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1. Introduction

The concept of a fuzzy set introduced by Zadeh [14] provides a natural frame
work for the generalization of many concepts in general topology, known as fuzzy
topological spaces. Compactness and its various generalizations is one of the im-
portant concepts in general topology. The class of submetacompact spaces was
introduced by Worrel and Wicke [13] in 1965 and the term “submetacompact” was
suggested by H. Junnila in 1978 [6]. The theory of submetacompact spaces in general
topology provides an approach to a large portion of covering theory (see [3], [6]).

In [9] Fu-Gui Shi and Cheng-You Zheng introduced the concept of α-locally finite
family to characterize fuzzy compactness and using this they have defined para-
compactness in L-topological spaces in [10], which is a natural generalization of the
Lowen fuzzy compactness. The authors have introduced point finite families and
done some work in metacompactness in L-topological spaces and obtain a charac-
terization for the same in [5]. In this paper we define θ-sequence of α-Q-covers and
submetacompactness in L-topological spaces. Besides getting characterizations for
subparacompactness in the weakly induced L-topological spaces that involves the
concept of well monotone and directed α-Q-covers, it is also seen that submetacom-
pactness is hereditary with respect to closed subsets. Further the invariance of these
properties under perfect maps is also proved.
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Let L be a complete lattice. Its universal bounds are denoted by ⊥ and >. We
presume that L is consistent. i.e., ⊥ is distinct from >. Thus ⊥ ≤ α ≤ > for all
α ∈ L. We note ∨φ = ⊥ and ∨φ = >. The two point lattice {⊥,>} is denoted by
2. A unary operation ′ on L is a quasi-complementation. It is an involution (ie.,
α′′ = α for all α ∈ L) that inverts the ordering. (ie., α ≤ β implies β′ ≤ α′). In
(L,′ ) the DeMorgan laws hold: (∨A)′ = ∧{α′ : α ∈ A} and (∨A)′ = ∨{α′ : α ∈ A}
for every A ⊂ L. Moreover, in particular, ⊥′ = > and >′ = ⊥.

A molecule or co-prime element in a lattice L is a join irreducible element in L
and the set of all non zero co-prime elements of L is denoted by M(L). A complete
lattice L is completely distributive if it satisfies either of the logically equivalent
CD1 or CD2 below:

CD1: ∧i∈I (∨j∈Jiai,j) = ∨φ∈∏
i 6=I Ji

(∧i∈Iai,φ(i)

)

CD2: ∨i∈I (∧j∈Jiai,j) = ∧φ∈∏
i 6=I Ji

(∨i∈Iai,φ(i)

)

for all {{aij : j ∈ Ji} : i ∈ I} ⊂ P (L)\{φ}, I 6= φ.
If L is a complete lattice, then for a set X, LX is the complete lattice of all maps

from X into L, called L-sets or L-subsets of X. Under point-wise ordering, a ≤ b in
LX if and only if a(x) ≤ b(x) in L for all x ∈ X. If A ⊂ X, 1A ∈ 2X ⊂ LX is the
characteristic function of A. The constant member of LX with value α is denoted
by α itself. Usually we will not distinguish between a crisp set and its characteristic
function. Wang [11] proved that a complete lattice is completely distributive if and
only if for each α ∈ L, there exists B ⊆ L such that (i) a = ∨A and (ii) if A ⊆ L
and a ≤ ∨B, then for each b ∈ B, there exists c ∈ A such that b ≤ c. B is called
the minimal set of a and β(a) denote the union of all minimal sets of a. Again
β∗(a) = β(a) ∩M(L). Clearly β(a) and β∗(a) are minimal sets of a.

For α ∈ L and A ∈ LX , we use the following notations.

A[α] = {x ∈ X : A(x) ≥ α}
A[α] = {x ∈ X : A(x) ≤ α}
A(α) = {x ∈ X : A(x) 6≥ α}
A(α) = {x ∈ X : A(x) 6≤ α}

Clearly LX has a quasi complementation ′ defined point-wisely α′(x) = α(x)′ for all
α ∈ L and x ∈ X. Thus the DeMorgan laws are inherited by (LX ,′ ).

