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Abstract. In the theory of fuzzy relations the properties of reflexiv-
ity, symmetry, antisymmetry, transitivity, etc. are intensely studied. The
indicators of fuzzy relations measure the degree to which such a fuzzy re-
lation verifies such a property. The purpose of this paper is to characterize
indicators of fuzzy relations in terms of fuzzy modal operators.
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1. Introduction

In the theory of fuzzy relations properties as reflexivity, symmetry, antisymmetry,
transitivity, etc. are often studied [7], [13], [16], [20], [25]. Such properties are
intensely used in multicriteria decision–making [14], [20], in social choice [5], [6],
in fuzzy revealed preference theory [21], [24], [15], in cluster analysis [32] etc. The
indicators of fuzzy relations appeared in fuzzy logic where it is much more important
to evaluate the degree of truth of a formula instead of saying whether the formula
holds or not (see e.g. [7], [25]). An indicator of a fuzzy relation R is an element
of the interval [0, 1] which expresses the degree to which R verifies a property P .
For example, it is more important to know the degree to which the relation R is
transitive instead of knowing if R is transitive or not. In this way the indicators
of fuzzy relations refine various results by the use of fuzzy relations ([7], [21], [24],
[31], [33], [34], [35], [36]). At the same time they offer us a possibility to rank a
set of alternatives according to the degree to which they verify one or more criteria
(expressed by properties of a fuzzy relation).

In fuzzy choice functions theory their indicators have been introduced. They
express the degree to which a fuzzy choice function fulfills a condition of rationality,
revealed preference, consistency, etc. (see e.g. [21], [10], [15]). In [21], [24], [10], [15],
[34] some connections between indicators of fuzzy choice functions and indicators of
associated fuzzy preference relations are established.
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On one hand, fuzzy modal operators appeared in fuzzy modal logic [18], [19],
fuzzy morphology [12], [27] and fuzzy rough sets [17], [28].

In [29], properties of fuzzy relations such as reflexivity, symmetry, antisymmetry,
transitivity, etc. have been characterized by fuzzy modal operators.

The aim of this paper is to generalize some results of [29] to the indicators of fuzzy
relations. For the indicators of reflexivity, symmetry, transitivity, euclideanity and
seriality we will prove characterization theorems in terms of fuzzy modal operators
and in terms of the structure of residuated lattice of [0, 1] associated with a left–
continuous t–norm.

When these indicators take value 1, reflexivity, symmetry, transitivity, euclidiean-
ity, respectively seriality of fuzzy relations and the results from [29] appear as par-
ticular cases of the mentioned characterization theorems.

Similarity relations are reflexive, symmetric and transitive fuzzy relations. They
extend the crisp notion of equivalence relation and are mostly used in approximate
reasoning [7], [8], [20], [21]. The notion of similarity indicator of a fuzzy relation
appears naturally, as a refinement of the similarity relation.

For the similarity indicator one also proves superior approximation theorems by
means of fuzzy modal operators. In the paper some order indicators are introduced
and some perspectives of their study are discussed.

The results of the paper establish a bridge between the theory of fuzzy relations
and fuzzy modal logic; they suggest how properties of fuzzy relations can be formu-
lated in fuzzy modal logic and how they can be analyzed by its mechanisms.

2. Preliminaries

In the first part of this section we will recall some properties of the left–continuous
t–norms and the associated residua [7], [20], [25]. The second part of the section
introduces some indicators of fuzzy relations [7], [21], [31], [34] and two fuzzy modal
operators [29].

If {ai}i∈I ⊆ [0, 1] is a family of real numbers then we denote∨

i∈I

ai = sup{ai | i ∈ I} and
∧

i∈I

ai = inf{ai | i ∈ I}.

Let ∗ be a left–continuous t–norm [7], [20], [25] and → its residuum

a → b =
∨
{c ∈ [0, 1] | a ∗ c ≤ b}.

Recall the definition of the negation and the biresiduum associated with →:
¬a = a → 0; a ↔ b = (a → b) ∧ (b → a)
In this paper two well-known continuous t–norms and their residua will be useful.

ÃLukasiewicz t-norm:

a ∗L b = max(0, a + b− 1); a →L b = min(1, 1− a + b)

Gödel t-norm:

a ∗G b = a ∧ b; a →G b =

{
1 if a ≤ b

b if a > b
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The following lemma is well-known (cf. [7], [20], [25]).

