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1. Introduction

Ever since the introduction of fuzzy sets by L.A.Zadeh[10], the fuzzy concept has
invaded almost all branches of mathematics. The concept of fuzzy topological spaces
was introduced and developed by C.L.Chang[2]. Atanassov[1] introduced the notion
of intuitionistic fuzzy sets, Coker[3] introduced the intuitionistic fuzzy topological
spaces. Intuitionistic fuzzy open, α-open, and preopen mappings were discussed in
[3, 5]. In this paper, we introduce the concept of intuitionistic fuzzy pre-α-irresolute
open and intuitionistic fuzzy pre-α-irresolute closed mappings as an extension of our
work done in the paper [9]. Also we study some of their properties and establish
their relationships with other existing mappings.

2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty fixed set and I the closed interval [0,1].
An intuitionistic fuzzy set(IFS) A is an object of the following form

A = {<x, µA(x), νA(x)>| x∈X}
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where the mappings µA : X→I and νA : X→I denote the degree of member-
ship(namely) µA(x) and the degree of nonmembership(namely) νA(x) for each ele-
ment x∈X to the set A respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x∈X.

Definition 2.2 ([1]). Let A and B are IFSs of the form A = {<x, µA(x), νA(x)>|
x∈X} and B = {<x, µB(x), νB(x)>| x∈X}. Then

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x);
(ii) Ā = {<x, νA(x), µA(x)>| x∈X};
(iii) A ∩ B = {<x, µA(x) ∧ µB(x), νA(x) ∨ νB(x) >| x∈X};
(iv) A ∪ B = {<x, µA(x) ∨ µB(x), νA(x) ∧ νB(x) >| x∈X}.

We will use the notation A = {<x, µA, νA> | x∈X} instead of A= {<x, µA(x),
νA(x)> | x∈X}. The IFSs 0∼ and 1∼ are defined by 0∼ = {<x, 0, 1 > | x∈X} and
1∼ = {<x, 1, 0 > | x∈X}.

Let X and Y are two non-empty sets and f : (X,τ)→(Y,σ) be a function.
If B = {<y, µB(y), νB(y)>| y∈Y} is an IFS in Y,then the pre-image of B under f
is denoted and defined by f−1(B) = {<x, f−1(µB(x)), f−1(νB(x))>| x∈X} Since
µB , νB are fuzzy sets, we explain that f−1(µB(x))=µB(f(x)).

Definition 2.3 ([3]). An intuitionistic fuzzy topology(IFT) in Coker’s sense on a
nonempty set X is a family τ of intuitionistic fuzzy sets in X satisfying the following
axioms:

(i) 0∼ , 1∼ ∈ τ ;
(ii) G1∩G2 ∈ τ , for any G1, G2 ∈ τ ;
(iii) ∪Gi ∈ τ for any arbitrary family {Gi | i∈J} ⊆ τ .

In this paper by (X,τ) or simply by X we will denote the intuitionistic fuzzy topolog-
ical space (IFTS). Each IFS which belongs to τ is called an intuitionistic fuzzy open
set(IFOS) in X. The complement Ā of an IFOS A in X is called an intuitionistic
fuzzy closed set(IFCS) in X.

Definition 2.4 ([3]). Let (X,τ) be an IFTS and A = {<x, µA(x), νA(x)> | x∈X}
be an IFS in X. Then the intuitionistic fuzzy closure and intuitionistic fuzzy interior
of A are defined by

(i) cl(A) =
⋂ {C:C is an IFCS in X and C ⊇ A};

(ii) int(A) =
⋃ {D:D is an IFOS in X and D ⊆ A};

It can be also shown that cl(A) is an IFCS, int(A) is an IFOS in X and A is an IFCS
in X if and only if cl(A) = A ; A is an IFOS in X if and only if int(A) = A.

