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ABSTRACT. In this paper the concept of Submetacompactness in L-
topological spaces is introduced by means of #-sequence of a-@Q) covers.
This fuzzy submetacompactness is a natural generalization of Lowen fuzzy
compactness. Further some characterizations of fuzzy submetacompact-
ness in the weakly induced L-topological spaces are also obtained.
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1. INTRODUCTION

The concept of a fuzzy set introduced by Zadeh [14] provides a natural frame
work for the generalization of many concepts in general topology, known as fuzzy
topological spaces. Compactness and its various generalizations is one of the im-
portant concepts in general topology. The class of submetacompact spaces was
introduced by Worrel and Wicke [13] in 1965 and the term “submetacompact” was
suggested by H. Junnila in 1978 [6]. The theory of submetacompact spaces in general
topology provides an approach to a large portion of covering theory (see [3], [6]).

In [9] Fu-Gui Shi and Cheng-You Zheng introduced the concept of a-locally finite
family to characterize fuzzy compactness and using this they have defined para-
compactness in L-topological spaces in [10], which is a natural generalization of the
Lowen fuzzy compactness. The authors have introduced point finite families and
done some work in metacompactness in L-topological spaces and obtain a charac-
terization for the same in [5]. In this paper we define #-sequence of a-Q-covers and
submetacompactness in L-topological spaces. Besides getting characterizations for
subparacompactness in the weakly induced L-topological spaces that involves the
concept of well monotone and directed a-@Q-covers, it is also seen that submetacom-
pactness is hereditary with respect to closed subsets. Further the invariance of these
properties under perfect maps is also proved.
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Let L be a complete lattice. Its universal bounds are denoted by L and T. We
presume that L is consistent. i.e., L is distinct from T. Thus L < a < T for all
a € L. We note V¢ = L and V¢ = T. The two point lattice { L, T} is denoted by
2. A unary operation ' on L is a quasi-complementation. It is an involution (ie.,
o = « for all @ € L) that inverts the ordering. (ie., o« < @ implies §' < /). In
(L,”) the DeMorgan laws hold: (VA) = AH{a/ : a € A} and (VA) = V{d' : a € A}
for every A C L. Moreover, in particular, 1’ =T and T’ = L.

A molecule or co-prime element in a lattice L is a join irreducible element in L
and the set of all non zero co-prime elements of L is denoted by M (L). A complete
lattice L is completely distributive if it satisfies either of the logically equivalent
CD1 or CD2 below:

CD1: Nier (Vjes i) = Vel Ji (/\ielai,qﬁ(i))
CD2: Vier (/\jgjiai7j) = /\¢'EH1‘¢I J; (\/,'e[ai@(i))
for all {{a;; : j € Ji}:i eI} C P(L)\{¢}, I # ¢.

If L is a complete lattice, then for a set X, LX is the complete lattice of all maps
from X into L, called L-sets or L-subsets of X. Under point-wise ordering, a < b in
L if and only if a(z) < b(x) in Lforallz € X. If A C X, 14 € 2%¥ C LY is the
characteristic function of A. The constant member of LX with value « is denoted
by « itself. Usually we will not distinguish between a crisp set and its characteristic
function. Wang [11] proved that a complete lattice is completely distributive if and
only if for each o € L, there exists B C L such that (i) a = VA and (ii) if A C L
and a < VB, then for each b € B, there exists ¢ € A such that b < ¢. B is called
the minimal set of a and ((a) denote the union of all minimal sets of a. Again
8*(a) = B(a) N M(L). Clearly (a) and 8*(a) are minimal sets of a.

For o € L and A € LX, we use the following notations.

A ={r e X : A(z) > o}
A =z e X : A(z) < a}
AW ={reX:Ax) #a}
Ay ={r e X : A(r) £ a}

Clearly LX has a quasi complementation ’ defined point-wisely o (x) = a(z)’ for all
a € L and 2 € X. Thus the DeMorgan laws are inherited by (LX) ).

Let (L,”) be a complete lattice equipped with an order reversing involution and
X be any non empty set. A subfamily 7 C LX which is closed under the formation
of sups and finite infs (both formed in L¥) is called an L-topology on X and its
members are called open L-sets. The pair (X, 7) is called an L-topological space (L-
ts). The category of all L-topological spaces, together with L-continuous mappings
and the composition and identities of set is denoted by L-Top. Quasi complements
of open L-sets are called closed L-sets.