Lemma 2.1. Let a, b, c ∈ [0, 1] and {ai}i∈I ⊆ [0, 1]. Then for any continuous
t–norm ∗

(1) a ∗ b ≤ c iff a ≤ b → c;
(2) a ∗ (a → b) ≤ b;
(3) a ≤ b iff a → b = 1;
(4) 1 → a = a;
(5) a → a = 1;
(6) a → (b → c) = (a ∗ b) → c;
(7) a ≤ b implies b → c ≤ a → c and c → a ≤ c → b;
(8) a ≤ ¬b iff a ∗ b = 0;
(9) a ∗ (

∨

i∈I

ai) =
∨

i∈I

a ∗ ai;

(10) a ∧ (
∨

i∈I

ai) =
∨

i∈I

(a ∧ ai);

(11) (
∨

i∈I

ai) → a =
∧

i∈I

(ai → a);

(12) a → (
∧

i∈I

ai) = (
∧

i∈I

a → ai)

We fix a left–continuous t–norm ∗. Let X be a non–empty universe and F(X)
the set of fuzzy subsets of X. If x ∈ X then we denote by {1/x} the characteristic
function of the set {x}. A fuzzy relation is a function R : X2 → [0, 1].

A fuzzy relation R will be called:
• reflexive, if R(x, x) = 1 for all x ∈ X
• symmetric, if R(x, y) = R(y, x) for all x, y ∈ X
• transitive, if R(x, y) ∗R(y, z) ≤ R(x, z) for all x, y, z ∈ X
• euclidian, if R(z, x) ∗R(z, y) ≤ R(x, y) for all x, y, z ∈ X

• serial, if
∨

y∈X

R(x, y) = 1 for all x ∈ X

If R is a fuzzy relation on X then we define the following indicators [7], [31]:
• Ref(R) =

∧

x∈X

R(x, x)

• Sym(R) =
∧

x,y∈X

(R(x, y) → R(y, x))

• Tr(R) =
∧

x,y,z∈X

(R(x, y) ∗R(y, z) → R(x, z))

• Eu(R) =
∧

x,y,z∈X

(R(z, x) ∗R(z, y) → R(x, y))

• Ser(R) =
∧

x∈X

∨

y∈X

R(x, y)

Lemma 2.2 ([7], [31]). (1) Ref(R) = 1 iff R is reflexive;
(2) Sym(R) = 1 iff R is symmetric;
(3) Tr(R) = 1 iff R is transitive;
(4) Eu(R) = 1 iff R is euclidian;

555



Irina Georgescu/Ann. Fuzzy Math. Inform. 9 (2015), No. 4, 553–571

(5) Ser(R) = 1 iff R is serial.

By Lemma 2.2, the five indicators above refine the properties of reflexivity, sym-
metry, transitivity, euclideanity and seriality of fuzzy relations. For example, Tr(R)
indicates the transitivity degree of R.

Applying Lemma 2.1 (1) it follows immediately

Lemma 2.3. For x, y, z ∈ X the following inequalities hold:
(1) Sym(R) ∗R(x, y) ≤ R(y, x);
(2) Tr(R) ∗R(x, y) ∗R(y, z) ≤ R(x, z);
(3) Eu(R) ∗R(z, x) ∗R(z, y) ≤ R(x, y).

For A,B ∈ F(X) let us denote

S(A,B) =
∧

x∈X

(A(x) → B(x))

and

E(A,B) = S(A,B) ∧ S(B,A) =
∧

x∈X

(A(x) ↔ B(x)).

It is clear that A ⊆ B iff S(A,B) = 1 and A = B iff E(A,B) = 1.
S(A, B) is called the subsethood degree of A and B and E(A,B) the degree of

equality (degree of similarity) of A and B. Intuitively S(A,B) expresses the truth
value of the statement “A is included in B” and E(A,B) the truth value of the
statement “A and B contain the same elements” (see [7, p. 82]).

Let R be a fuzzy relation on X. Following [29] let us consider the fuzzy modal
operators [R] : F → F and < R >: F → F defined by:

([R]A)(x) =
∧

y∈X

(R(x, y) → A(y))

(< R > A)(x) =
∨

y∈X

R(x, y) ∗A(y)

for all A ∈ F and x ∈ X.