Let (L,′ ) be a complete lattice equipped with an order reversing involution and
X be any non empty set. A subfamily τ ⊂ LX which is closed under the formation
of sups and finite infs (both formed in LX) is called an L-topology on X and its
members are called open L-sets. The pair (X, τ) is called an L-topological space (L-
ts). The category of all L-topological spaces, together with L-continuous mappings
and the composition and identities of set is denoted by L-Top. Quasi complements
of open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely distributive
lattice is ∨-generating. Moreover for a continuous lattice L and a topological space
(X, T ), T = iLωL(T ) is not true in general. By proposition 3.5 in Kubiak [7] we know
that one sufficient condition for T = iLωL(T ) is that L is completely distributive.
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In [12] Wang extended the Lowen functor ω for completely distributive lattices
as follows: For a topological space (X,T ), (X,ω(T )) is called the induced space
of (X, T ) where ω(T ) = {A ∈ LX : ∀α ∈ M(L), A(α′) ∈ T}. In 1992 Kubiak also
extended the Lowen functor ωL for a complete lattice L. In fact when L is completely
distributive, ωL = ω.

An L-topological space (X, τ) is called weakly induced space if ∀ α ∈ M(L),
∀A ∈ τ it is true that A(α′) ∈ [τ ] where [τ ] is the set of all crisp open sets in τ .

Based on these facts, in this paper we use a complete, completely distributive
lattice L in LX . For a standardized basic fixed-basis terminology, we follow Hohle
and Rodabaugh [4].

2. Preliminaries and basic definitions

Definition 2.1 ([8]). Let (X, τ) be an L-ts. A fuzzy point xα is quasi coincident
with D ∈ LX (and write xα ≺ D) if xα 6≤ D′. Also D quasi coincides with E at x
(DqE at x) if D(x) 6≤ E′(x). We say D quasi coincident with E and write DqE if
DqE at x for some x ∈ X. Further D¬qE means D not quasi coincides with E. We
say U ∈ τ is quasi coincident nbd of xα(Q−nbd) if xαqU . The family of all Q-nbds
of xα is denoted by Qτ (xα) or Q(xα).

Definition 2.2 ([8]). Let (X, τ) be an L-ts, A ∈ LX . Φ ⊂ LX is called a Q-cover of
A if for every x ∈ Supp (A), there exist U ∈ Φ such that xA(x) ≺ U . Φ is a Q-cover
of (X, τ) if Φ is a Q-cover of >. If α ∈ M(L), then C ∈ τ is an α-Q-nbd of A if
C ∈ Q(xα) for every xα ≤ A. Φ is called an α-Q-cover of A, if for each xα ≤ A,
there exists U ∈ Φ such that xα ≺ U . Φ is called an open α-Q-cover of A if Φ ⊂ τ
and Φ is an α-Q-cover of A. Φ0 ⊂ LX is called a sub α-Q-cover of A if Φ0 ⊂ Φ and
Φ0 is also an α-Q-cover of A.

Definition 2.3 ([8]). Let (X, τ) be an L-ts, A = {At : t ∈ T} ⊆ LX , xλ ∈ M(LX).
A is called locally finite at xλ, if there exist U ∈ Q(xλ) and a finite subset T0 of T
such that t ∈ T\T0 ⇒ At¬qU . And A is called ∗-locally finite at xλ if there exist
U ∈ Q(xλ) and a finite subset T0 of T such that t ∈ T0 ⇒ χAt(0)¬qU . A is called
locally finite (∗-locally finite) for short, if A is locally finite (∗-locally finite) at every
molecule xλ ∈ M(LX).

A is called discrete at xλ if there exist U ∈ Q(xλ) and a singleton T0 = {t0} ⊂ T
such that t ∈ T0 ⇒ At¬qU . And A is called ∗-discrete at xλ if there exist U ∈ Q(xλ)
and a singleton T0 = {t0} ⊂ T such that t ∈ T T0 ⇒ χAt(0)¬qU . A is called discrete
(∗-discrete) for short, if A is discrete (∗-discrete) at every molecule xλ ∈ M(LX).

The previous notions “locally finite family” and “discrete family” are defined for
L-ts. They can be also defined for L-subsets:

Definition 2.4 ([8]). Let (X, τ) be an L-ts. A ∈ LX , A = {At : t ∈ T} ⊆ LX ,
xλ ∈ M(LX). A is called locally finite (discrete) in A, if A is locally finite (discrete)
at every molecule xλ ∈ M(↓ A).

It is easy to find that the above definition coincides with Definition 2.3 provided
A = >.
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Definition 2.5 ([5]). Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊂ LX , xλ ∈ M(LX).
A is called point finite at xλ if xλ ≺ At for at most finitely many t ∈ T . And A is
∗-point finite at xλ if there exists at most finitely many t ∈ T such that xλ ≺ χAt(0),
A is called point finite (resp. ∗-point finite) for short, if A is point finite (resp.
∗-point finite) at every molecule xλ of LX .