We know that the set of all non zero co-prime elements in a completely distributive
lattice is V-generating. Moreover for a continuous lattice L and a topological space
(X,T),T =irwr(T) is not true in general. By proposition 3.5 in Kubiak [7] we know
that one sufficient condition for T = iyw (T) is that L is completely distributive.
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In [I2] Wang extended the Lowen functor w for completely distributive lattices
as follows: For a topological space (X,T), (X,w(T)) is called the induced space
of (X,T) where w(T) = {A € L*X : Yo € M(L), A®) € T}. Tn 1992 Kubiak also
extended the Lowen functor wy, for a complete lattice L. In fact when L is completely
distributive, wy, = w.

An L-topological space (X, 7) is called weakly induced space if V o € M(L),
VA € 7 it is true that A(®") € [r] where [r] is the set of all crisp open sets in 7.

Based on these facts, in this paper we use a complete, completely distributive
lattice L in L¥X. For a standardized basic fixed-basis terminology, we follow Hohle
and Rodabaugh [4].

2. PRELIMINARIES AND BASIC DEFINITIONS

Definition 2.1 ([8]). Let (X,7) be an L-ts. A fuzzy point z, is quasi coincident
with D € LX (and write z, < D) if z, £ D’. Also D quasi coincides with E at =
(DgE at z) if D(z) £ E'(z). We say D quasi coincident with E and write DgE if
DgFE at z for some x € X. Further D-gF means D not quasi coincides with E. We
say U € 7 is quasi coincident nbd of x,(Q — nbd) if £,qU. The family of all @-nbds
of z,, is denoted by Q(z4) or Q(z4).

Definition 2.2 ([8]). Let (X,7) be an L-ts, A € LX. ® C LX is called a Q-cover of
A if for every x € Supp (A), there exist U € ® such that x4,y < U. ® is a Q-cover
of (X,7) if ® is a Q-cover of T. If « € M (L), then C € 7 is an a-Q-nbd of A if
C € Q(z,) for every z, < A. @ is called an a-Q-cover of A, if for each z, < A,
there exists U € ® such that z, < U. ® is called an open a-Q-cover of A if & C 7
and ® is an a-Q-cover of A. ®; C L¥X is called a sub a-Q-cover of A if ®0 C ® and
®g is also an a-@Q-cover of A.

Definition 2.3 ([8]). Let (X,7) be an L-ts, A = {4, : t € T} C L, z) € M(LX).
A is called locally finite at xy, if there exist U € Q(x) and a finite subset Ty of T
such that t € T\To = A;—~qU. And A is called *-locally finite at x) if there exist
U € Q(zx) and a finite subset Ty of T" such that t € Ty = xa¢0)—qU. A is called
locally finite (x-locally finite) for short, if A is locally finite (*-locally finite) at every
molecule zy € M(L¥).

A is called discrete at xy if there exist U € Q(z)) and a singleton Ty = {to} C T
such that ¢ € Ty = A;—qU. And A is called x-discrete at x, if there exist U € Q(x))
and a singleton Ty = {to} C T such that t € T' Ty = X a¢0)—~qU. A is called discrete
(+-discrete) for short, if A is discrete (*-discrete) at every molecule z) € M (L¥X).

The previous notions “locally finite family” and “discrete family” are defined for
L-ts. They can be also defined for L-subsets:

Definition 2.4 ([8]). Let (X,7) be an L-ts. A€ L* A ={A, :te T} C LX,
xx € M(L¥). A is called locally finite (discrete) in A, if A is locally finite (discrete)
at every molecule z) € M (| A).

It is easy to find that the above definition coincides with Definition 2.3 provided
A=T.
595



T. Baiju et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 4, 593-600

Definition 2.5 ([5]). Let (X,7) be an L-ts. A= {A,:t€ T} C L, z) € M(LX).
A is called point finite at x) if z) < A; for at most finitely many ¢ € T. And A is
*-point finite at x, if there exists at most finitely many ¢ € T" such that xx < x Ay (),
A is called point finite (resp. *-point finite) for short, if A is point finite (resp.
*-point finite) at every molecule zy of LX.