Proposition 2.5. Let (X,τ) be an IFTS and A,B be IFSs in X. Then the following
properties hold:

(i) clA = (int(A)) , int(A) = (cl(A));
(ii) int(A)⊆A⊆cl(A).[3]

Definition 2.6 ([4]). An IFS A in an IFTS X is called
(i) an intuitionistic fuzzy pre open set(IFPOS) if A ⊆ int(clA).
(ii) an intuitionistic fuzzy α-open set (IFαOS) if and only if A ⊆ int(cl(intA)).
(iii) an intuitionistic fuzzy semi open set(IFSOS) if and only if A ⊆ cl(int(A)).
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The complement of an IFPOS(IFαOS and IFSOS) A in X is called IFPCS(IFαCS
and IFSCS) in X.

Definition 2.7 ([4]). Let f be a mapping from an IFTS X into an IFTS Y. The
mapping f is called intuitionistic fuzzy continuous(IFα-continuous, IF pre continu-
ous) if and only if f−1(B) is an IFOS (IFαOS, IFPOS) in X, for each IFOS B in
Y.

Definition 2.8 ([8, 6]). Let (X,τ) be an IFTS and A = {<x, µA(x), νA(x)> | x∈X}
be an IFS in X.
The intuitionistic fuzzy α-closure and intuitionistic fuzzy α-interior of A are defined
by

(i) αcl(A) =
⋂ {C:C is an IFαCS in X and C ⊇ A};

(ii) αint(A) =
⋃ {D:D is an IFαOS in X and D ⊆ A}.

The intuitionistic fuzzy preclosure and intuitionistic fuzzy preinterior of A are
defined by

(i) pcl(A) =
⋂ {C:C is an IFPCS in X and C ⊇ A};

(ii) pint(A) =
⋃ {D:D is an IFPOS in X and D ⊆ A}.

Definition 2.9 ([9]). A function f :(X,τ)→(Y,σ) from a intuitionistic fuzzy topolog-
ical space (X,τ) to another intuitionistic fuzzy topological space (Y,σ) is said to be
intuitionistic fuzzy pre-α-irresolute if f−1(B) is an IFPOS in (X,τ) for each IFαOS
B in (Y,σ).

Definition 2.10 ([3, 5]). Let f be a mapping from an IFTS (X, τ) to an IFTS
(Y, σ). Then, f is called an intuitionistic fuzzy open mapping(IFα-open mapping,
IF preopen mapping) if f(A) is an IFOS (IFαOS, IFPOS) in Y for every IFOS A in
X.

Definition 2.11 ([7]). A mapping f : (X, τ) → (Y, σ) from an intuitionistic fuzzy
topological space (X, τ) to another intuitionistic fuzzy topological space (Y, σ) is said
to be intuitionistic fuzzy α-irresolute open(IFα-irresolute open) mapping if f(A) is
an IFαOS in Y for every IFαOS A in X.

3. Intuitionistic fuzzy pre-α-irresolute open and closed mappings

Definition 3.1. A mapping f : (X, τ) → (Y, σ) from an intuitionistic fuzzy topo-
logical space (X, τ) to another intuitionistic fuzzy topological space (Y, σ) is said
to be intuitionistic fuzzy pre-α-irresolute open mapping(intuitionstic fuzzy pre-α-
irresolute closed) if f(A) is an IFαOS(IFαCS) in Y for every IFPOS(IFPCS) A in
X.

Theorem 3.2. Let (X, τ) and (Y, σ) be two IFTSs and let f : (X, τ) → (Y, σ) be a
mapping. Then the following conditions are equivqlent:

(i) f is an IFpre-α-irresolute open mapping.
(ii) f(pintA) ⊆ αintf(A) for each IFS A in X.
(iii) pint(f−1(B)) ⊆ f−1(αint(B)) for each IFS B in Y.
(iv) For any IFS A in X, IFS B in Y and let A be IFPCS such that f−1(B) ⊆ A.

