Annals of Fuzzy Mathematics and Informatics

Volume 9, No. 4, (April 2015), pp. 581-592 Q@M
ISSN: 2093-9310 (print version) © Kyung Moon Sa Co.
ISSN: 2287-6235 (electronic version)

http://www.kyungmoon.com
http://www.afmi.or.kr

A common fixed point theorem for cyclic
contractive mappings in fuzzy metric spaces

KRISHNAPADA DAS, BINAYAK S. CHOUDHURY, PRITHA BHATTACHARYYA

Received 25 June 2014; Revised 3 August 2014; Accepted 30 August 2014

ABSTRACT. In this paper we prove a common fixed point theorem
for mappings satisfying cyclic contraction. Main theorem of this paper is
proved with the help of a control function. Some corollaries have been
deduced. At last we give an example to validate our main result.
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1. INTRODUCTION

Fixed point theory plays an important role in functional analysis. The intro-
duction of Banach’s contraction mapping principle [2] gave further boost to fixed
point theory in the development of functional analysis. Banach’s contraction princi-
ple was later on generalized in various directions. A probabilistic generalization was
proposed by Sehgal and Bharucha-Ried [29] in 1972, known as Sehgal contraction or
B-contraction. Probabilistic metric spaces are probabilistic generalization of metric
spaces. The inherent flexibility of these spaces allows us to extend the contraction
mapping principle in more than one inequivalent ways. One of such extensions of
contraction mapping was established in probabilistic metric spaces by Hicks [15],
which is known as C-contraction. Subsequently, fixed point theory in probabilistic
metric spaces has been developed in an extensive way. A comprehensive survey of
this development up to 2001 described by Hadzic and Pap [14].

Fuzzy metric space is one of the generalization of metric spaces. Kramosil and
Michalek [23] defined fuzzy metric spaces as a generalization of probabilistic metric
spaces in 1975. George and Veeramani [10, 11] modified the definition of fuzzy
metric spaces given by Kramosil and Michalek [23] in order to ensure the concept of
Hausdorff topology in this setting of fuzzy metric spaces.

As Banach contraction is continuous, so a natural question arises whether there
exists a class of mappings satisfying some contractive inequality which necessarily



Krishnapada Das et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 4, 581-592

have fixed points in complete metric spaces but need not necessarily be continuous.
Kannan type mappings [16} [17] are such mappings. A Banach contraction mapping
may have a fixed point in a metric space which does not satisfy the condition of
completeness. In [32] it has been established that the metric completeness is implied
by the necessary existance of fixed points of the class of Kannan type mappings.
Some of these works on Kannan type mappings may be seen in [20) 21], 31] .

Khan, Swaleh and Sessa [19] introduced a new type of contraction in metric space
in 1984. They used a control function to prove their result. This control function is
known as ’altering distance function’ . After this paper many results have appeared
in the literature of fixed point theory [25] 27, 28]. Choudhury and Das [4] extended
the concept of altering distance function in the context of Menger spaces through a
control function namely ®-function. The basic properties of ®-function is described
in section 2.

In this paper we apply this type of function (® function) to find a fixed point
result in a complete fuzzy metric space. The main results of our work alongwith the
corollary and the example are described in section 3.

2. PRELIMINARIES
In this section we give some mathematical preliminaries which are needed for our

discussion.

Definition 2.1. (t - norm) A binary operation * : [0,1]X][0,1] — [0,1] is a t-norm
if it satisfies the following conditions:

—_

*

(7a): *(0,0):0,
*(a,
(
(

~
~—

b ;
e, d) > x ( ,b) whenever ¢ > a and d > b,
% (x(a,b),c) =x*(a,*(b,c)) where a,b,c,de]l0,1].

Definition 2.2. (Fuzzy Metric Space [23]) The 3-tuple (X, M, ) is said to be a
fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a
fuzzy set on X x X x [0, 00), satisfying the following conditions:

M (x,y,0) = 0;

z,y,t)=1 forallt>0iff z = y;

z,y,t) = M (y,2,1);

x,z,t+8) > M (z,y,t)« M (y,2,s);

M (z,y,.): [0,00) — [0,1] is left continuous
where z,y,2 € X and t,s > 0.

