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1. Introduction

Ramadan [22] defined fuzzy topology on a fuzzy set in Šostak’s sense [29] un-
der the name of “smooth fuzzy topological spaces”. Many works on smooth fuzzy
topological spaces are going on. For example, we refer to [1, 2, 5, 6, 27, 28]. The
fuzzy proper function and its continuity on Chang fuzzy topological spaces are in-
troduced by Chakraborty and Ahsanullah [4]. Chaudhuri and Das [7] proved the
equivalent conditions for continuity of fuzzy proper function in the context of Chang
fuzzy topology. Fath Allah and Mahmoud [8] introduced the fuzzy graph, strongly
fuzzy graph of a proper fuzzy proper function on Chang fuzzy topological space.
The notions of smooth fuzzy continuity and weakly smooth fuzzy continuity of a
fuzzy proper function on smooth fuzzy topological spaces and their properties are
discussed in [22]. Roopkumar and Kalaivani [23] obtained the relations between
continuity of fuzzy proper function on a fuzzy set and the continuity of fuzzy proper
function at every fuzzy point belonging to the fuzzy set in the context of smooth
fuzzy topological spaces. They also defined the projection maps as fuzzy proper
functions and proved their properties in [23].
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Mahmoud et.al. [19] introduced fuzzy semicontinuity of fuzzy proper function,
fuzzy separation axioms and examined the validity of some characterization of these
concepts. They also introduced fuzzy semi connected and fuzzy semi compact spaces
and some of their properties are discussed. In [9], fuzzy γ-continuity of fuzzy proper
function fuzzy γ-retracts in Chang fuzzy topology on fuzzy sets are introduced and
some of their properties are established. In [24], (α, β)-weakly smooth fuzzy contin-
uous proper function is introduced and its properties are derived. Further, in the
same article, it is established that the product of connected sets is not connected for
several notions of connectedness in a smooth fuzzy topological space and connect-
edness of images of smooth connected fuzzy sets under (α, β)-weakly smooth fuzzy
continuous functions are also investigated.

Recently, there are plenty of research works on generalized/weaker forms of open
sets such as fuzzy r-preopen, fuzzy r-semiopen sets, fuzzy semiopen sets, different
notions of interior and closure operators, and weaker forms of continuous functions
such as and weaker forms of fuzzy continuity such as fuzzy r-semicontinuity, fuzzy
super continuity, fuzzy δ-continuity, fuzzy almost continuity maps, α-I-continuous
functions, fuzzy γ-continuity, etc., For example, we refer to [3, 10, 11, 14, 15, 17, 18,
20, 21, 25, 26, 30, 31] .

In this paper, we introduce Rr
τ -closure, Rr

τ -interior and obtain their properties
in a smooth fuzzy topological spaces using which we introduce various types of
continuity of fuzzy proper functions. We also establish the relations among these
different types of continuous proper functions, by proving lot of results and providing
sufficient number of counterexamples wherever required.

2. Preliminaries

Let X, S be non-empty sets. We denote by I, I0, IX , 0X , µ and ν, respectively
the unit interval [0, 1], the interval (0, 1], the set of all fuzzy subsets of X, the
zero function on X, a fixed fuzzy subset of X and a fixed fuzzy subset of S. For
X = {x1, x2, . . . , xn} and λi ∈ I, i ∈ {1, 2, . . . , n}, we denote the fuzzy subset µ of
X which maps xi to λi for every i = 1, 2, . . . , n by µ

[λ1,λ2,...,λn]
[x1,x2,...,xn] . A fuzzy point [15]

in X is defined by Pλ
x (t) =

{
λ if t = x

0 if t 6= x
, where 0 < λ ≤ 1. By Pλ

x ∈ µ, we mean

that λ ≤ µ(x).

Definition 2.1 ([22]). Let Iµ =
{
U ∈ IX : U ≤ µ

}
. A smooth fuzzy topology on a

fuzzy set µ ∈ IX is a map τ : Iµ → I, satisfying the following axioms:

(1) τ(0X) = τ(µ) = 1,
(2) τ(A1 ∧A2) ≥ τ(A1) ∧ τ(A2), ∀A1, A2 ∈ Iµ,
(3) τ(

∨
i∈Γ

Ai) ≥
∧

i∈Γ

τ(Ai) for every family (Ai)i∈Γ ⊆ Iµ.

The pair (µ, τ) is called a smooth fuzzy topological space.

A fuzzy subset U ≤ µ is called fuzzy open if τ(U) > 0 and is called fuzzy closed
if τ(µ− U) > 0.
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Definition 2.2 ([4]). Let U, V ∈ Iµ. We say that U and V are quasi-coincident
referred to µ (written as UqV [µ]) if there exists x ∈ X such that U(x)+V (x) > µ(x).
If U is not quasi-coincident with V, then we write, Uq̄V [µ].

A fuzzy set U ∈ Iµ is called a q-neighborhood of a fuzzy point Pλ
x in µ if Pλ

x qU [µ]
and τ(U) > 0.

Definition 2.3 ([4]). Let µ ∈ IX and ν ∈ IS . A non-zero fuzzy subset F of X × S
is said to be a fuzzy proper function from µ to ν if

(1) F (x, s) ≤ min {µ(x), ν(s)}, ∀(x, s) ∈ X × S,
(2) for each x ∈ X with µ(x) > 0, there exists a unique s0 ∈ S such that

F (x, s0) = µ(x) and F (x, s) = 0 if s 6= s0.

Definition 2.4 ([4]). Let F be a fuzzy proper function from µ to ν. If U ∈ Iµ and
V ∈ Iν , then F (U) : S → I and F−1(V ) : X → I are defined by

(F (U))(s) = sup {F (x, s) ∧ U(x) : x ∈ X} , ∀s ∈ S,

(F−1(V ))(x) = sup {F (x, s) ∧ V (s) : s ∈ S} , ∀x ∈ X.