3. Main results

In the study of various bivalent modal logic systems [11] properties of binary
relations such as symmetry, transitivity, linearity, etc. appear. To define the fuzzy
modal systems semantics it is necessary to employ corresponding properties of binary
fuzzy relations [19]. But fuzzy logic semantics are mostly based on the idea of truth
degree of sentences and less based on the fact that the sentence is true or false. Two
conclusions follow from here:

(a) in the study of fuzzy modal logic semantics it is preferable to use indicators
of fuzzy relations (expressing the degree of reflexivity, symmetry, transitivity, etc.)
instead of these properties

(b) in order the indicators of fuzzy relations to be integrated into a fuzzy modal
system, it is necessary that they should be expressed according to fuzzy modal
operators.
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The results of this section answer the goal (b). The theorems of the section will
characterize the indicators Ref(R), Tr(R), Sym(R), Eu(R), Ser(R) in terms of
fuzzy modal operators introduced in the previous section. The main results of [29]
are obtained as particular results of the theorems of this section.

We fix a left–continuous t–norm ∗ and a fuzzy relation R on X. For simplicity
we denote F = F(X).

Theorem 3.1. Ref(R) =
∧

A∈F
S([R]A, A) =

∧

A∈F
S(A, < R > A)

Proof. We prove only the first equality. Let A ∈ F and x ∈ X. By Lemma 2.1 (2)
Ref(R) ∗ ([R]A)(x) = Ref(R) ∗

∧

y∈X

(R(x, y) → A(y))

≤ R(x, x) ∗ (R(x, x) → A(x)) ≤ A(x).
According to Lemma 2.1 (1), it follows that Ref(R) ≤ ([R]A)(x) → A(x) for all

x ∈ X and A ∈ F hence
Ref(R) ≤

∧

A∈F

∧

x∈X

(([R]A)(x) → A(x)) =
∧

A∈F
S([R]A,A)

We prove the converse inequality. Let x ∈ X. We define A0 ∈ F by A0(y) =
R(x, y) for all y ∈ X. Remark that ([R]A0)(x) =

∧

u∈X

(R(x, u) → A0(u)) = 1,

therefore
S([R]A0, A0) =

∧

y∈X

(([R]A0)(y) → A0(y)) ≤

≤ ([R]A0)(x) → A0(x) = A0(x) = R(x, x)
Then∧

A∈F
S([R]A,A) ≤ S([R]A0, A0) =

∧

x∈X

(([R]A0)(x) → A0(x)) ≤

≤
∧

x∈X

R(x, x) ¤

Corollary 3.2 ([29]). The following assertions are equivalent:

(1) R is reflexive;
(2) [R]A ⊆ A for all A ∈ F ;
(3) A ⊆< R > A for all A ∈ F .

Theorem 3.3. Sym(R) =
∧

A∈F
S(< R > [R]A,A) =

∧

A∈F
S(A, [R] < R > A)

Proof. Let A ∈ F . We prove that
(a) Sym(R) ≤ S(< R > [R]A,A)
(b) Sym(R) ≤ S(A, [R] < R > A)
Let x ∈ X. According to the definition of [R] and < R >

(< R > [R]A)(x) =
∨

y∈X

R(x, y) ∗ ([R]A)(y)

=
∨

y∈X

[R(x, y) ∗
∧

z∈X

(R(y, z) → A(z))]

Thus by Lemma 2.3 (1) and Lemma 2.1 (2), (9) we have
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Sym(R) ∗ (< R > [R]A)(x) = Sym(R) ∗
∨

y∈X

[R(x, y) ∗
∧

z∈X

(R(y, z) → A(z))]

=
∨

y∈X

[Sym(R) ∗R(x, y) ∗
∧

z∈X

(R(y, z) → A(z))] ≤

≤
∨

y∈X

[(Sym(R) ∗R(x, y)) ∗ (R(y, z) → A(x))] ≤

≤
∨

y∈X

R(y, x) ∗ (R(y, x) → A(x)) ≤ A(x)

Then by Lemma 2.1 (1) we get
(c) Sym(R) ≤ (< R > [R]A)(x) → A(x)
We remark that
([R] < R > A)(x) =