Definition 2.6. A sequence {Gn} of α-Q covers of > is said to be a θ-sequence
(∗-θ-sequence) of α-Q covers if for each xα ∈ M(LX), there is some k ∈ N such that
the family Gk is point finite (∗-point finite) at xα.

Definition 2.7 ([8]). Let (X, τ) be an L-ts. (X, τ) is called weakly α-induced if
U(α) ∈ [τ ] for every U ∈ τ .

Definition 2.8 ([8]). Let (X, τ) be an L-ts. Then by [τ ] we denote the family of
support sets of all crisp subsets in τ . (X, [τ ]) is a topology and it is the background
space. (X, τ) is weakly induced if U ∈ τ is a lower semi continuous function from
the background space (X, [τ ]) to L.

Definition 2.9 ([8]). Let (X, τ) be an L-ts. Then the following conditions are
equivalent.
(i) (X, τ) is weakly induced.
(ii) (X, τ) is weakly γ-induced for every γ ∈ pr(L).
(iii) (X, τ) is weakly α-induced for every α ∈ L.

Definition 2.10 ([2]). Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX , B ∈ LX .
A is called σ-discrete in B if A is countable union of sub families which are

discrete in B. A is called σ-discrete for short, if A is σ-discrete in >.
A is called σ∗-discrete in B if A is countable union of sub families which are

∗-discrete in B. A is called σ∗-discrete for short, if A is σ∗-discrete in >.

Definition 2.11 ([8]). Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX is a closure
preserving collection if for every subfamily A0 of A, cl [∨A0] = ∨[clA0].

Proposition 2.12 ([8]). Let (X, τ) be an L-ts. A ⊂ LX is closure preserving. Then
for every sub family A0 = {At : t ∈ T} ⊂ A, ∨t∈T clAt is a closed subset.

Theorem 2.13 ([8]). Every locally finite family of subsets is closure preserving;
particularly, every discrete family of subsets is closure preserving.

Definition 2.14. Let (X, τ) be an L-ts. A = {At : t ∈ T} ⊆ LX is a interior
preserving collection if for every subfamily A0 of A, int [∧A0] = ∧[intA0].

Definition 2.15 ([1]). Let (X, τ) be an L-ts. A,B ⊂ LX . A is called a refinement
of B (A < B) if for every A ∈ A, there exists B ∈ B such that A ≤ B.

Definition 2.16 ([5]). A collection U of fuzzy subsets of an L-topological space
(X, τ) is said to be well monotone if the subset relation ‘<’ is a well order on U.

Definition 2.17 ([5]). A collection U of fuzzy subsets of an L-topological space
(X, τ) is said to be directed if U, V ∈ U implies there exists W ∈ U such that
U ∨ V < W .
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3. Fuzzy sub-metacompactness

Definition 3.1 ([2]). Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). A is called α-
subparacompact (α∗-subparacompact) if for every open α-Q-cover Φ of A, there
exist a closed refinement Ψ of Φ which is σ-discrete (σ∗-discrete) in A and Ψ
is also an α-Q-cover of A. A is subparacompact (∗-subparacompact) if A is α-
subparacompact (α∗-subparacompact) for every α ∈ M(L). And (X, τ) is subpara-
compact (∗-subparacompact) if > is subparacompact (∗-subparacompact).

Definition 3.2. Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). A is called α-submeta-
compact (α∗-submetacompact) if for every open α-Q-cover of A has a θ-sequence
(∗-θ-sequence) of α-Q-cover refinements. A is submetacompact (∗-submetacompact)
if A is α-submetacompact (α∗-submetacompact) for every α ∈ M(L). And (X, τ) is
submetacompact (∗-submetacompact) if > is submetacompact (∗-submetacompact).

Remark 3.3. Clearly we have ∗-point finite ⇒ point finite.

Proposition 3.4. Let (X, τ) be an L-ts, A ∈ LX , α ∈ M(L). Then
(i) A is α∗-submetacompactness ⇒ A is α-submetacompactness.
(ii) A is ∗-submetacompactness ⇒ A is submetacompactness.

Proposition 3.5. Every discrete (∗-discrete) family is point finite (∗-point finite)

Proof of Proposition 3.5 follows immediately from the definitions.

Remark 3.6. From the Proposition 3.5 it follows that subparacompact (∗-subpara-
compact) ⇒ submetacompact (∗-submetacompact).

Proposition 3.7. A point finite closure preserving closed collection is always locally
finite.

Proof. Let {At : t ∈ T} be a point finite closure preserving closed collection and let
xλ ∈ M(LX). Therefore xλ ≺ At, for t ∈ T0 where T0 is an at most finite subset of
T .