M
M
M

/\/\/\/\

Definition 2.3. (Fuzzy Metric Space [10]) The 3-tuple (X, M, *) is said to be a
fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a
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fuzzy set on X x X x (0, 00), satisfying the following conditions:

M (z,y,t) > 0;
M (x,y,t) =1 forallt>0iff x =y;
M (z,y,t) = M (y,z,t);
M (z,z,t+s) > (M (z,y,t) * M (y, 2,8));
M (z,y,.): (0,00) — [0,1] is continuous
where z,y,2 € X and t,s > 0
Definition 2.4. A sequence {x,} in a fuzzy metric space (X, M, %) is said to con-

verge to x € X if and only if for each € > 0, ¢ > 0, there exists ng € N such that
M (xp,z,t) > 1 — € for all n > ng.

Definition 2.5. A sequence {x,} in a fuzzy metric space (X, M,x) is a Cauchy
sequence if and only if for each ¢ > 0, t > 0, there exists ng € N such that
M (z,, m,t) > 1 — € for all n,m > ng.

In [13] another type of definition of Cauchy sequence given by M. Grabriec.

Definition 2.6. (® - function [4]) A function ¢ : R — R is said to be a ® - function
if it satisfies the following conditions:

i) ¢ (t) =0if and only if t =0,

ii) ¢ (t) is strictly monotone increasing and ¢ (t) — oo as t — oo ,
iii) ¢ (¢) is left continuous in (0,c0) ,
iv) ¢ is continuous at 0.

Some applications of this type of function may be seen in [5] 6, [7, 9] 24]

Definition 2.7. (U-function) A function % : [0,1] X [0,1] — [0, 1] is said to be a ¥
function if it satisfies the following conditions :
i) 1 is monotone increasing and continuous function,
i) ¢¥(x,z) >z forall 0 <z <1,
i) ¢ (1,1) =1,
) ¥(0,0) =0.
An example of U-function:

_»rtayy
p+q

An application of ¥ - function may be seen in [§]. The ¥-function and the (®, )
function are also used in the context of weak contraction results in fuzzy metric
space [1] and intuitionistic fuzzy metric space [3] respectively.

In recent time another type of contraction appeared in the literature of fixed point
theory. This type of contraction is known as Cyclic contraction.

1v

Y (x,y)

, p and q are positive numbers.

Definition 2.8. (Cyclic Mapping) Let A and B be two non-empty sets. A cyclic
mapping is a mapping T : A|J B — A|J B which satisfies :
TACBand TBC A
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This line of research was initiated by Kirk, Srinivasan and Veeramani [22]. In
this work amongst the other result the following generalization of the contraction
mapping principle has been established.

Theorem 2.9 ([22]). Let A and B be two non-empty closed subsets of a complete
metric space X and suppose f: X — X satisfies :

e fAC BandfB C A.

o d(fx, fy) < kd(xz,y) for allz € A and y € B where k € (0,1).
Then f has a unique fixed point in AN B.

This work has been extended further by different authors, some of which may be
noted in [12} (18, 26, 30].

3. MAIN RESuULT

Theorem 3.1. Let (X,M,*) be a complete fuzzy metric space where x is the mini-
mum t-norm. Let there exist two non-empty closed subsets A and B of X such that
mappings T : A — B and f : B — A satisfy following conditions :

(3.1) TA C Band fBC A

(32)  M(Tx, fy,¢(1) > <M (ﬂﬂ’Tf’«”‘Zs <t>> M (’y fv.¢ <tb>))

forallx € Ay € B, where t1,ta,t >0 witht; +t2 =t, a,b>0 with0<a+b <1,
Y is a V-function and ¢ is a ®-function. Then AN B is non-empty and T and f
have a unique common fized point.

Proof. Let zy € A be any arbitrary point. As z¢g € A, and TA C B, we can find
r1 € B such that Txy = 1.

Again, x1 € B, and fB C A so that we can find x5 € A such that fx; = xs.
Continuing this process we can find z9,, € A and z9,+1 € B such that,

Txop = Tant1 € B, fTony1 = Tonyo € A,
Now for t,t1,to > 0 with ¢ = t1 + ¢t and taking n be even, we have,
M ($n+17 Tn, ¢ (t)) = M (Txna fxnfla ¢ (t))

%

o e (8)) o (3))
oo o)) s ()

since z,, € A and x,,_1 € B.