∧

y∈X

(R(x, y) → (< R > A)(y))

=
∧

y∈X

[R(x, y) →
∨

z∈X

R(y, z) ∗A(z)]

By Lemma 2.3 (1)
Sym(R) ∗A(x) ∗R(x, y) ≤ A(x) ∗R(y, x) ≤

∨

z∈X

R(y, z) ∗A(z)

therefore using Lemma 2.1 (1)
Sym(R) ∗A(x) ≤

∧

y∈X

[R(x, y) →
∨

z∈X

R(y, z) ∗A(z)] = ([R] < R > A)(x)

By Lemma 2.1 (1) we obtain
(d) Sym(R) ≤ A(x) → ([R] < R > A)(x)
Hence we obtain (a) and (b). It remains to prove the converse inequalities
(e)

∧

A∈F
S(< R > [R]A,A) ≤ Sym(R)

(f)
∧

A∈F
S(A, < R > [R]A) ≤ Sym(R)

Let x, y ∈ X. Consider the R–afterset A0 of R defined by A0(z) = R(y, z) for all
z ∈ X. In this case we have

(< R > [R]A0)(x) =
∨

t∈X

[R(x, t) ∗
∧

v∈X

(R(t, v) → A0(v)] ≥

≥ R(x, y) ∗
∧

v∈X

(R(y, v) → A0(v)) = R(x, y)

hence by Lemma 2.1 (7):∧

A∈F
S(< R > [R]A, A) ≤ S(< R > [R]A0, A0) ≤

≤ (< R > [R])A0(x) → A0(x) ≤ R(x, y) → A0(x) = R(x, y) → R(y, x)
Therefore∧

A∈F
S(< R > [R]A, A) ≤

∧

x,y∈X

(R(x, y) → R(y, x)) = Sym(R)

Now we shall prove (f). Let x, y ∈ X and A1 = {1/x}. Since A1(x) = 1 it follows∧

A∈F
S(< R > [R]A, A) ≤ S(A1, [R] < R > A1) ≤

≤ A1(x) → ([R] < R > A1)(x) =
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= ([R] < R > A1)(x) =
∧

u∈X

[R(x, u) →
∨

z∈X

R(u, z) ∗A1(z)] ≤

≤ R(x, y) →
∨

z∈X

R(y, z) ∗A1(z) = R(x, y) → R(y, x).

Hence we get∧

A∈F
S(A,< R > [R]A) ≤

∧

x,y∈A

(R(x, y) → R(y, x)) = Sym(R)

¤

Corollary 3.4 ([29]). The following assertions are equivalent:

(1) R is symmetric;
(2) < R > [R]A ⊆ A for all A ∈ F ;
(3) A ⊆ [R] < R > A for all A ∈ F .

Theorem 3.5. Tr(A) =
∧

A∈F
S([R]A, [R][R]A) =

∧

A∈F
S(< R >< R > A,< R > A)

Proof. Let A ∈ F . First we establish the following inequality:
(a) Tr(A) ≤ S([R]A, [R][R]A)
(b) Tr(A) ≤ S(< R >< R > A, < R > A)
Let x ∈ X. Applying Lemma 2.1 (6) and (12) we obtain:
([R][R]A)(x) =

∧

y∈X

[R(x, y) → ([R]A)(y)]

=
∧

y∈X

[R(x, y) →
∧

z∈X

(R(y, z) → A(z))]

=
∧

y,z∈X

[R(x, y) → (R(y, z) → A(z))]

=
∧

y,z∈X

[R(x, y) ∗R(y, z) → A(z)]

Let y, z ∈ X. Hence, by Lemma 2.3 (2) and Lemma 2.1 (2):
Tr(R) ∗ ([R]A)(x) ∗R(x, y) ∗R(y, z) ≤ ([R]A)(x) ∗R(x, z) =
= R(x, z) ∗

∧

u∈X

(R(x, u) → A(u)) ≤ R(x, z) ∗ (R(x, z) → A(z)) ≤ A(z)

By Lemma 2.1 (1) for all y, z ∈ X we have
Tr(R) ∗ ([R]A)(x) ≤ R(x, y) ∗R(y, z) → A(z)
hence
Tr(R) ∗ ([R]A)(x) ≤