Definition 2.6. A sequence {G,} of a-Q covers of T is said to be a f-sequence
(*-0-sequence) of a-Q covers if for each x, € M (LX), there is some k € N such that
the family Gy is point finite (x-point finite) at z,.

Definition 2.7 ([8]). Let (X,7) be an L-ts. (X, 7) is called weakly a-induced if
Uta) € [7] for every U € 7.

Definition 2.8 ([8]). Let (X,7) be an L-ts. Then by [r] we denote the family of
support sets of all crisp subsets in 7. (X, [7]) is a topology and it is the background
space. (X,7) is weakly induced if U € 7 is a lower semi continuous function from
the background space (X, [7]) to L.

Definition 2.9 ([8]). Let (X,7) be an L-ts. Then the following conditions are
equivalent.

(i) (X, 7) is weakly induced.

(ii) (X, 1) is weakly v-induced for every v € pr(L).

(iii) (X, 7) is weakly a-induced for every o € L.

Definition 2.10 ([2]). Let (X, 7) be an L-ts. A= {A,:t€ T} C LX, B e L¥.

A is called o-discrete in B if A is countable union of sub families which are
discrete in B. A is called o-discrete for short, if A is o-discrete in T.

A is called o*-discrete in B if A is countable union of sub families which are
x-discrete in B. A is called o*-discrete for short, if A is o*-discrete in T.

Definition 2.11 ([8]). Let (X, 7) be an L-ts. A ={A,:t €T} C LX is a closure
preserving collection if for every subfamily Ag of A, cl[VAg] = V[cl Ag].

Proposition 2.12 ([§]). Let (X,7) be an L-ts. A C L is closure preserving. Then
for every sub family Ag = {A;:t € T} C A, VierclA; is a closed subset.

Theorem 2.13 ([8]). Every locally finite family of subsets is closure preserving;
particularly, every discrete family of subsets is closure preserving.

Definition 2.14. Let (X,7) be an L-ts. A = {A; : t € T} C L is a interior
preserving collection if for every subfamily Ay of A, int [AAg] = Alint Ag].

Definition 2.15 ([1]). Let (X,7) be an L-ts. A,B C L. A is called a refinement
of B (A < B) if for every A € A, there exists B € B such that A < B.

Definition 2.16 ([5]). A collection U of fuzzy subsets of an L-topological space
(X, 7) is said to be well monotone if the subset relation ‘<’ is a well order on U.

Definition 2.17 ([5]). A collection U of fuzzy subsets of an L-topological space
(X,7) is said to be directed if U,V € U implies there exists W € U such that
UvV <Ww.
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3. Fuzzy SUB-METACOMPACTNESS

Definition 3.1 (|2]). Let (X,7) be an L-ts, A € LX, a € M(L). A is called a-
subparacompact («a*-subparacompact) if for every open a-@Q-cover ® of A, there
exist a closed refinement ¥ of ® which is o-discrete (o*-discrete) in A and ¥
is also an a-Q-cover of A. A is subparacompact (*-subparacompact) if A is a-
subparacompact (a*-subparacompact) for every o € M(L). And (X, 1) is subpara-
compact (x-subparacompact) if T is subparacompact (*-subparacompact).

Definition 3.2. Let (X, 7) be an L-ts, A € LX, a € M(L). A is called a-submeta-
compact (a*-submetacompact) if for every open a-@Q-cover of A has a #-sequence
(#-0-sequence) of a-Q-cover refinements. A is submetacompact (x-submetacompact)
if A is a-submetacompact (a*-submetacompact) for every o € M(L). And (X, 7) is
submetacompact (x-submetacompact) if T is submetacompact (x-submetacompact).

Remark 3.3. Clearly we have *-point finite = point finite.

Proposition 3.4. Let (X,7) be an L-ts, A€ LX, a € M(L). Then
(i) A is a*-submetacompactness = A is a-submetacompactness.
(ii) A is x-submetacompactness = A is submetacompactness.

Proposition 3.5. Every discrete (x-discrete) family is point finite (x-point finite)
Proof of Proposition 3.5/ follows immediately from the definitions.