The inverse image of a fuzzy subset V under a fuzzy proper function F can be
easily obtained as (F−1(V ))(x) = µ(x) ∧ V (s), where s ∈ S is the unique element
such that F (x, s) = µ(x).

Definition 2.5 ([8]). A fuzzy proper function F : µ → ν is said to be injective (or
one-to-one) if F (x1, s) > 0 and F (x2, s) > 0, for some x1, x2 ∈ X and s ∈ S, then
x1 = x2.

Theorem 2.6 ([13]). Let (µ, τ) be a smooth fuzzy topological space. For r ∈ I0, A ∈
Iµ, if Cτ : Iµ× I0 → Iµ is defined by Cτ (A, r) =

∧{K ∈ Iµ : A ≤ K, τ(µ−A) ≥ r},
then,

(1) Cτ (0X , r) = 0X ,
(2) A ≤ Cτ (A, r),
(3) Cτ (A, r) ∨ Cτ (B, r) = Cτ (A ∨B, r),
(4) Cτ (A, r) ≤ Cτ (B, s) if r ≤ s,
(5) Cτ (Cτ (A, r), r) = Cτ (A, r),

where A,B ∈ Iµ and r, s ∈ I0.

Theorem 2.7 ([13]). Let (µ, τ) be a smooth fuzzy topological space. For r ∈ I0, A ∈
Iµ, if Iτ : Iµ × I0 → Iµ is defined by Iτ (A, r) =

∨{S ∈ Iµ : S ≤ A, τ(S) ≥ r}, then
(1) Iτ (µ−A, r) = µ− Cτ (A, r),
(2) If Iτ (Cτ (A, r), r) = A, then Cτ (Iτ (µ−A, r), r) = µ−A,
(3) Iτ (µ, r) = µ,
(4) Iτ (A, r) ≤ A,
(5) Iτ (A, r) ∧ Iτ (B, r) = Iτ (A ∧B, r),
(6) Iτ (A, r) ≥ Iτ (A, q), if r ≤ q,
(7) Iτ (Iτ (A, r), r) = Iτ (A, r),

where A,B ∈ Iµ and r, s ∈ I0.

Definition 2.8 ([16]). Let (µ, τ) be a smooth fuzzy topological space and let A ∈ Iµ,
r ∈ I0. Then, A is called a
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(1) Qr
τ -neighborhood of Pλ

x if Pλ
x qA[µ] with τ(µ) ≥ r.

(2) Rr
τ -neighborhood of Pλ

x if Pλ
x qA[µ] with A = Iτ (Cτ (A, r), r).

Definition 2.9 ([16]). Let (µ, τ) be a smooth fuzzy topological space. Then the
δ-closure operator is a function Dτ : Iµ × I0 → I defined as follows.

Dτ (A, r) =
∨
{Pλ

x ∈ µ : UqA[µ], forevery Rr
τ − neighborhood U of Pλ

x }
Result 2.10 ([16]). Let (µ, τ) be a smooth fuzzy topological space and let A ∈ Iµ,
r ∈ I0. Then,

(1) Cτ (A, r) =
∨{Pλ

x : UqA[µ], forevery Qr
τ − neighborhood U of Pλ

x }.
(2) Dτ (A, r) =

∧ {K ∈ Iµ : A ≤ K, K = Cτ (Iτ (K, r), r)}.
Definition 2.11 ([16]). Let (µ, τ) and (ν, σ) be smooth fuzzy topological spaces
and F : µ → ν be a fuzzy proper function. Then, F is called fuzzy super continuous
or FSC if for every Qr

σ-neighborhood V of F (Pλ
x ), there exists a Qr

τ -neighborhood
U of Pλ

x such that F (Iτ (Cτ (U, r), r)) ≤ V .

Theorem 2.12 ([12]). Let F : µ → ν be a fuzzy proper function such that ν = F (µ).
If F is one-to-one, then F−1(ν − V ) = µ− F−1(V ), ∀V ∈ Iν .

3. Smooth fuzzy Rr
τ -closure operator

Definition 3.1. Let (µ, τ) be a smooth fuzzy topological space. For A ∈ Iµ and
r ∈ I0, smooth fuzzy Rr

τ -closure Dτ (A, r) of A is defined by

Dτ (A, r) =
∨
{Pλ

x ∈ µ : Cτ (U, r)qA[µ],∀Rr
τ − neighborhood U of Pλ

x }.
Theorem 3.2. Let (µ, τ) be a smooth fuzzy topological space. For A ∈ Iµ and
r ∈ I0, Dτ (A, r) =

∧{K ∈ Iµ : A ≤ Iτ (K, r),K = Cτ (Iτ (K, r), r)}.
Proof. If Pλ

x /∈ ∧{K ∈ Iµ : A ≤ Iτ (K, r),K = Cτ (Iτ (K, r), r)}, then Pλ
x /∈ K, for

some K ∈ Iµ such that A ≤ Iτ (K, r), K = Cτ (Iτ (K, r), r). Therefore,

(µ−K)(x) > µ(x)− λ, µ−A ≥ µ− Iτ (K, r) and µ−K = µ− Cτ (Iτ (K, r), r)

and hence

Pλ
x q(µ−K)[µ], µ−K = Iτ (Cτ (µ−K, r), r) and Aq̄Cτ (µ−K, r)[µ].