∧

y,z∈X

(R(x, y) ∗R(y, z) → A(z)) = ([R][R]A)(x)

Applying again Lemma 2.1 (1) Tr(R) ≤ ([R]A)(x) → ([R][R]A)(x) for each x ∈ X
hence

Tr(R) ≤
∧

x∈X

(([R]A)(x) → ([R][R]A)(x)) = S([R]A, [R][R]A)

Now we shall prove (b). Let x ∈ X. Thus
(< R >< R > A)(x) =

∨

y∈X

R(x, y)∗(< R > A)(y) =
∨

y,z∈X

R(x, y)∗R(y, z)∗A(z)

therefore by using Lemma 2.3 (2)
559
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Tr(R) ∗ (< R >< R > A)(x) =
∨

y,z∈X

Tr(R) ∗R(x, y) ∗R(y, z) ∗A(z) ≤

≤
∨

y,z∈X

R(x, z) ∗A(z) =
∨

z∈X

R(x, z) ∗A(z) = (< R > A)(x)

By Lemma 2.1 (1) it follows that Tr(R) ≤ (< R >< R > A)(x) → (< R > A)(x)
for each x ∈ X, hence Tr(R) ≤ S(< R >< R > A,< R > A)

From (a) and (b) it follows immediately
Tr(R) ≤

∧

A∈F
S([R]A, [R][R]A); Tr(R) ≤

∧

A∈F
S(< R >< R > A, < R > A)

We establish now the converse inequalities. First we prove that
(c)

∧

A∈F
S([R]A, [R][R]A) ≤ Tr(R)

Let x, y, z ∈ X. We define A0 ∈ F by A0(u) = R(x, u) for all u ∈ X. We remark
that ([R]A0)(x) = 1, hence, by Lemma 2.1 (2):

S([R]A0, [R][R]A0) ∗R(x, y) ∗R(y, z) ≤
R(x, y) ∗R(y, z) ∗ (([R]A0)(x) → ([R][R]A0)(x)) =
= R(x, y) ∗R(y, z) ∗ ([R][R]A0)(x) =
= R(x, y) ∗R(y, z) ∗

∧

u,v∈X

(R(x, u) ∗R(u, v) → A0(v)) ≤

≤ R(x, y) ∗R(y, z) ∗ (R(x, y) ∗R(y, z) → A0(z)) ≤ A0(z) = R(x, z)
Applying Lemma 2.1 (1) it follows S([R]A0, [R][R]A0) ≤ R(x, y) ∗ R(y, z) →

R(x, z) for all x, y, z ∈ X, thus∧

A∈F
S([R]A, [R][R]A) ≤ S([R]A0, [R][R]A0) ≤

≤
∧

x,y,z∈X

(R(x, y) ∗R(y, z) → R(x, z)) = Tr(R)

It remains to prove the inequality
(d)

∧

A∈F
S(< R >< R > A,< R > A) ≤ Tr(R)

Let x, y, z ∈ X and take A1 = {1/z}. By Lemma 2.1 (1) one obtains
S(< R >< R > A1, < R > A1) ∗R(x, y) ∗R(y, z) ≤
≤ [(< R >< R > A1)(x) → (< R > A1)(x)] ∗R(x, y) ∗R(y, z) =
= [

∨

u,v∈X

R(x, u) ∗R(u, v) ∗A1(v)) → (< R > A1)(x)] ∗R(x, y) ∗R(y, z) ≤

≤ R(x, y) ∗R(y, z) ∗ [R(x, y) ∗R(y, z) ∗A1(z) → (< R > A1)(x)] =
= R(x, y) ∗R(y, z) ∗ [R(x, y) ∗R(y, z) → (< R > A1)(x)] ≤
≤ (< R > A1)(x) =

∨

t∈X

R(x, t) ∗A1(t) = R(x, z)

Then S(< R >< R > A1, < R > A1) ≤ R(x, y) ∗R(y, z) → R(x, z)
hence∧

A∈F
S(< R >< R > A,< R > A) ≤ S(< R >< R > A1, < R > A1) ≤

≤
∧

x,y,z∈X

(R(x, y) ∗R(y, z) → R(x, z)) = Tr(R) ¤

Corollary 3.6 ([29]). The following assertions are equivalent:
560
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(1) R is transitive;
(2) [R]A ⊆ [R][R]A for all A ∈ F ;
(3) < R >< R > A ⊆< R > A for all A ∈ F .