Remark 3.6. From the Proposition [3.5/it follows that subparacompact (x-subpara-
compact) = submetacompact (*-submetacompact).

Proposition 3.7. A point finite closure preserving closed collection is always locally
finite.

Proof. Let {A; : t € T} be a point finite closure preserving closed collection and let
zy € M(LX ). Therefore x) < Ay, for t € Ty where T is an at most finite subset of
T.

Now take

V:CI{\/Atltho}
= V{cl A; : t € Ty} since the collection is closure preserving.
= V{A4; :t & Ty} since each A, is closed.

Take U = V' = (V{A, : t € Tp}) = AM{AL : t & Ty}

Now if t € T\Ty, xx—~qA; implies xxqA} for every ¢ € T\Ty. Therefore it follows
that zxq(V{A: : t € Tp})". That is xaqU, ie, z) € U’. Now since x)—¢gA; it follows
that T\ < A;

Combining these two we get A} > x\ £ U'. That is A} £ U’ and hence A;—qU.
This completes the proof. O

Similar to the Proposition 3.7 it can be shown that a %-point finite closure pre-
serving collection is always #-locally finite.

Definition 3.8. Let (X, 7) be an L-ts, A € LX. A is strongly compact, if for every
«a € M(L) every « net in A has a cluster point in A with height «.
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Result 3.9. Let (X, 7) be an L-ts, A € LX, A is strongly compact if and only if for
every a € M(L), every open a-Q-cover of A has a finite sub a-Q-cover.

Theorem 3.10. Let (X,7) be an L-ts, A € LX. Then
A is strongly compact = A is x-paracompact = A is x-subparacompact = A is
x-submetacompact.

Theorem 3.11. Let (X, 7) be a weakly induced L-ts. Then the following conditions
are equivalent

(i) (X, 1) is submetacompact.

(ii) There exist « € M(L) such that (X, 7) is a-submetacompact.

(iii) (X, [7]) is submetacompact.

Proof.

(i) = (ii) Clear.

(ii) = (iii) Let U C [7] be an open cover of X. Then clearly {xu : U € U} is an open
a-Q-cover of T. Then by (ii), it has a #-sequence of open a-Q-cover refinements say
V = {V,}. For each V,, € V,, take V(o) = {z € X : V;,(z) £ o'} and consider
the collection W,, = {V,,(o/y : Vi € V. }. Then by the weakly induced property
of (X,7), W, is an open cover of (X, [r]). Now clearly W, is a point finite open
refinement of U and it follows that W is a f-sequence of U. Hence (ii) = (iii).

(iii) = (i) Suppose that « € M(L) and U C 7 be an open a-@Q-cover of T. Since
(X,7) is weakly induced {U(y : U € U} is an open cover of (X, [r]). Then there
exists a f-sequence of open refinements say V. = {V,,}. For every V;, € V,,, let Uy,
be such that V,, C UV,L(a’)~ Let W,, = {XVn VUy,:V,€V,and V, C UVn(a’)}-
Now clearly W,, is an open a-Q-cover refinement of U. Take W = {W, }. Now
we will prove that each W, is point finite. Let 2y € M(LX). Then since V,, is
point finite, it follows clearly that x € Vi,Vs,...,V,, for some n € N and V; € V,,
fori=1,2,...,n. Now we will show that =) < xv; A Uy; for at most finitely many
i. For, if possible z) < xv; A Uy; for infinitely many V; € V,,. Then x) < xv;
or ) < Uy; for infinitely many V; € V,. In both cases z € V; for infinitely
many V; € V,,. This is a contradiction and hence W,, is point finite. Therefore
W = {W,,} is a f-sequence of U and thus (iii) = (i). This completes the proof. [

Theorem 3.12. Let (X, 7) be a weakly induced L-ts. Then the following conditions
are equivalent

(i) (X,7) is x-submetacompact.

(i) There exist a € M (L) such that (X, T) is a*-submetacompact.

(1i1) (X, [7]) is submetacompact.