Let us consider t; = aa—_fb, to = ab—jb and ¢ = a + b, then obviously we have 0 < ¢ < 1,
and
tq t to
3.3 a1 _z_ 22
(33) a c b

Then from (3.3) we have,

(34) M (211,20, 6 (1)) > (M <J;n+1,xn,¢ (Z)) M (mn,xn_1,¢ (Z))) .
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Again, for t,t1,t2 > 0 with ¢ = t1 + ¢t and taking n be odd, we have

M (zpt1,20,0 (1) = M (fen,Trp—1,0(t)) [as zp41 € A, z,, € B]
= M(Txn—lafmnagﬁ(t))

ot (£) (e 3)
_ w<M<xn 1,xn,¢<2)),M(xn,xn+1,¢(b2) )

By (3.3) we have from above
(35) M (2ns1sm, b (£) = o (M (xn,xn_l,(b (Z)) M (xn+1,xn, (Z))) .
()

Combining (3.4) and (3.5) we have for all positive integer n,
t
c

(3.6) M (pt1,Zn,0(t) >0 (M (:cn,xn 1,(;5( >) M (xn+1,xn,¢

Now we claim that for all £ > 0,

6 (o (1)) 20 (srro (1)

If possible, let for some t' > 0,

(s (£)) <3t (snmeno (1)

Then we have from (3.6)

))
))

Ol Ol
Ol Ol

t/
M($n+1,$n,(b(t/)) > ’l/) <M (mn+1,xn,¢< )> (Jin,{En 1 < >)>
t t/
= Y| M| 21, 20,0 c M\ Tpi1, 0, @ c
c
> M (xpi1,70,6(t')), which is a contradiction.
Hence using (3.7) we get from (3.0)
M<xn+1axn;¢<t)> Z w(M (xn+17xnv¢< )) 3M<xn17mnv¢< >
c
t
(38) Z M <-rnaxn—1a d) (C)) .
By repeated application of (3.8) we have,
585

/
> M (l‘n+1, Ty, @ (t)> [by property of ¥ - function]
Therefore for all ¢ > 0, (3.7) holds.
Z ¢<M <In,l‘n_1,¢( >>7M<In—1arna¢(
tn
(3.9) M (Zpi1,Zn, ¢ (t)) > M (xl,xo,(b <c)> .
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Taking limit as n — oo we have from (3.9), for all ¢ > 0,

lim M (Zpi1,Zn, ¢ (1)) = 1.

n—oo

Next we show that the sequence {z,} is a Cauchy sequence.

If possible let {x,} be not a Cauchy sequence. Then there exists ¢ > 0 and 0 <
A < 1 for which we can find subsequences {2, ()} and {z,,)} of {z,,} with m(k) >
n(k) > k for all positive integer k, such that

(3.10) M (l‘m(k), Tn(k)s 6) <1-A\
We take m(k) corresponding to n(k) to be smallest integer satisfying (3.10)) so that

(3.11) M (xm(k)_l,xn(k),e) >1-A
Now we claim that

(3.12) M (Zp(k)—2> Ty, €) > 1— A
If possible let for € > 0

(3.13) M (% (k)—2> Ty, €) <1 — A

—which contradicts the fact that m(k) is smallest integer satisfying (3.10).
Hence,
M (xm(k)_g,a:n(k),e) >1-=A

If €1 < € ,then we have

M (Zy (k) Ta(kys €1) < M (T(i)s Tn(r), €) -

We conclude that it is possible to construct {z,,)} and {z,@)} with m (k) >
n (k) > k and satisfying (3.10),(3.11),(3.12) whenever € is replaced by a smallest
positive value.

As ¢ is continuous at 0 and strictly monotone increasing with ¢(0) = 0, it is possible
to obtain ez > 0 such that, ¢(e3) < e.