Now take

V = cl {∨At : t 6∈ T0}
= ∨{cl At : t 6∈ T0} since the collection is closure preserving.

= ∨{At : t 6∈ T0} since each At is closed.

Take U = V ′ = (∨{At : t 6∈ T0})′ = ∧{A′t : t 6∈ T0}
Now if t ∈ T\T0, xλ¬qAt implies xλqA′t for every t ∈ T\T0. Therefore it follows

that xλq(∨{At : t 6∈ T0})′. That is xλqU , ie, xλ 6≤ U ′. Now since xλ¬qAt it follows
that xλ ≤ A′t.

Combining these two we get A′t ≥ xλ 6≤ U ′. That is A′t 6≤ U ′ and hence At¬qU .
This completes the proof. ¤

Similar to the Proposition 3.7 it can be shown that a ∗-point finite closure pre-
serving collection is always ∗-locally finite.

Definition 3.8. Let (X, τ) be an L-ts, A ∈ LX . A is strongly compact, if for every
α ∈ M(L) every α net in A has a cluster point in A with height α.
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Result 3.9. Let (X, τ) be an L-ts, A ∈ LX , A is strongly compact if and only if for
every α ∈ M(L), every open α-Q-cover of A has a finite sub α-Q-cover.

Theorem 3.10. Let (X, τ) be an L-ts, A ∈ LX . Then
A is strongly compact ⇒ A is ∗-paracompact ⇒ A is ∗-subparacompact ⇒ A is
∗-submetacompact.

Theorem 3.11. Let (X, τ) be a weakly induced L-ts. Then the following conditions
are equivalent
(i) (X, τ) is submetacompact.
(ii) There exist α ∈ M(L) such that (X, τ) is α-submetacompact.
(iii) (X, [τ ]) is submetacompact.

Proof.
(i) ⇒ (ii) Clear.
(ii) ⇒ (iii) Let U ⊂ [τ ] be an open cover of X. Then clearly {χU : U ∈ U} is an open
α-Q-cover of >. Then by (ii), it has a θ-sequence of open α-Q-cover refinements say
V = {Vn}. For each Vn ∈ Vn take Vn(α′) = {x ∈ X : Vn(x) 6≤ α′} and consider
the collection Wn = {Vn(α′) : Vn ∈ Vn}. Then by the weakly induced property
of (X, τ), Wn is an open cover of (X, [τ ]). Now clearly Wn is a point finite open
refinement of U and it follows that W is a θ-sequence of U. Hence (ii) ⇒ (iii).
(iii) ⇒ (i) Suppose that α ∈ M(L) and U ⊂ τ be an open α-Q-cover of >. Since
(X, τ) is weakly induced {U(α′) : U ∈ U} is an open cover of (X, [τ ]). Then there
exists a θ-sequence of open refinements say V = {Vn}. For every Vn ∈ Vn, let UVn

be such that Vn ⊂ UVn(α′). Let Wn = {χV n ∨ UV n : Vn ∈ Vn and Vn ⊂ UV n(α′)}.
Now clearly Wn is an open α-Q-cover refinement of U. Take W = {Wn}. Now
we will prove that each Wn is point finite. Let xλ ∈ M(LX). Then since Vn is
point finite, it follows clearly that x ∈ V1, V2, . . . , Vn for some n ∈ N and Vi ∈ Vn

for i = 1, 2, . . . , n. Now we will show that xλ ≺ χV i ∧UV i for at most finitely many
i. For, if possible xλ ≺ χV i ∧ UV i for infinitely many Vi ∈ Vn. Then xλ ≺ χV i

or xλ ≺ UV i for infinitely many Vi ∈ Vn. In both cases x ∈ Vi for infinitely
many Vi ∈ Vn. This is a contradiction and hence Wn is point finite. Therefore
W = {Wn} is a θ-sequence of U and thus (iii) ⇒ (i). This completes the proof. ¤

Theorem 3.12. Let (X, τ) be a weakly induced L-ts. Then the following conditions
are equivalent
(i) (X, τ) is ∗-submetacompact.
(ii) There exist α ∈ M(L) such that (X, τ) is α∗-submetacompact.
(iii) (X, [τ ]) is submetacompact.

