}^{\prime}\right)\right)=\bigwedge\left[\mu_{1}\left(x_{1}^{\prime}-y_{1}^{\prime}\right) \vee \mu_{2}\left(x_{2}^{\prime}-y_{2}^{\prime}\right) \vee \ldots \vee \mu_{n}\left(x_{n}^{\prime}-y_{n}^{\prime}\right)\right] \leq$ $\bigwedge\left[\mu_{1}\left(x_{1}^{\prime}\right) \vee \mu_{1}\left(y_{1}^{\prime}\right) \vee \mu_{2}\left(x_{2}^{\prime}\right) \vee \mu_{2}\left(y_{2}^{\prime}\right) \vee \ldots \vee \mu_{n}\left(x_{n}^{\prime}\right) \vee \mu_{n}\left(y_{n}^{\prime}\right)\right]=\left[\bigwedge\left(\mu_{1}\left(x_{1}^{\prime}\right) \vee \mu_{2}\left(x_{2}^{\prime}\right) \vee\right.\right.$ $\left.\left.\ldots \vee \mu_{n}\left(x_{n}^{\prime}\right)\right)\right] \vee\left[\bigwedge\left(\mu_{1}\left(y_{1}^{\prime}\right) \vee \mu_{2}\left(y_{2}^{\prime}\right) \vee \ldots \vee \mu_{n}\left(y_{n}^{\prime}\right)\right)\right]=\operatorname{InfI}(x) \vee \operatorname{InfI}(y)=\mu(x) \vee \mu(y)$.
(ii) Let $x, y \in M$ and $x=x_{1}+x_{2}+\ldots+x_{n} ; x_{i} \in M, i=1,2, \ldots, n$. Then $y+x-y=y+x_{1}+x_{2}+\ldots+x_{n}-y=y+x_{1}-y+y+x_{2}-y+y+x_{3}-y+\ldots+y+x_{n}-y$. Which implies $\mu(y+x-y)=\mu\left(y+x_{1}-y+y+x_{2}-y+\ldots+y+x_{n}-y\right)=$ $\bigwedge\left[\mu_{1}\left(y+x_{1}-y\right) \vee \mu_{2}\left(y+x_{2}-y\right) \vee \ldots \vee \mu_{n}\left(y+x_{n}-y\right)\right] \leq \bigwedge\left[\mu_{1}\left(x_{1}\right) \vee \mu_{2}\left(x_{2}\right) \vee \ldots \vee \mu_{n}\left(x_{n}\right)\right] .=$ $\operatorname{InfI}(x)=\mu(x)$.
(iii) Let $x, y, u \in M$ and $\alpha \in \Gamma$. And let $u-x=t_{1}+t_{2}+\ldots+t_{n} ; t_{i} \in M, i=$ $1,2, \ldots, n$. Which implies $u=t_{1}+t_{2}+\ldots+t_{n}+x$. And so $u \alpha y-x \alpha y=\left(t_{1}+t_{2}+\ldots+\right.$ $\left.t_{n}+x\right) \alpha y-x \alpha y=\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y+\left(t_{2}+t_{3}+\ldots+t_{n}+\right.$ $x) \alpha y-\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y+\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y-\ldots+\left(t_{n}+x\right) \alpha y-x \alpha y$. Thus $\mu(u \alpha y-x \alpha y)=\mu\left\{\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y+\left(t_{2}+t_{3}+\ldots+\right.\right.$ $\left.\left.t_{n}+x\right) \alpha y-\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y+\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y-\ldots+\left(t_{n}+x\right) \alpha y-x \alpha y\right\}=$ $\bigwedge\left\{\mu_{1}\left(\left(t_{1}+t_{2}+\ldots+t_{n}+x\right) \alpha y-\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y\right) \vee \mu_{2}\left(\left(t_{2}+t_{3}+\ldots+t_{n}+x\right) \alpha y-\right.\right.$ $\left.\left.\left(t_{3}+t_{4}+\ldots+t_{n}+x\right) \alpha y\right) \vee \ldots \vee \mu_{n}\left(\left(t_{n}+x\right) \alpha y-x \alpha y\right)\right\} \leq \bigwedge\left(\mu_{1}\left(t_{1}\right) \vee \mu_{2}\left(t_{2}\right) \vee \ldots \vee \mu_{n}\left(t_{n}\right)\right)=$ $\operatorname{InfI}(u-x)=\mu(u-x)$.
(iv) Let $x, y \in M$ and $\alpha \in \Gamma$. Put $y=y_{1}+y_{2}+\ldots+y_{n} ; y_{i} \in M, i=1,2, \ldots, n$. Then $\mu(x \alpha y)=\mu\left(x \alpha\left(y_{1}+y_{2}+\ldots+y_{n}\right)\right)=\mu\left(x \alpha y_{1}+x \alpha y_{2}+\ldots+x \alpha y_{n}\right)=\bigwedge\left(\mu_{1}\left(x \alpha y_{1}\right) \vee\right.$ $\left.\mu_{2}\left(x \alpha y_{2}\right) \vee \ldots \vee \mu_{n}\left(x \alpha y_{n}\right)\right) \leq \bigwedge\left(\mu_{1}\left(y_{1}\right) \vee \mu_{2}\left(y_{2}\right) \vee \ldots \vee \mu_{n}\left(y_{n}\right)\right)=\operatorname{Inf} I(y)=\mu(y)$. Hence $\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ is an anti fuzzy ideal of M.