Then by the above argument, it is possible to obtain an increasing sequence of
integers {m(k)} and {n(k)} with m(k) > n(k) > k such that

(3.14) M (T Tnrys @ (€2)) < 1=,
(315) M (xm(k)_l,xn(k),(b(q)) > 1=,
(3.16) M (T (k)2 Tn(k), @ (€2)) > 1=\

By property of ¢, we can choose p; > 0 and py > 0 such that p; + pa < ¢ (€2).
Again we have, for sufficiently large k,
M (:cm(k),xm(k)_l,pl) > 1=,
and
M (xm(k)_l,xm(k)_27p2) >1-=A
As M is left continuous, we have

M (% (k)—2> Ty, @ (€2) — p1 — p2) = 1 — A,
586
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Now from (3.14), we have when m(k) = odd, n(k) = even

1L — A2 M (@) Tn), ¢ (€2)) = M (T -1, fTrnk)—1, ¢ (€2))

> 1)[)( (M (Iwz(k)—laTxm(k)—1a¢ <ij>) 7M <xn(k)—15 fxn(k)—h(rb <6b2>)> )

’

"
€2 = €h+€5. Here €; and € are so chosen that 2 > e; and & > €3,as 0 < a+b < 1.
Therefore,

oo () s ()
- AR AR a))’ T b
> w(M (@)1, Tmry: @ (€2)) aM(%(k)flvwn(k)v(/b(@)))
> Pp(1-XN1-=MX)
> 1— ), a contradiction.
Again from (3.14) we have when m(k) = even, n(k) = even.

1-x > M($m(k),33n(k), ¢(62))
> min{M(xm(k),wm(k),l, ¢(612)),M(xm(k)717xn(k)7 (15(771 + 772))}
(3.17)
where qb(eg) > qb(eé) + ¢<771 + 772) and 7, and 7 are so chosen that - > €5 and
'rl]‘fhezreefi).re,

1—A > min ({(M(xm(k),xm(k)_l, ¢<e'2>),
0 (M (T2, fanay-1:0(m +m}) ) ) ).
min {M(mm(k), ()15 ¢(e'2)),
(0 s o () Mo £ (2)
> min {1 — A
w(M (%n(k)fz’ Tin(k)—1> ¢(62)> ; M(xnw)fl) T (k) ¢(62)))}
> min{l—)\,w(l —)\,1—)\)}

> 1— ) a contradiction.

Again,from (3.14), we have when m(k) = odd, n(k) = odd,

vV

1-A

\%

M (Im(k)v T (k) ¢(62))

= min{M(xm(k),xm(k),l, ¢(6/2)),M($m(k)717xn(k)7 ¢(771 + 772))}
(3.18)

=
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where ¢(62> > qﬁ(e’z) + qb(m + 772) and 7; and 7, are so choosen that - > €3 and

2 > €.

Therefore,

1—X > min ({ (M(l’m(k)71'm(k)—1;¢(€/2))a
(M (Tmm(k)—% fnm)-1, ¢(771 T 772}))))’
min {M(-Tm(k)’ Tm(k)—1> ¢(6/2))’

6 (M (20091 T2nay 1,62 ) ). M (T2 frman -2 0(F ) ) ) }
> min {1 — A

zp(M (mn(k)_l, Lo (k) ¢(62)) ; M(fﬂm(m—zv Lm (k)15 ¢(62)>)}
> min{1-Xp(1-A1-2))

> 1— ) a contradiction.

Y

Therefore {x,} is a Cauchy sequence irrespective of m(k) , n(k) are even or odd.
Since X is complete, we have xz,, — z € X for n — oo, that is , lim,, ., z, = 2.
The subsequences {x2,} and {x2,_1} of =, also converges to z. Now {z3,} C A
and A is closed. Therefore z € A. Similarly {x2,+1} C B and B is closed. Therefore
z € B. Thus we have z € AN B.

We now show that fz = z = T'z. If possible, let 0 < M (z, fz,¢ (t)) < 1 for some
t > 0. Now,

M (37271—&-1; fZ M (Tzoy, fZ t)
(]

ot (s i, ( )()  (ws20(3))) o=
= o (s (2)) o (s (%))
~ o (x+¢ (t>) u(arme(5)))

[takingt1:a+b a+band0—a+b

Y

Taking limits on both sides,

nh—>n<;loM (x2n+17fzv¢(t)) > lim '(/) <M <$2nyx2n+1’¢ (i)>) 7

n—oo
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o(reme () (520 ()
()

(s sme (1)) (120 ()

> i (z, fz, 0 ( )> ,  [By property of ¥ - function]

(z, fz,0(t) which is a contradiction.