Theorem 3.7. Eu(R) =
∧

A∈F
S(< R > [R]A, [R]A) =

∧

A∈F
S(< R > A, [R] < R >

A)

Proof. First we shall prove the inequality
(a) Eu(R) ≤

∧

A∈F
S(< R > [R]A, [R]A)

Let A ∈ F and x, y, z ∈ X. By Lemma 2.3 (3) and Lemma 2.1 (2):
Eu(R) ∗R(x, y) ∗R(x, z) ∗

∧

t∈X

(R(y, t) → A(t)) ≤

≤ R(y, z) ∗ (R(y, z) → A(z)) ≤ A(z)
hence, according to Lemma 2.1 (1) one gets
Eu(R) ∗R(x, y) ∗

∧

t∈X

(R(y, t) → A(t)) ≤ R(x, z) → A(z).

Since (< R > [R]A)(x) =
∨

y∈X

[R(x, y) ∗
∧

t∈X

(R(y, t) → A(t))]

for each z ∈ X it follows that
Eu(R) ∗ (< R > [R]A)(x) =

∨

y∈X

[Eu(R) ∗R(x, y) ∗
∧

t∈X

(R(y, t) → A(t))] ≤

≤
∧

z∈X

(R(x, z) → A(z)) = ([R]A)(x)

Thus, by Lemma 2.1(1), Eu(R) ≤ (< R > [R]A)(x) → ([R]A)(x) for all A ∈ F
and x ∈ X, hence

Eu(R) ≤
∧

A∈F

∧

x∈X

[(< R > [R]A)(x) → ([R]A)(x)]

=
∧

A∈F
S(< R > [R]A, [R]A)

Now we shall establish the converse inequality
(b)

∧

A∈F
S(< R > [R]A, [R]A) ≤ Eu(R)

Let x, y, z ∈ X and A0 ∈ F defined by A0(u) = R(y, u) for all u ∈ X. Then
S(< R > [R]A0, [R]A0) ≤ (< R > [R]A0)(x) → ([R]A0)(x) =
= [

∨

u∈X

R(x, u) ∗
∧

v∈X

(R(u, v) → A0(v))] →
∧

t∈X

(R(x, t) → A0(t)) =

=
∧

u,t∈X

[R(x, u) ∗
∧

v∈X

(R(u, v) → A0(v)) → (R(x, t) → A0(t))] =

=
∧

u,t∈X

[(R(x, t) ∗R(x, u) ∗
∧

v∈X

(R(u, v) → A0(y)) → A0(t)] ≤

≤ (R(x, y) ∗R(x, z) ∗
∧

v∈X

(R(y, v) → R(y, v))) → A0(z) =

= R(x, y) ∗R(x, z) → R(y, z)
We conclude that
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∧

A∈F
S(< R > [R]A, [R]A) ≤ S(< R > [R]A0, [R]A0) ≤

≤
∧

x,y,z∈X

(R(x, y) ∗R(x, z) → R(y, z)) = Eu(R)

Next we prove the following inequality
(c) Eu(R) ≤

∧

A∈F
S(< R > A, [R] < R > A)

Let A ∈ F and x, y ∈ X. By Lemma 2.3 (3)
Eu(R) ∗ (< R > A)(x) ∗R(x, y) =

∨

z∈X

Eu(R) ∗R(x, y) ∗R(z, z) ∗A(z) ≤

≤
∨

z∈X

R(y, z) ∗A(z)

therefore, by Lemma 2.1 (1)
Eu(R) ∗ (< R > A)(x) ≤ R(x, y) →

∨

z∈X

R(y, z) ∗A(z)

Hence
Eu(R) ∗ (< R > A)(x) ≤

∧

y∈X

[R(x, y) →
∨

z∈X

R(x, z) ∗A(z)] =

= ([R] < R > A)(x)
Applying again Lemma 2.1 (1) one gets Eu(R) ≤ (< R > A)(x) → ([R] < R >