Definition 4.7. Let M be a zero symmetric Γ-near-ring and $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ be the anti fuzzy ideals of M. Then a sum $\mu=\mu_{1}+\mu_{2}+\ldots+\mu_{n}$ is said to be direct, if $\left(\mu_{1}+\mu_{2}+\ldots+\mu_{i-1}+\mu_{i+1}+\ldots+\mu_{n}\right) \vee \mu_{i}=0$.
Theorem 4.8. Let $M=M_{1} \oplus M_{2} \oplus \ldots \oplus M_{n}$ be the direct sum of Γ-near-rings $M_{1}, M_{2}, \ldots, M_{n}$ with left or right identity $e=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and μ be an anti fuzzy ideal of M. Then there exists anti fuzzy ideals $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of M such that $\mu=$ $\mu_{1} \oplus \mu_{2} \oplus \ldots \oplus \mu_{n}$.
Proof. Let $x_{i}=\left(0,0, \ldots, 0, x_{i}, 0, \ldots, 0\right)$ and $e_{i}=\left(0,0, \ldots, 0, e_{i}, 0, \ldots, 0\right), \alpha \in \Gamma$.
Then for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+x_{2}+\ldots+x_{n}$, we have $\mu(x)=\mu\left(x_{1}+x_{2}+\ldots+x_{n}\right) \leq$ $\mu\left(x_{1}\right) \vee \mu\left(x_{2}\right) \vee \ldots \vee \mu\left(x_{n}\right)$. But $\mu\left(x_{i}\right)=\mu\left(e_{i} \alpha x\right) \leq \mu(x)$, for $i=1,2, \ldots, n$. That is $\mu\left(x_{1}\right) \vee \mu\left(x_{2}\right) \vee \ldots \vee \mu\left(x_{n}\right) \leq \mu(x)$. Thus $\mu(x)=\mu\left(x_{1}\right) \vee \mu\left(x_{2}\right) \vee \ldots \vee \mu\left(x_{n}\right)$. Define μ_{i} on M by

$$
\mu_{i}(x)=\left\{\begin{array}{lr}
\mu(x) & : x \in M_{i} \\
0 & : \text { otherwise } .
\end{array}\right.
$$

Hence $\mu_{1} \oplus \mu_{2} \oplus \ldots \oplus \mu_{n}=\mu$.

Acknowledgements. The authors wish to thank the anonymous reviewers for their comments and valuable suggestions.

References

[1] R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and Systems 44 (1990) 121-124.
[2] S. M. Hong, Y. B. Jun and H. S. Kim, Fuzzy ideals in near-rings, Bull. Korean Math. Soc. 35(3) (1998) 455-464.
[3] Y. B. Jun, M. Sapanci and M. A. Ozturk, Fuzzy ideals in Gamma near-rings, Turkish J. Math. 22(4) (1998) 449-459.
[4] K. H. Kim, Y. B. Jun and Y. H. Yon, On anti fuzzy ideals in near rings, Iran. J. Fuzzy Syst. 2(2) (2005) 71-80,
[5] J. D. P. Meldrum, Near-ring and their links with groups, Research Notes in Mathematics, 134. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[6] J. N. Mordeson and D. S. Malik, Fuzzy commutative algebra, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
[7] P. Narasimha Swamy, A note on fuzzy ideals in near-rings, International Journal of Mathematical Sciences and Engineering Applications 4(4) (2010) 423-435.
[8] Bh.Satyanarayana, Contributions to near-ring theory, Doctoral thesis, Nagarjuna University (1984).
[9] T. Srinivas, T. Nagaiah and P. Narasimha Swamy, Anti fuzzy ideals of Γ-near-rings, Ann. Fuzzy Math. Inform. 3(2) (2012) 255-266.
[10] L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965) 338-353.
P. NARASIMHA SWAMY (swamy. pasham@gmail.com)

Department of Mathematics, GITAM University, Hyderabad Campus- 502329, Telangana State, India
K.VIJAY KUMMAR (vijay.kntm@gmail.com)

Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana State, India
T. NAGAIAH (nagaiahphd4@gmail.com)

Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana State, India
T. SRINIVAS (thotasrinivas.srinivas@gmail.com)

Department of Mathematics, Kakatiya University, Warangal- 506 009, Telangana State, India