Since (µ − K) is an Rr
τ -neighborhood of Pλ

x such that Cτ (µ − K, r)q̄A[µ], we get
Pλ

x /∈ Dτ (A, r).
Conversely, suppose that Pλ

x /∈ Dτ (A, r). Then, there is an Rr
τ -neighborhood U

of Pλ
x such that Cτ (U, r)q̄A[µ]. Therefore,

U(x) + λ > µ(x), U = Iτ (Cτ (U, r), r), Cτ (U, r)(k) + A(k) ≤ µ(k),

for every k ∈ X. Hence, it follows that

(µ− U)(x) < λ, µ− U = µ− Iτ (Cτ (U, r), r), A ≤ µ− Cτ (U, r).

Therefore, Pλ
x /∈ Dτ (A, r). This completes the proof of the theorem. ¤

Theorem 3.3. Let (µ, τ) be a smooth fuzzy topological space. For A,B ∈ Iµ and
r, q ∈ I0, Rr

τ -closure operator satisfies the following properties:
(1) Dτ (0X , r) = 0X ,
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(2) A ≤ Dτ (A, r),
(3) A ≤ B ⇒ Dτ (A, r) ≤ Dτ (B, r),
(4) Dτ (A, r) ≤ Dτ (B, q) if r ≤ q,
(5) Dτ (A, r) ∨ Dτ (B, r) = Dτ (A ∨B, r),
(6) Dτ (A ∧B, r) ≤ Dτ (A, r) ∧ Dτ (B, r).

Proof.

(1) From Theorems 2.6 and 2.7, we have

Iτ (0X , r) = 0X and Cτ (Iτ (0X , r), r) = Cτ (0X , r) = 0X .

Hence, Dτ (0X , r) =
∧{U ∈ Iµ : Iτ (U, r) ≥ 0X , Iτ (Cτ (U, r), r) = U} = 0X .

(2) Since U ≥ Iτ (U, r),∀U ∈ Iµ,

Dτ (A, r) ≥ U,∀U ∈ Iµ with Iτ (U, r) ≥ A, Cτ (Iτ (U, r), r) = U

≥ Iτ (U, r),∀U ∈ Iµ with Iτ (U, r) ≥ A,Cτ (Iτ (U, r), r) = U

≥ A.

(3) Since A ≤ B, we have {U ∈ Iµ : Iτ (U, r) ≥ A,Cτ (Iτ (U, r), r) = U} ⊇ {U ∈
Iµ : Iτ (U, r) ≥ B, Cτ (Iτ (U, r), r) = U}. Therefore,

Dτ (B, r) =
∧
{U ∈ Iµ : Iτ (U, r) ≥ B,Cτ (Iτ (U, r), r) = U}

≥
∧
{U ∈ Iµ : Iτ (U, r) ≥ A,Cτ (Iτ (U, r), r) = U} = Dτ (A, r).

(4) Using Theorems 2.6 and 2.7, we get Iτ (A, r) ≥ Iτ (A, q) and Cτ (Iτ (A, r), r) ≥
Cτ (Iτ (A, q), q) if r ≤ q. Therefore,

Dτ (A, q) =
∧
{U ∈ Iµ : Iτ (U, q) ≥ A,Cτ (Iτ (U, q), q) = U}

≥
∧
{U : Iτ (U, r) ≥ A,Cτ (Iτ (U, r), r) = U} = Dτ (A, r).

(5) From (3), it is clear that Dτ (A, r) ∨ Dτ (B, r) ≤ Dτ (A ∨ B, r). Let Pλ
x ∈

Dτ (A ∨ B, r). Then, Cτ (U, r)q(A ∨ B)[µ], for every Rr
τ -neighborhood U of

Pλ
x . Therefore, Cτ (U, r)qA[µ] or Cτ (U, r)qB[µ], for every Rr

τ -neighborhood
U of Pλ

x . Thus, we get Pλ
x ∈ Dτ (A, r) ∨ Dτ (B, r) and hence Dτ (A ∨B, r) =

Dτ (A, r) ∨ Dτ (B, r)
(6) By (3), we have Dτ (A∧B, r) ≤ Dτ (A, r) and Dτ (A∧B, r) ≤ Dτ (B, r). Thus,

we get Dτ (A ∧B, r) ≤ Dτ (A, r) ∧ Dτ (B, r).

¤

The following example shows that the equality does not hold in (6) of the previous
theorem.

Counterexample 3.4. Let X = {x, y}, µ
[0.9,0.8]
[x,y] ∈ IX , U1

[0.4,0.4]
[x,y] ∈ Iµ.

Define τ : Iµ → I by τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise.
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Let A
[0.45,0]
[x,y] and B

[0.2,0.45]
[x,y] . Since U1 and µ are the Rr

τ -neighborhoods of P 0.45
y ,

from the following inequalities,

Cτ (U1, r)(y) + B(y) = 0.4 + 0.45 = 0.85 > 0.8 = µ(y)
Cτ (U1, r)(x) + A(x) = 0.5 + 0.45 = 0.95 > 0.9 = µ(x),

we conclude that BqCτ (U1, r)[µ] and AqCτ (U1, r)[µ]. Therefore,

P 0.45
y ∈ Dτ (A, r) ∧ Dτ (B, r).

But, Cτ (U1, r)(x) + (A∧B)(x) = 0.7 < 0.9 = µ(x) and Cτ (U1, r)(y) + (A∧B)(y) =
0.4 < 0.8 = µ(y) imply that P 0.45

y /∈ Dτ (A ∧B).

The following example shows that Dτ (Dτ (A, r), r) 6= Dτ (A, r).

Counterexample 3.5. Let X = {x, y}, µ
[0.8,0.7]
[x,y] , U1

[0.4,0.3]
[x,y] and A

[0.4,0.2]
[x,y] .

Define τ : Iµ → I by τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise.
If Cτ (Iτ (U, r), r) = U , then

U = 0X or µ or (µ− U1)
[0.4,0.4]
[x,y] . We observe that

Iτ (µ− U1) = U1 ≥ A and Cτ (Iτ (µ− U1, r), r) = Cτ (U1, r) = µ− U1.