A)(x)
therefore
Eu(R) ≤

∧

A∈F

∧

x∈X

[(< R > A)(x) → ([R] < R > A)(x) =

=
∧

A∈F
S(< R > A, [R] < R > A)

The following inequality has remained to be proved:
(d)

∧

A∈F
S(< R > A, [R] < R > A) ≤ Eu(R)

Let x, y, z ∈ X. We denote A1 = {1/y}. Then
(< R > A1)(z) =

∨

v∈X

R(z, v) ∗A1(v) = R(z, y)

([R] < R > A1)(z) =
∧

u∈X

[R(z, u) →
∨

v∈X

R(u, v) ∗A1(v)]

=
∧

u∈X

(R(z, u) → R(u, y))

therefore
(< R > A1)(z) → ([R] < R > A1)(z) = R(z, y) →

∧

u∈X

(R(z, u) → R(u, y)) ≤

≤ R(z, y) → (R(z, x) → R(x, y)) = R(z, x) ∗R(z, y) → R(x, y)
Hence∧

A∈F
S(< R > A, [R] < R > A) ≤ S(< R > A1, [R] < R > A1) ≤

≤
∧

x,y,z∈X

(R(z, x) ∗R(z, y) → R(x, y)) = Eu(R) ¤

Corollary 3.8 ([29]). The following assertions are equivalent:
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(1) R is euclidian;
(2) < R > [R]A ⊆ [R]A for all A ∈ F ;
(3) < R > A ⊆ [R] for all A ∈ F .

As far as Ser(R) is concerned, in the general case of a left–continuous t–norm
one can give only the following partial result:

Theorem 3.9.
∧

A∈F
S([R]A, < R > A) ≤ Ser(R)

Proof. Let x ∈ X. We define A0 ∈ F by A0(y) = R(x, y) for any y ∈ X. Then
([R]A0)(x) =

∧

y∈X

(R(x, y) → A0(y)) = 1 hence

∧

A∈F
S([R]A,< R > A) ≤ S([R]A0, < R > A0) ≤

≤ ([R]A0)(x) → (< R > A0)(x) = 1 → (< R > A0)(x) = (< R > A0)(x) =
=

∨

y∈X

R(x, y) ∗A0(y) ≤
∨

y∈X

R(x, y)

Hence∧

A∈F
S([R]A,< R > A) ≤ S([R]A0, < R > A0) ≤

≤
∧

x∈X

∨

y∈X

R(x, y) = Ser(R)

¤
For the Gödel t-norm one can obtain the following characterization of Ser(R).

Theorem 3.10. If ∗ is the Gödel t-norm ∧ then
Ser(R) =

∧

A∈F
S([R]A,< R > A)

Proof. Let A ∈ F and x ∈ X. By Lemma 2.1 (10) and (2) it follows
Ser(R) ∧ ([R]A)(x) = [

∧

v∈X

∨

y∈X

R(v, y)] ∧ ([R]A)(x) ≤

≤ [
∨

y∈X

R(x, y)] ∧ ([R]A)(x) =

=
∨

y∈X

[R(x, y) ∧ ([R]A)(x)] =

=
∨

y∈X

[R(x, y) ∧
∧

z∈X

R(x, z) → A(z)] ≤

≤
∨

y∈X

[R(x, y) ∧ (R(x, y) → A(y))] =

= (< R > A)(x)
By Lemma 2.1 (1) from the previous inequalities it follows
Ser(R) ≤ ([R]A)(x) → (< R > A)(x) for any x ∈ X and A ∈ F .
Ser(R) ≤

∧

A∈F
S([R]A,< R > A)

The converse inequality follows by Theorem 3.9.
¤
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Example 3.11. Let ∗ be the Lukasiewicz t–norm. Assume that X = {a, b}. If R is
a fuzzy relation on X then

Ser(R) = [R(a, a) ∨R(a, b)] ∧ [R(b, a) ∨R(b, b)]
We consider the following fuzzy relation R on X:
R(a, a) = 1

2 ; R(a, b) = 1
3 ; R(b, a) = 1; R(b, b) = 0

Replacing above one obtains Ser(R) = 1
2 . We consider the fuzzy set A0 : X →

[0, 1] defined by A0(a) = 1
2 ; A0(b) = 1

3 . Then
([R]A0)(a) = [R(a, a) → A0(a)] ∧ [R(a, b) → A0(b)]