Proof.
(i) = (ii) Clear.
(ii) = (iii) Let U C [r] be an open cover of X. Then clearly {xy : U € U} is an
open a-Q-cover of T and it has a *-f-sequence of open a-Q-cover refinements say
V = {V,.}. For each V,, € V,, we take W,, = {V,,(o) : V;, € V,,}. Now clearly W,
is a refinement of U and a cover of X. Since (X, 7) is weakly induced, W,, C [7].
Now take W = {W,}. To prove W is a f-sequence, it is enough if we prove that
each W,, is a point finite collection.
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We want to prove that for any x € X, x € V() for at most finitely many

i. By (ii) we have 24 < Xvni() for at most finitely many i and hence we have
a £ Xvnioy (x) for at most finitely many i. Now we know that V,,;0) £ Vii(a)
and hence xVy;0) £ Xvni(ar)- Therefore o' 2 Xvni0)(2) £ Xvniary(x) for atmost
finitely many i. That is Xynia)(2) £ @ and thus xype)(z) # L and hence it
follows that x € V,,;(o) for at most finitely many i.
(iii) = (i) Suppose that « € M(L) and U C 7 be an open a-@Q-cover of T. Since
(X, 7) is weakly induced U* = {U,) : U € U} is an open cover of (X, [7]). Then by
(iii) U* has a #-sequence of open cover refinements V = {V,,}. For every V,, € V,,,
let Uy, € U such that V,, C Uyy ey and take Wy, = {xv, V Uyy = Vi, € Vb
Clearly W, is an open a-@Q-cover refinement of T. Now consider W = {W,,}. We
will prove that W is a *x-6-sequence. It is enough if we show that each W, is *-point
finite.

Let 2, € M(LX). If possible let 2o, < X(xvn V Uvn) (o) for infinitely many
Vo € V. That is 74 < Xvn A Xuvn(o) for infinitely many V,, € V,,. And hence
To < XVn OF To < Xuvn(o) for infinitely many V,, € V,,. In both cases x € V,, for
infinitely many V,, € V,,. This is a contradiction that V,, is point finite. Hence W,
is #-point finite and this completes the proof. O

Theorem 3.13. Let (X, 1) be a weakly induced L-ts. Then the following conditions
are equivalent

(i) (X, 1) is submetacompact.

(i) For every o € M (L), every well monotone open a-Q-cover of T has a 0-sequence
of open a-Q-cover refinements.

(#ii) There exists an o € M (L) such that every well monotone open a-Q-cover of T
has a 0-sequence of open a-Q-cover refinements.

Proof.

(i) = (ii) = (iii) Obvious.

(iii) = (i) It is enough if we prove that (X, [7]) is metacompact. By a characterization
of submetacompactness [3], it is enough to prove that every well monotone open cover
of (X, [r]) has a 6-sequence of refinements.

Let {U; : t € T'} be a well monotone open cover of (X, [r]). Then clearly {xy: : t €
T} is a well monotone open a-Q-cover of T. So it has a f-sequence of open a-Q-cover
refinements say A = {A,} where A, = {A,; :t € T}. Let B,y = {Apyory :t € T}
Since (X, 1) is weakly induced, it follows that B,, C [r]. Consider B = {B,,}. Now
to show that B is the required #-sequence, it is enough if we prove that each B,
is point finite. If possible let for any z € X, x € B,, for infinitely many B,, € B,,.
That is Api(z) € o for infinitely many ¢ € T. Thus z, < A, for infinitely many
t € T. This is a contradiction to that A,, is point finite.

Also Uy D Apg(ary. For, let x € Apy(qry for some t € T. Now since {A,; : t € T'}
refines {xy+ : t € T} it follows that o 2 A:(x) < xu+(x) and this implies xy+(z) #
L. Thus z € U; and hence B,, is a refinement of {U; : ¢t € T'} also .This completes
the proof. O
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4. CONCLUSION AND FUTURE WORK

In this paper, we have introduced the notion of submetacompact spaces in L-
topological spaces using the concept of #-sequence of a-@Q-covers. Moreover charac-
terizations of fuzzy submetacompactness is obtained in terms of well monotone and
directed a-Q-covers.

The relationship of the introduced concept of fuzzy submetacompactness with
other types of non compact covering properties such as paracompactness, metacom-
pactness and various implications is worth investigating.
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