Therefore, Dτ (A, r) = µ − U1. Since Iτ (µ − U1) = U1 � µ − U1, we get that
Dτ (Dτ (A, r), r) = Dτ (µ− U1, r) = µ and hence Dτ (Dτ (A, r), r) 6= Dτ (A, r).

Lemma 3.6. Let (µ, τ) be smooth fuzzy topological space and let r ∈ I0. If U,A ∈ Iµ

are such that Cτ (U, r) ≤ µ−A, Iτ (Cτ (U, r), r) = U , then µ− U ≥ Dτ (A, r).

Proof. If Cτ (U, r) ≤ µ − A and Iτ (Cτ (U, r), r) = U , then µ − Cτ (U, r) ≥ A and
µ− Iτ (Cτ (U, r), r) = µ−U . Applying Theorem 2.7(1), we get that Iτ (µ−U, r) ≥ A
and Cτ (Iτ (µ− U, r), r) = µ− U . Therefore, µ− U ≥ Dτ (A, r). ¤
Definition 3.7. Let (µ, τ) be a smooth fuzzy topological space. For A ∈ Iµ and
r ∈ I0, the smooth fuzzy Rr

τ -interior Iτ (A, r) of A is defined by

Iτ (A, r) =
∨
{K ∈ Iµ : A ≥ Cτ (K, r), K = Iτ (Cτ (K, r), r)}.

Theorem 3.8. Let (µ, τ) be a smooth fuzzy topological space. For A,B ∈ Iµ and
r, q ∈ I0,

(1) Iτ (µ, r) = µ,
(2) Iτ (A, r) ≤ A,
(3) A ≤ B → Iτ (A, r) ≤ Iτ (B, r),
(4) Iτ (A, r) ≥ Iτ (A, q), if r ≤ q,
(5) Iτ (µ−A, r) = µ− Cτ (A, r),
(6) Iτ (A, r) ∧ Iτ (B, r) = Iτ (A ∧B, r),
(7) Iτ (A ∨B) ≥ Iτ (A, r) ∨ Iτ (B, r),
(8) If Iτ (Dτ (A, r), r) = A, then Dτ , (Iτ (µ−A, r), r) = µ−A.

Proof. (1) By Theorem 2.6 and Theorem 2.7 we have,

Cτ (µ, r) = µ and Iτ (Cτ (µ, r), r) = Iτ (µ, r) = µ.

Therefore, Iτ (µ, r) =
∨{T ∈ Iµ : Cτ (T, r) ≤ µ, Iτ (Cτ (T, r), r) = T} = µ.
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(2) Iτ (A, r) =
∨{T ∈ Iµ : Cτ (T, r) ≤ A, Iτ (Cτ (T, r), r) = T} ≤ A.

(3) Since A ≤ B, we have Cτ (T, r) ≤ A ⇒ Cτ (T, r) ≤ B. Therefore,

Iτ (B, r) =
∨
{T ∈ Iµ : Cτ (T, r) ≤ B, Iτ (Cτ (T, r), r) = T}

≥
∨
{T ∈ Iµ : Cτ (T, r) ≤ A, Iτ (Cτ (T, r), r) = T} = Iτ (A, r).

(4) Applying Theorem 2.6, we have Cτ (T, r) ≤ Cτ (T, q), if r ≤ q. Therefore,

Iτ (A, r) =
∨
{T ∈ Iµ : Cτ (T, r) ≤ A, Iτ (Cτ (T, r), r) = T}

≥
∨
{T ∈ Iµ : Cτ (T, q) ≤ A, Iτ (Cτ (T, q), q) = T} = Iτ (A, q).

(5) Using Lemma 3.6, we obtain
µ− Dτ (A, r)

= µ−
∧
{K ∈ Iµ : Iτ (K, r) ≥ A,Cτ (Iτ (K, r), r) = K}

=
∨
{µ−K : µ− Iτ (K, r) ≤ µ−A,µ− Cτ (Iτ (K, r), r) = µ−K}

=
∨
{µ−K : Cτ (µ−K, r) ≤ µ−A, Iτ (Cτ (µ−K, r), r) = µ−K}

=
∨
{U ∈ Iµ : Cτ (U, r) ≤ µ−A, Iτ (Cτ (U, r), r) = U} = Iτ (µ−A, r).

(6) Using (5) and Theorem 3.3 (5), we obtain

Iτ (A ∧B, r) = µ− Dτ (µ− (A ∧B), r)
= µ− Dτ ((µ−A) ∨ (µ−B), r)
= µ− [Dτ (µ−A, r) ∨ Dτ (µ−B, r)]
= [µ− Dτ (µ−A, r)] ∧ [µ− Dτ (µ−B, r)] = Iτ (A, r) ∧ Iτ (B, r).

(7) In view of (3), we have Iτ (A ∨B, r) ≥ Iτ (A, r) and Iτ (A ∨B, r) ≥ Iτ (B, r).
Thus, we obtain Iτ (A ∨B, r) ≥ Iτ (A, r) ∨ Iτ (B, r).

(8) If Iτ (Dτ ((A, r), r) = A, then we get

Dτ (Iτ ((µ−A, r), r) = Dτ (µ− Dτ (A, r), r)
= µ− Iτ (µ− (µ− Dτ (A, r)), r), (using (5))
= µ− Iτ (Dτ ((A, r), r) = µ−A.

Hence, the theorem follows. ¤

The following example shows that the equality does not hold in (7) of the previous
theorem.

Counterexample 3.9. Let X = {x, y}, µ
[0.8,0.7]
[x,y] ∈ IX , U1

[0.4,0.3]
[x,y] ∈ Iµ.