Then there exists an IFαCS C in Y and B ⊆ C such that f−1(C) ⊆ A.
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Proof. (i)⇒(ii) pintA ⊆ A ⇒ f(pintA) ⊆ f(A). But pintA is an IFPOS in X,
f(pintA) is an IFαOS in Y . Hence f(pintA) = αintf(pintA) ⊆ αintf(A).
(ii))⇒(iii) Let A = f−1(B). By(ii) f(pint(f−1(B)) ⊆ αintf(f−1(B)) ⊆ αint(B).
⇒ pint(f−1(B)) ⊆ f−1(f(pint(f−1(B))) ⊆ f−1(αint(B)). Thus pint(f−1(B) ⊆
f−1(αint(B)).
(iii)⇒(iv) Let A be IFPCS in X and B be an IFS in Y such that f−1(B) ⊆ A.
Hence f−1(B) ⊇ A. ⇒ A ⊆ f−1(B) = f−1(B). But A is an IFPOS. Thus, A =
pint(A) ⊆ pint(f−1(B)) ⊆ f−1(αint(B)) Hence A ⊇ f−1(αint(B) = f−1(αcl(B)).
Let αcl(B) = C then f−1(C) ⊆ A.
(iv)⇒(i) Let D be an IFPOS in X, B = f(D) and A = D. Then A is an IFPCS.
Hence f−1(B) = f−1(f(D)) = f−1(f(D)) ⊆ D = A. Then there exists an IFαCS
C and B ⊆ C such that f−1(C) ⊆ A = D. Thus, D ⊆ f−1(C). ⇒ f(D) ⊆
f(f−1(C)) ⊆ C. On the otherhand by B ⊆ C, f(D) = B ⊇ C. Hence f(D) = C.
Since C is an IFαOS, we have f(D) is an IFαOS in Y . ¤
Theorem 3.3. Every IFpre-α-irresolute open mapping is IFα-irresolute open map-
ping.

Proof. Let f : (X, τ) → (Y, σ) from an intuitionistic fuzzy topological space (X, τ)
to another intuitionistic fuzzy topological space (Y, σ) is IFpre-α-irresolute open
mapping. Let A be IFαOS in X. Since every IFαOS is an IFPOS, A is an IFPOS
in X. As f is an IFpre-α-irresolute open f(A) is an IFαOS in Y . Hence f is
IFα-irresolute open mapping. ¤
Remark 3.4. However the converse need not be true as shown by the following
example.

Example 3.5. Let X = {a,b,c} = Y, τ ={0∼ ,A,1∼}, σ={0∼ ,B,1∼} be IFTs on
X and Y respectively where A = {< x, ( a

0.5 , b
0.3 , c

0.4 ),( a
0.3 , b

0.5 , c
0.6 ) >; x ∈ X}, B =

{< y, ( a
0.4 , b

0.4 , c
0.2 ),( a

0.6 , b
0.3 , c

0.6 ) >; y ∈ Y }. C = {< x, ( a
0.4 , b

0.6 , c
0.7 )( a

0.5 , b
0.3 , c

0.3 ) >
;x ∈ X} be an IFS in X. Define an intuitionistic fuzzy mapping f : (X, τ) →
(Y, σ) by f(a) = b, f(b) = c, f(c) = a. A is an IFOS in X and hence IFαOS in
X. f(A) = {< y, ( a

0.4 , b
0.5 , c

0.3 ),( a
0.6 , b

0.3 , c
0.5 ) >; y ∈ Y } And int(cl(intf(A))) = 1∼ .

Thus f(A) ⊆ int(cl(intf(A))). Hence f(A) is an IFαOS in Y , which implies f is
IFα-open mapping. And C ⊆ int(clC) = 1∼ . Hence C is IFPOS in X. f(C) =
{< y, ( a

0.7 , b
0.4 , c

0.6 ),( a
0.3 , b

0.5 , c
0.3 ) >; y ∈ Y } And int(cl(intf(C)))= 0∼ . Thus f(C) *

int(cl(intf(C))). Hence f(C) is not IFαOS in Y . So, f is not IFpre-α-irresolute
open mapping.

Theorem 3.6. Every IFpre-α-irresolute open mapping is IFα-open mapping.