M(z, fz,¢(t)

Y

Vv v
— ol
ol

)

M (z, fz,¢(t)) = 1,for all t > 0,
That is z = f=z.

Again if possible let 0 < M (2,Tz,¢(t)) < 1, for some ¢ > 0. Now, for that t we
have,

Tz, xon42,¢ (1) = M (T2, frani1, ¢ (t
tq

a>>7M<x2n+1’fx2n+1, ( ))) [where t; + ty = 1]
)t o (3))

v

b
t t
= ¢ <M <Z7TZ,¢ C)) 7M <$2n+1,$2n+27 (C)))
t bt
[takingtl—aj_b, 2:a+bandc:a+b]

v
<
N
<
N
N
~
n
©-
TN TN

Vv
<
A/~
=
A/~
®
~
n
<

t
> M (Z,Tz, ) <c>> [ By property of ¥ - function ]
)

Z M(Z7TZ7¢(t) )

which is a contradiction. Therefore M (z,Tz,¢(t)) = 1 for all ¢ > 0, That is
z =Tz. Hence we have z = fz =Tz.
For uniqueness , let w be another fixed point of T and f.
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Then we have for all ¢t > 0,
M (z,w,9(t) = M(Tz, fw,¢(t))

o o(uormo2)) o esms (3))
(ona () s ()

(1,1).

I
oS SR S

Sz =w.
This proves the uniqueness of fixed point and completes the proof of the theorem. [

Taking t; = t5 = % in Theorem 3.1, we get the corollary below,

Corollary 3.2. Let (X,M,*) be a complete metric space where % is minimum t-
norm. Let there exist two non-empty closed subsets A and B of X such that mappings
T:A— B and f: B— A satisfy following conditions :

(3.19) TA C B and fBCA

620 M(Tacfuo(t)) = w(M(nTa0(L)). 20 (v sv.0( L))

forallz € Ajy € B, wheret >0, a,b> 0 with0 < a+b <1, ¥ is a Y-function
and ¢ is a -function. Then AN B is non-empty and T and f have a unique fixed
point.

Taking a = b in Theorem (3.1 we have the following corollary,

Corollary 3.3. Let (X,M,*) be a complete metric space where x is the Srd order
minimum t-norm. Let there exist two non-empty closed subsets A and B of Xs.t.
mappings T : A — B and f: B — A satisfy following conditions :

(3.21) TACB and fBCA

(322) M (T fy.0(r)) = w(M (e Tr0( L)) M (v f.0(2)))

Ve € A,y € B, where t1,ta,t >0 ,witht; +t; =t and 0 < a <1, 9 is a P-function
and ¢ is a ¢-function. Then AN B is non-empty and T and f have a unique fixed
point.

Following corollary comes by taking 7" = f in Theorem (3.1}

Corollary 3.4. Let (X, M, *) be a complete metric space where * is a minimum
t-norm. Let there exist two non-empty closed subsets A and B of X such that T is
a self mapping on X satisfies following conitions :

(3.23) TACB and TBCA

(3.24) M(Tx,Ty,¢(t>> > w(M(wa¢(%))M<yTy¢(%2>))

Vo € A,y € B, where ty,ta,t >0 witht;1 +to =1, a,0>0with0<a+b<1, v is
a V-function and ¢ is a ®-function. Then AN B is non-empty and T has a unique
fixed point.
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Now we give an example to validate theorem [3.1.

Example 3.5. Let X = {x1,29,23,24}, A = {x1,22,24}, B = {x2,23} and
M (z,y,t) is defined by

M(zq,29,t) = M(x1,23,t) = M(21,24,t) = M(x2,24,1)
0 ift <0
(3.25) = M(zsaq,t) =404 if0<t<4
1 ift >4
0 ift <0
(3.26) M(zg,23,t) =075 f0<t<7
1 ift>71.

It is easy to verify that (X, M, *) is a complete fuzzy metric space.If we define
(3.27) T:A—-B,f:B— A

as follows : Txy = xo, Txo = w9, Txy = x3 and fro = x2, fx3 = o then it satisfies
all conditions of the Theorem 3.1l where ¢(t) = 2t , ¥(x,y) = W%‘/@ Then T and
f have a unique fixed point 5.
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