Define τ : Iµ → I by τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise.
Let A

[0.4,0.2]
[x,y] and B

[0.2,0.5]
[x,y]

and r = 0.5. We first observe that (A ∨ B)[0.4,0.5]
[x,y] , Cτ (U1, r) = (µ − U1)

[0.4,0.4]
[x,y]

and if Iτ (Cτ (U, r), r) = U , then U = 0X or U = U1. Since Cτ (U1, r) � A and
Cτ (U1, r) � B, we get that Iτ (A, r) = 0X and Iτ (B, r) = 0X , which implies that
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Iτ (A, r) ∨ Iτ (B, r) = 0X . Since Cτ (U1, r) ≤ A ∨ B, we have Iτ (A ∨ B, r) = U1 6=
Iτ (A, r) ∨ Iτ (B, r).

The following example shows that Iτ (Iτ (A, r), r) need not be equal to Iτ (A, r)

Counterexample 3.10. Let X = {x, y}, µ
[0.8,0.7]
[x,y] , U1

[0.4,0.3]
[x,y] , A

[0.4,0.5]
[x,y] .

If τ : Iµ → I is defined by τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise,
then (µ, τ) is a smooth

fuzzy topological space. If Iτ (Cτ (U, r), r) = U , then U = 0X or U = µ or U = U1.
Clearly, we have

Cτ (U1, r) = (µ− U1)
[0.4,0.4]
[x,y] ≤ A and Iτ (Cτ (U1, r), r) = Iτ (µ− U1, r) = U1.

Therefore, Iτ (A, r) = U1. Since the only fuzzy r-closed sets in (µ, τ) are 0X , µ−U1

and µ, and µ− U1 � U1, we get Iτ (Iτ (A, r), r) = Iτ (U1, r) = 0X 6= U1 = Iτ (A, r).

4. Some kinds of fuzzy super continuous functions

Definition 4.1. Let (µ, τ) and (ν, σ) be smooth fuzzy topological spaces and F :
µ → ν be a fuzzy proper function. We say that F is

(1) fuzzy super r1-continuous or FS-r1-C if F (Dτ (A, r)) ≤ Cσ(F (A), r), ∀A ∈
Iµ, ∀r ∈ I0.

(2) fuzzy super [r, q]1-continuous or FS-[r, q]1-C if F (Dτ (A, r)) ≤ Cσ(F (A), q),
∀A ∈ Iµ and r, q ∈ I0.

(3) fuzzy super r2-continuous or FS-r2-C if Dτ (F−1(V ), r) ≤ F−1(Cσ(V, r)),
∀V ∈ Iν , ∀r ∈ I0.

(4) fuzzy super [r, q]2- continuous or FS-[r, q]2-C if
Dτ (F−1(V ), r) ≤ F−1(Cσ(V, q)), ∀V ∈ Iν and r, q ∈ I0.

(5) fuzzy super r3-continuous or FS-r3-C if Dτ (F−1(V ), r) = F−1(V ), ∀V ∈ Iν

with V = Cσ(V, r).
(6) fuzzy super r4-continuous or FS-r4-C if Dτ (µ − F−1(V ), r) = µ − F−1(V )

∀V ∈ Iν with V = Iσ(V, r).

Theorem 4.2. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function with
ν = F (µ). If F is fuzzy super continuous, then F is fuzzy super r1-continuous.

Proof. Suppose that there exist A ∈ Iµ and r ∈ I0 such that F (Dτ (A, r))(s) >
Cσ(F (A), r)(s), for some s ∈ S. Observing that F (Dτ (A, r))(s) > 0, we can find
x ∈ X such that F (x, s) = µ(x). Since F is one-to-one and F (µ) = ν, we have
F (C)(s) = C(x), ∀C ∈ Iµ. In particular,

Dτ (A, r))(x) = F (Dτ (A, r))(s) > Cσ(F (A), r)(s).

Now, we choose a real number η such that Dτ (A, r)(x) > η > Cσ(F (A), r)(s), which
implies that P η

s /∈ Cσ(F (A), r). Therefore, there exists a Qr
τ -neighborhood V of

F (P η
x ) such that V q̄F (A)[ν] and hence F (A) ≤ ν − V . Since F is fuzzy super

continuous, there exists a Qr
τ -neighborhood U of P η

x such that F (Iτ (Cτ (U, r), r)) ≤
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V , which implies that F (A) ≤ ν−F (Iτ (Cτ (U, r), r)). Using Theorem 2.12, we obtain

A ≤ F−1(F (A)) ≤ F−1(ν − F (Iτ (Cτ (U, r), r)))
= µ− F−1(F (Iτ (Cτ (U, r), r)))
≤ µ− Iτ (Cτ (U, r), r).

Since Iτ (U, r) = U and U ≤ Iτ (Cτ (U, r), r), we have

Iτ (Cτ (U, r), r) ≤ Iτ (Cτ (Iτ (Cτ (U, r), r), r), r) ≤ Iτ (Cτ (Cτ (U, r), r), r)
= Iτ (Cτ (U, r), r),

and hence Iτ (Cτ (U, r), r) is an Rr
τ -neighborhood of P η

x and A + Iτ (Cτ (U, r), r) ≤ µ.
Therefore, P η

x /∈ Dτ (A, r), which is a contradiction to Dτ (A, r)(x) > η. Thus, F is
fuzzy super r1-continuous. ¤

The statement of the above theorem is not true when F is not one-to-one or
F (µ) 6= ν. The following examples justify our statement.

Counterexample 4.3. Let X = {x, y}, S = {s, t} and µ
[0.6,0.5]
[x,y] , ν

[0.6,0]
[s,t] be fuzzy

subsets of X and S respectively. Define the fuzzy subsets U1
[0.3,0.2]
[x,y] ∈ Iµ and

V1
[0.3,0]
[s,t] ∈ Iν . If τ : Iµ → I and σ : Iν → I are respectively, defined by

τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise,
then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0.5, F (y, t) = 0.