Proof. Let f : (X, τ) → (Y, σ) from an intuitionistic fuzzy topological space (X, τ)
to another intuitionistic fuzzy topological space (Y, σ) is IFpre-α-irresolute open
mapping. Let A be IFOS in X. Since every IFOS is an IFPOS, A is an IFPOS in
X. As f is an IFpre-α-irresolute open f(A) is an IFαOS in Y . Hence f is IFα-open
mapping. ¤
Remark 3.7. However the converse need not be true as shown by the following
example.
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Example 3.8. Let X = {a,b,c} = Y, τ ={0∼ ,A,1∼}, σ={0∼ ,B, C, B∪C, B∩C,1∼} be
IFTs on X and Y respectively where A = {< x, ( a

0.5 , b
0.4 , c

0.6 ),( a
0.5 , b

0.6 , c
0.4 ) >; x ∈ X},

B = {< y, ( a
0.5 , b

0.3 , c
0.6 ),( a

0.5 , b
0.7 , c

0.4 ) >; y ∈ Y }, C = {< y, ( a
0.2 , b

0.4 , c
0.3 )( a

0.7 , b
0.6 ,

c
0.7 ) >; y ∈ Y }. D = {< x, ( a

0.5 , b
0.4 , c

0.6 ),( a
0.4 , b

0.5 , c
0.4 ) >; x ∈ X} be an IFS in X.

Define an intuitionistic fuzzy mapping f : (X, τ) → (Y, σ) by f(a) = a, f(b) =
b, f(c) = c. A is an IFOS in X. f(A) = {< y, ( a

0.5 , b
0.4 , c

0.6 ),( a
0.5 , b

0.6 , c
0.4 ) >; y ∈

Y } And int(cl(intf(A))) = B ∪ C. Thus f(A) ⊆ int(cl(intf(A))). Hence f(A) is
an IFαOS in Y , which implies f is IFα-open mapping. D is an IFS in X. And
D ⊆ int(clD) = 1∼ . Hence D is IFPOS in X. f(D) = {< y, ( a

0.5 , b
0.4 , c

0.6 ),( a
0.4 ,

b
0.5 , c

0.4 ) >; y ∈ Y } And int(cl(intf(D)))= B ∪ C. Thus f(D) * int(cl(intf(D))).
Hence f(D) is not IFαOS in Y . So, f is not IFpre-α-irresolute open mapping.

Theorem 3.9. Let (X, τ), (Y, σ) be IFTSs. Let f : (X, τ) → (Y, σ) and g : (Y, σ) →
(Z, δ) be any two maps. If g ◦ f :(X, τ) → (Z, δ) is an IFpre-α-irresolute open and f
is surjective, IFpre-α-irresolute function then g is IF-α-irresolute open mapping.

Proof. Let B be any IFαOS in Y . Since f is an IFpre-α-irresolute function, f−1(B)
is IFPOS in X. Since g ◦ f is IFpre-α-irresolute open, (g ◦ f)(f−1(B)) = g(B) is an
IFαOS in (Z, δ). Hence g is an IFα irresolute open mapping. ¤

Theorem 3.10. Let (X, τ), (Y, σ), (Z, δ) be IFTSs. Let f : (X, τ) → (Y, σ) and
g : (Y, σ) → (Z, δ) be any two mappings. Then the following statements hold:

(i) If f is an IFpre-α-irresolute open and g is an IFα-irresolute open mappings, then
g ◦ f :(X, τ) → (Z, δ) is an IFpre-α-irresolute open mapping.

(ii) If f is an IF preopen mapping and g is an IFpre-α-irresolute open mapping then
g ◦ f is an IFα-open mapping.

Proof. (i) Let A be an IFPOS in X. Since f is IFpre-α-irresolute open, f(A) is an
IFαOS in Y . Now (g ◦ f)(A) = g(f(A)). Since g is IFα-irresolute open, g(f(A)) is
IFαOS in Z. Hence g ◦ f is IFpre-α-irresolute open mapping.
(ii) Let A be an IFOS in X. Since f is IFpreopen, f(A) is an IFPOS in Y . Now
(g ◦ f)(A) = g(f(A)). Since g is IFpre-α-irresolute open, g(f(A)) is IFαOS in Z.
Hence g ◦ f is IFα-open mapping. ¤

Theorem 3.11. Let (X, τ), (Y, σ) be IFTSs. A function f : (X, τ) → (Y, σ) is
IFpre-α-irresolute closed mapping if and only if αclf(A) ⊆ f(pclA) for each IFS A
in IFTS X.