Proof.
(i) ⇒ (ii) Clear.
(ii) ⇒ (iii) Let U ⊂ [τ ] be an open cover of X. Then clearly {χU : U ∈ U} is an
open α-Q-cover of > and it has a ∗-θ-sequence of open α-Q-cover refinements say
V = {Vn}. For each Vn ∈ Vn we take Wn = {Vn(α′) : Vn ∈ Vn}. Now clearly Wn

is a refinement of U and a cover of X. Since (X, τ) is weakly induced, Wn ⊂ [τ ].
Now take W = {Wn}. To prove W is a θ-sequence, it is enough if we prove that
each Wn is a point finite collection.
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We want to prove that for any x ∈ X, x ∈ Vni(α′) for at most finitely many
i. By (ii) we have xα ≺ χV ni(0) for at most finitely many i and hence we have
α 6≤ χV ni(0)′(x) for at most finitely many i. Now we know that Vni(0) 6≤ Vni(α′)
and hence χVni(0) 6≤ χV ni(α′). Therefore α′ 6≥ χV ni(0)(x) 6≤ χV ni(α′)(x) for atmost
finitely many i. That is χV ni(α′)(x) 6≤ α′ and thus χV ni(α′)(x) 6= ⊥ and hence it
follows that x ∈ Vni(α′) for at most finitely many i.
(iii) ⇒ (i) Suppose that α ∈ M(L) and U ⊂ τ be an open α-Q-cover of >. Since
(X, τ) is weakly induced U∗ = {U(α′) : U ∈ U} is an open cover of (X, [τ ]). Then by
(iii) U∗ has a θ-sequence of open cover refinements V = {Vn}. For every Vn ∈ Vn,
let UV n ∈ U such that Vn ⊂ UV n(α′) and take Wn = {χV n ∨ UV n : Vn ∈ Vn}.
Clearly Wn is an open α-Q-cover refinement of >. Now consider W = {Wn}. We
will prove that W is a ∗-θ-sequence. It is enough if we show that each Wn is ∗-point
finite.

Let xα ∈ M(LX). If possible let xα ≺ χ(χV n ∨ UV n)(0) for infinitely many
Vn ∈ Vn. That is xα ≺ χV n ∧ χUV n(0) for infinitely many Vn ∈ Vn. And hence
xα ≺ χV n or xα ≺ χUV n(0) for infinitely many Vn ∈ Vn. In both cases x ∈ Vn for
infinitely many Vn ∈ Vn. This is a contradiction that Vn is point finite. Hence Wn

is ∗-point finite and this completes the proof. ¤
Theorem 3.13. Let (X, τ) be a weakly induced L-ts. Then the following conditions
are equivalent
(i) (X, τ) is submetacompact.
(ii) For every α ∈ M(L), every well monotone open α-Q-cover of > has a θ-sequence
of open α-Q-cover refinements.
(iii) There exists an α ∈ M(L) such that every well monotone open α-Q-cover of >
has a θ-sequence of open α-Q-cover refinements.

Proof.
(i) ⇒ (ii) ⇒ (iii) Obvious.
(iii)⇒ (i) It is enough if we prove that (X, [τ ]) is metacompact. By a characterization
of submetacompactness [3], it is enough to prove that every well monotone open cover
of (X, [τ ]) has a θ-sequence of refinements.

Let {Ut : t ∈ T} be a well monotone open cover of (X, [τ ]). Then clearly {χUt : t ∈
T} is a well monotone open α-Q-cover of >. So it has a θ-sequence of open α-Q-cover
refinements say A = {An} where An = {Ant : t ∈ T}. Let Bn = {Ant(α′) : t ∈ T}.
Since (X, τ) is weakly induced, it follows that Bn ⊂ [τ ]. Consider B = {Bn}. Now
to show that B is the required θ-sequence, it is enough if we prove that each Bn

is point finite. If possible let for any x ∈ X, x ∈ Bn for infinitely many Bn ∈ Bn.
That is Ant(x) 6≤ α′ for infinitely many t ∈ T . Thus xα ≺ Ant for infinitely many
t ∈ T . This is a contradiction to that An is point finite.

Also Ut ⊃ Ant(α′). For, let x ∈ Ant(α′) for some t ∈ T . Now since {Ant : t ∈ T}
refines {χUt : t ∈ T} it follows that α′ 6≥ At(x) ≤ χUt(x) and this implies χUt(x) 6=
⊥. Thus x ∈ Ut and hence Bn is a refinement of {Ut : t ∈ T} also .This completes
the proof. ¤
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4. Conclusion and future work

In this paper, we have introduced the notion of submetacompact spaces in L-
topological spaces using the concept of θ-sequence of α-Q-covers. Moreover charac-
terizations of fuzzy submetacompactness is obtained in terms of well monotone and
directed α-Q-covers.

The relationship of the introduced concept of fuzzy submetacompactness with
other types of non compact covering properties such as paracompactness, metacom-
pactness and various implications is worth investigating.
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