Clearly, F is not one-to-one and F (µ)[0.6,0]
[s,t] = ν. If V1 is a Qr

σ-neighborhood of
F (P η

l ), for an arbitrary P η
l ∈ µ, then U1 is a Qr

τ -neighborhood of P η
l such that

F (Iτ (Cτ (U1, r), r)) ≤ V1. Indeed, Cτ (U1, r) = (µ−U1) implies that Iτ (Cτ (U1, r), r) =
Iτ (µ − U1, r) = U1, and hence F (Iτ (Cτ (U1, r), r)) = F (U1)

[0.3,0]
[s,t] = V1. For ν, we

choose µ as the Qr
τ -neighborhood P η

l such that F (Iτ (Cτ (µ, r), r)) = ν. Hence F is
fuzzy super continuous.

Next, we claim that F (Dτ (A, r)) � Cσ(F (A), r), for A
[0,0.3]
[x,y] ∈ Iµ and r = 0.5.

If U ∈ Iµ with U = Iτ (Cτ (U, r), r), then U = 0X or U = µ or U = U1. Since
P 0.35

y qU1[µ] and P 0.35
y qµ[µ], we have that U1 and µ are the Rr

τ -neighborhoods of
P 0.35

y . Since,

Cτ (U1, r)(y) + A(y) = (µ− U1)(y) + A(y) = 0.3 + 0.3 = 0.6 > 0.5 = µ(y),

it follows that Cτ (U1, r)qA[µ]. Therefore,
P 0.35

y ∈ Dτ (A, r) and F (P 0.35
y ) ∈ F (Dτ (A, r)).

Since, V1(s) + 0.35 = 0.3 + 0.35 = 0.65 > 0.6 = ν(s), V1 is a Qr
τ -neighborhood

of P 0.35
s = F (P 0.35

y ) . However, from F (A)[0.3,0]
[s,t] q̄V1[ν], we conclude that P 0.35

s /∈
Cσ(F (A), r). Therefore, F is not super r1-continuous.
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Counterexample 4.4. Let X = {x, y}, S = {s, t}, µ
[0.7,0.6]
[x,y] ∈ IX , ν

[0.9,0.9]
[s,t] ∈ IX ,

U1
[0.2,0.1]
[x,y] ∈ Iµ and V1

[0.4,0.4]
[s,t] ∈ Iν . We define τ : Iµ → I and σ : Iν → I by

τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise.
Define a fuzzy proper function F : (µ, τ) → (ν, σ) by

F (x, s) = 0.7, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

Obviously, F is one-to-one and F (µ)[0.7,0.6]
[s,t] 6= ν. As in the previous counterexample,

we can verify that F is fuzzy super continuous by showing that if V1 is a Qr
σ-

neighborhood of F (P η
l ), then U1 is a required Qr

τ -neighborhood of P η
l such that

F (Iτ (Cτ (U1, r), r)) ≤ V1, and for µ, we choose ν as a required neighborhood of P η
l .

Theorem 4.5. Let F : µ → ν be a fuzzy proper function, where (µ, τ) and (ν, σ)
are smooth fuzzy topological spaces. Then, (a) ⇒ (b) ⇒ (c), where

(a) F is fuzzy super r1-continuous
(b) F is fuzzy super r2-continuous
(c) F is fuzzy super r3-continuous

Proof. Let V ∈ Iν be arbitrary.
(a) ⇒ (b): From (a), we have

F (Dτ (F−1(V ), r)) ≤ Cσ(F (F−1(V )), r) ≤ Cσ(V, r).
Therefore Dτ (F−1(V ), r) ≤ F−1(F (Dτ (F−1(V ), r))) ≤ F−1(Cσ(V, r)).

(b) ⇒ (c): If V = Cσ(V, r), then applying (b), we get Dτ (F−1(V ), r) ≤ F−1(V ).
Using Theorem 3.3 (2), we get Dτ (F−1(V ), r) ≥ F−1(V ).

Hence the theorem follows. ¤
Theorem 4.6. Let F : (µ, τ) → (ν, σ) be a one-to-one fuzzy proper function with
ν = F (µ). If F is fuzzy super r3-continuous, then F is fuzzy super r4-continuous.

Proof. If V ∈ Iν is such that V = Iσ(V, r), then ν−V = ν−Iσ(V, r) = Cσ(ν−V, r).
Using hypothesis, we get Dτ (F−1(ν − V ), r) = F−1(ν − V ). Since F is one-to-one
and ν = F (µ), by Theorem 2.12, we have F−1(ν − V ) = µ − F−1(V ). Therefore,
Dτ (µ− F−1(V ), r) = µ− F−1(V ). ¤

The statement of the above theorem is not true when F is not one-to-one or
F (µ) 6= ν. The following examples justify our statement.

Counterexample 4.7. Let X = {x, y} and S = {s, t}. If µ
[0.8,0.9]
[x,y] , ν

[0.9,0]
[s,t] , U1

[0.4,0.4]
[x,y] ,

U2
[0.4,0.5]
[x,y] and V1

[0.5,0]
[s,t] , then U1, U2 ∈ Iµ and V1 ∈ Iν . We define smooth fuzzy

topologies τ on µ and σ on ν, respectively, by

τ(U) =





1, U = 0X or µ,

0.6, U = U1 or U2,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise.
Let the fuzzy proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0.9, F (y, t) = 0.
658



Kalaivani Chandran et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 4, 649–663

Then, F is not one-to-one and F (µ)[0.9,0]
[s,t] = ν. We fix r = 0.5. If Cσ(V, r) = V , then

V = 0S or V = ν or V = (ν − V1)
[0.4,0]
[s,t] . Obviously, we have

Dτ (F−1(0S), r) = F−1(0S), Dτ (F−1(ν), r) = F−1(ν).