Proof. f(A) ⊆ f(pclA). And f(pclA) is IFαCS in Y , since f is IFpre-α-irresolute
closed mapping. Therefore f(pclA) = αclf(pclA) . Thus αclf(A) ⊆ αclf(pclA) =
f(pclA). Hence αclf(A) ⊆ f(pclA).
Conversely, let A be IFPCS in X. Then αclf(A) ⊆ f(pclA) = f(A). Thus
αclf(A) ⊆ f(A). But f(A) ⊆ αclf(A). Hence αclf(A) = f(A). ⇒ f(A) is IFαCS
in Y . Hence f is IFpre-α-irresolute closed mapping. ¤

Theorem 3.12. Let (X, τ), (Y, σ) be IFTSs. If A function f : (X, τ) → (Y, σ)
is IFpre-α-irresolute closed mapping if and only if for each IFS B in Y and each
IFPOS A in X with A ⊇ f−1(B), there exists an IFαOS C in Y with C ⊇ B such
that f−1(C) ⊆ A.
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Proof. Let A be any arbitrary IFPOS A in X with A ⊇ f−1(B) where B is an IFS
in Y . Then A is IFPCSin X. Since f is IFpre-α-irresolute closed mapping f(A)
is IFαCS in Y . Then f(A) = C(say) is IFαOS in Y . Since f−1(B) ⊆ A, B ⊆ C.
Moreover we have f−1(C) = f−1(f(A) = f−1(f(A) ⊆ A. Thus f−1(C) ⊆ A.
Conversely Let A be IFPCS in X. Then f(A) = B (say) is an IFS in Y and A is
IFPOS in X such that f−1(B) ⊆ A. By hypothesis, there is an IFαOS C of Y such
that B ⊆ C and f−1C ⊆ A. Therefore A ⊆ f−1(C). Hene C ⊆ f(A) ⊆ f(f−1(C)).
⇒ f(A) = C. Since C is IFαCS of Y , f(A) is an IFαCS in Y . Hence f is an
IFpre-α-irresolute closed mapping. ¤

References

[1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
[3] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems

88 (1997) 81–89.
[4] H. Gurcay, D. Coker and A. H. Es, On fuzzy continuity in intuitionistic fuzzy topological

spaces, J. Fuzzy Math. 5 (1997) 365–378.
[5] J. K. Joen, Y. B. Jun and J. H. Park, Intuitionistic fuzzy alpha-continuity and intuitionistic

fuzzy precontinuity, Int. J. Math. Math. Sci. 19 (2005) 3091–3101.
[6] B. Krsteska and S. E. Abbas, Intuitionistic fuzzy strongly preopen (preclosed) mappings, Math.

Morav. 10 (2006) 47–53.
[7] R. Renuka and V. Seenivasan, Intuitionistic fuzzy α-irresolute open and closed mappings,

(submitted).
[8] V. Seenivasan and R. Renuka, On Intuitionistic fuzzy semi-α-irresolute functions, Ann. Fuzzy

Math. Inform. 6(2) (2013) 315–323.
[9] V. Seenivasan and R. Renuka, Intuitionistic fuzzy pre-α-irresolute functions, Far East J. Math.

Sci. 72(2) (2013) 251–267.
[10] L. A. Zadeh, Fuzzy sets, Information and control 8 (1965) 338–353.

R. Renuka (renuka.autpc@gmail.com)
Department of Mathematics, University College of Engineering Panruti (A Con-
stituent College of Anna University Chennai) Panruti-607 106, Tamilnadu, India

V. Seenivasan (seenujsc@yahoo.co.in)
Department of Mathematics, University College of Engineering Panruti (A Con-
stituent College of Anna University Chennai) Panruti-607 106, Tamilnadu, India

620