For an arbitrary U ∈ Iµ, Cτ (Iτ (U, r), r) is any one of the following four sets 0X , µ,
U1, and U2. Using Iτ (U1, r) = U1 ≥ F−1(ν − V1)

[0.4,0.4]
[x,y] , we obtain

Dτ (F−1(ν − V1), r) = U1 = F−1(ν − V1).

Therefore, F is fuzzy super r3-continuous. However,

Dτ ((µ− F−1(V1))
[0.3,0.4]
[x,y] , r) = U1 ∧ U2 ∧ µ = U1 6= µ− F−1(V1)

and hence F is not fuzzy super r4-continuous.

Counterexample 4.8. Let X = {x, y}, S = {s, t}. Define µ
[0.6,0.6]
[x,y] ∈ IX , ν

[0.9,0.8]
[s,t] ∈

IS , U1
[0.3,0.3]
[x,y] ∈ Iµ and V1

[0.6,0.5]
[s,t] ∈ Iν . If τ : Iµ → I and σ : Iν → I are, respectively,

defined by

τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise,
then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

Clearly, F is one-to-one and F (µ)[0.6,0.6]
[s,t] 6= ν. We fix r = 0.5. If V ∈ Iν is such that

V = Cσ(V, r), then V = 0S or V = ν or V = ν−V1. Since Dτ (F−1(V ), r) = F−1(V ),
for each V ∈

{
0S , ν, F−1(ν − V1)

[0.3,0.3]
[x,y,z]

}
, we conclude that F is fuzzy super r3-

continuous. But Dτ

(
(µ− F−1(V1))

[0,0.1]
[x,y] , r

)
= U1 6= µ− F−1(V1) implies that F is

not fuzzy super r4-continuous.

Theorem 4.9. Let F : (µ, τ) → (ν, σ) be a fuzzy proper function. If F is fuzzy
super r4-continuous, then F is fuzzy super continuous.

Proof. If W is a Qr
σ-neighborhood of F (Pλ

x ), then σ(W ) ≥ r and F (Pλ
x )qW [ν] and

µ−F−1(W ) = Dτ (µ−F−1(W )), by hypothesis. If s ∈ S is such that F (x, s) = µ(x),
then

λ+F−1(W )(x) = λ+(µ(x)∧W (s)) = (λ+µ(x))∧ (λ+W (s)) > µ(x)∧ν(s) = µ(x).

Therefore, Pλ
x /∈ µ − F−1(W ) = Dτ (µ − F−1(W ), r). Then, there exists an Rr

τ -
neighborhood U of Pλ

x such that Cτ (U, r)q̄(µ − F−1(W ))[µ], which implies that
Cτ (U, r) + (µ− F−1(W )) ≤ µ and hence Cτ (U, r) ≤ F−1(W ). Thus, U ≤ F−1(W )
and F (U) ≤ F (F−1(W )) ≤ W . Since U is an Rr

τ -neighborhood of Pλ
x , we have

Pλ
x qU [µ] and Iτ (Cτ (U, r), r) = U . Thus, F (Iτ (Cτ (U, r), r)) = F (U) ≤ W . Hence

the theorem follows. ¤
Theorem 4.10. Let r, q ∈ I0 be such that r < q. If F : (µ, τ) → (ν, σ) is fuzzy
super r1-continuous, then F is fuzzy super [r, q]1-continuous.
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Proof. Let A ∈ Iµ. Using the assumption and using Theorem 2.6[4], we have
F (Dτ (A, r)) ≤ Cσ(F (A), r) ≤ Cσ(F (A), q). Hence, F is fuzzy super [r, q]1-continuous.

¤
The statement of the above theorem is not true when r > q.

Counterexample 4.11. Let X = {x, y}, S = {s, t}, µ
[0.6,0.6]
[x,y] ∈ IX , ν

[0.6,0.6]
[s,t] ∈ IS

and V1
[0.3,0.3]
[s,t] ∈ Iν . If τ : Iµ → I and σ : Iν → I are, respectively, defined by

τ(U) =

{
1, U = 0X or µ,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise,
then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Let the fuzzy proper
function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

We fix r = 0.7 and q = 0.5. If A = 0X , then F (Dτ (0X , r)) ≤ Cσ(F (0X), r).
If A 6= 0X , then Cσ(F (A), r) = ν ≥ F (Dτ (A, r)). Hence, F is fuzzy super r1-
continuous. Let A

[0,0.3]
[x,y] ∈ Iµ and P 0.35

y ∈ µ. Since the only Rr
τ -neighborhood of

p0.35
y is µ, we have p0.35

y ∈ D(A, r) and hence F (p0.35
y ) ∈ F (D(A, r)). But V1 is a

Qq
σ-neighborhood of p0.35

t = F (P 0.35
y ) such that V q̄F (A)[ν]. Hence, it follows that

p0.35
t /∈ Cσ(F (A), q). Thus, F is not fuzzy super [r, q]1-continuous.

Theorem 4.12. Let r, q ∈ I0 be such that q < r. If F : (µ, τ) → (ν, σ) is fuzzy
super [r, q]1-continuous, then F is fuzzy super r1-continuous and F is fuzzy super
q1-continuous.

Proof. Let A ∈ Iµ. By hypothesis and by Theorems 3.3[4], 2.6[4], we obtain
F (Dτ (A, q)) ≤ F (Dτ (A, r)) ≤ Cσ(F (A), q) ≤ Cσ(F (A), r). Hence, F is fuzzy super
r1-continuous and F is fuzzy super q1-continuous. ¤

The statement of the above theorem is not true when q > r.

Counterexample 4.13. Let X = {x, y}, S = {s, t}, µ
[0.6,0.6]
[x,y] , ν

[0.6,0.6]
[s,t] . Define a

fuzzy subset V1 ∈ Iν by V1
[0.3,0.3]
[s,t] . If τ : Iµ → I and σ : Iν → I are defined by

τ(U) =

{
1, U = 0X or µ,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise,
then obviously (µ, τ) and (ν, σ) are smooth fuzzy topological space. Let the fuzzy
proper function F : (µ, τ) → (ν, σ) be defined by

F (x, s) = 0.6, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.6.

We fix r = 0.5 and q = 0.7. If A = 0X , then F (Dτ (0X , r)) ≤ Cσ(F (0X), q). If
A 6= 0X , then Cσ(F (A), q) = ν ≥ F (Dτ (A, r)). Hence, F is fuzzy super [r, q]1-
continuous. As in the previous counterexample, we can verify that F is not fuzzy
super r1-continuous, by showing that

F (P 0.35
y ) ∈ F (D(A, r)) and F (P 0.35

y ) = P 0.35
t /∈ Cσ(F (A), r).
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Theorem 4.14. Let r, q ∈ I0 be such that r < q. If F : (µ, τ) → (ν, σ) is fuzzy
super r2-continuous, then F is fuzzy super [r, q]2-continuous.

Proof. Let A ∈ Iµ. By assumption and by Theorem 2.6[4], we immediately get
Dτ (F−1(V ), r) ≤ F−1(Cσ(V, r)) ≤ F−1(Cσ(V, q)). Hence, F is fuzzy super [r, q]1-
continuous. ¤

The statement of the above theorem is not true when q < r

Counterexample 4.15. Let X = {x, y}, S = {s, t} and let µ
[0.8,0.8]
[x,y] ∈ IX ,

ν
[0.8,0.8]
[s,t] ∈ IS , U1

[0.4,0.4]
[x,y] ∈ Iµ and V1

[0.4,0.4]
[s,t] ∈ Iν . If τ : Iµ → I and σ : Iν → I by

τ(U) =





1, U = 0X or µ,

0.6, U = U1,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise,
then (µ, τ) and (ν, σ) are smooth fuzzy topological spaces. Define a fuzzy proper
function F : (µ, τ) → (ν, σ) by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.8.

We fix r = 0.8 and q = 0.4. If B = 0S , then Dτ (F−1(0s), r) ≤ F−1(Cσ(0S , r)).
If B 6= 0S , then F−1(Cσ(B, r)) = µ ≥ Dτ (F−1(B), r). Hence, F is fuzzy super
r2-continuous. Let B

[0,0.4]
[s,t] ∈ Iν and P 0.45

t ∈ ν. Clearly, we have

F−1(P 0.45
t ) = P 0.45

y ∈ Dτ (F−1(B), r).

Since V1 is a Qq
σ-neighborhood of P 0.45

t such that V1(t)+B(t) = 0.4+0.4 = 0.8 = ν(t)
and V1(s) + B(s) = 0.4 + 0 = 0.4 < 0.8 = ν(s), we get that P 0.45

t /∈ Cσ(B, q) and
hence P 0.45

y /∈ F−1(Cσ(B, q)). Thus, F is not fuzzy super [r, q]2-continuous.

Theorem 4.16. Let r, q ∈ I0 be such that q < r. If F : (µ, τ) → (ν, σ) is fuzzy
super [r, q]2-continuous, then F is fuzzy super r2-continuous and F is fuzzy super
q2-continuous.

Proof. Let A ∈ Iµ. Using the assumption and using Theorems 3.3(4), 2.6(4), we
get Dτ (F−1(V ), q) ≤ Dτ (F−1(V ), r) ≤ F−1(Cσ(V, q)) ≤ F−1(Cσ(V, r)). Hence, F
is fuzzy super r2-continuous and F is fuzzy super q2-continuous. ¤

The statement of the above theorem is not true when q > r

Counterexample 4.17. Let X = {x, y}, S = {s, t} and let µ
[0.8,0.8]
[x,y] ∈ IX ,

ν
[0.8,0.8]
[s,t] ∈ IS , V1

[0.4,0.4]
[s,t] ∈ Iν . We define τ : Iµ → I and σ : Iν → I by

τ(U) =

{
1, U = 0X or µ,

0, otherwise
and σ(V ) =





1, V = 0S or ν,

0.5, V = V1,

0, otherwise.
Define a fuzzy proper function F : (µ, τ) → (ν, σ) by

F (x, s) = 0.8, F (x, t) = 0, F (y, s) = 0, F (y, t) = 0.8.
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We fix r = 0.4 and t = 0.8. If B = 0S , then Dτ (F−1(0S), r) ≤ F−1(Cσ(0S , t)). If
B 6= 0S , then F−1(Cσ(B, q)) = µ ≥ Dτ (F−1(B), r). Hence, F is fuzzy super [r, q]2-
continuous. Let B

[0,0.4]
[s,t] ∈ Iν and P 0.45

t ∈ ν. As in the previous counterexample, we
have

F−1(P 0.45
t ) = P 0.45

y ∈ Dτ (F−1(B), r) but P 0.45
y /∈ F−1(Cσ(B, r)).

Thus, F is not fuzzy super r2-continuous.

The results obtained in this section are summarized in the following implication
diagram.

FS-[r, q]1-C FS-[r, q]2-C
(q > r ⇑) (⇓ q < r) (q > r ⇑) (⇓ q < r)

FSC
1-1, F (µ)=ν

=⇒ FS-r1-C =⇒ FS-r2-C
⇑ ⇓
FS-r4-C

1-1, F (µ)=ν⇐= FS-r3-C
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