= ( 1
2 → 1

2 ) ∧ ( 1
3 → 1

3 ) = 1
(< R > A0)(a) = [R(a, a) ∗A0(a)] ∨ [R(a, b) ∗A0(b)] =

= 1
2 ∗ 1

2 ∨ 1
3 ∗ 1

3 = 0
From here we deduce∧

A∈F
S([R]A,< R > A) ≤ S([R]A0, < R > A0) ≤

[R]A0(a) →< R > A0(a) = ¬ → 0 = 0
It follows that for the Lukasiewicz t–norm
Ser(R) 6=

∧

A∈F
S([R]A,< R > A)

4. The similarity indicator

Let R be a fuzzy relation on the universe X and ∗ a fixed left–continuous t–norm.
We recall that R is called similarity relation (w.r.t. the t–norm ∗) if it is reflexive,
symmetric and transitive (see [7], [28]). Then the indicators of reflexivity, symmetry
and transitivity allow to introduce the similarity indicator associated with a fuzzy
relation.

The similarity indicator of the fuzzy relation R is defined as
Sim(R) = Ref(R) ∗ Sym(R) ∗ Tr(R)

Lemma 4.1. The fuzzy relation R is a similarity relation if Sim(R) = 1.

Proof. It follows from the definition of Sim(R) and Lemma 2.2 (a)-(c). ¤

Example 4.2. Let X = N = {0, 1, 2, . . . , } and α ∈ [0, 1]. We consider the binary
relation on X defined by the infinite matrix:

R =




α 1
2 0 0 . . . 0 0

0 α + 1
2

1
2 0 . . . 0 0

0 0 α + 1
2α

1
2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . α + 1

2n−1
1
2

0 0 0 0 . . . 0 α + 1
2n




Therefore R(0, 0) = α, R(0, 1) = 1
2 , R(n, n) = α + 1

2n , R(n, n + 1) = 1
2 for n ≥ 1

and for the other entries R(n,m) = 0.
We compute Ref(R):

Ref(R) =
∧

n≥0

R(n, n) = α ∧
∧

n≥1

(α +
1
2n

) = α ∧ α = α

According to the definition, Sym(R) can be written:
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Sym(R) =
∧

n≥0

∧

m≥0

(R(n,m) → R(m,n))

For any n ≥ 0 one has∧

m≥0

(R(n,m) → R(m,n)) = (R(n, n) → R(n, n)) ∧ (R(n, n + 1) → R(n + 1, n))

= R(n, n + 1) → 0 = ¬R(n, n + 1) = ¬1
2

Then
Sym(R) = ¬ 1

2
With a similar reasoning for the computation of Trans(R) one has:
Trans(R) =

∧

m,n,k≥0

(R(n, k) ∗R(k, m) → R(n,m)) =

=
∧

n,m≥0

[(R(n, n) ∗R(n,m) → R(n,m)) ∧ (R(n, n + 1) ∗R(n + 1,m) → R(n,m))]

=
∧

n,m≥0

[
1
2
∗R(n + 1,m) → R(n,m)] =

=
∧

n≥0

[(
1
2
∗R(n + 1, n + 1) → R(n, n + 1)) ∧ (

1
2
∗R(n + 1, n + 2) → R(n, n + 2))]

=
∧

n≥0

[(
1
2
∗ (α +

1
2n+1

) → 1
2
) ∧ (

1
2
∗ 1

2
→ 0)] =

= ¬( 1
2 ∗ 1

2 )
Thus Sim(R) = α ∗ ¬ 1

2 ∗ ¬(1
2 ∗ 1

2 ).
If ∗ is the Gödel t-norm then ¬1

2 = 0, thus Sym(R) = 0; if ∗ is the Lukasiewicz
t–norm then ¬ 1

2 = 1
2 , thus Sym(R) = α ∗L

1
2 = max(0, α + 1

2 − 1) = max(0, α− 1
2 ).

Theorem 4.3. If A ∈ F then the following inequalities hold:
(i) Sim(R) ≤ E([R] < R > A, < R > A)
(ii) Sim(R) ≤ E(< R > [R]A, [R]A)

Proof. By Theorem 3.1
(a) Sim(R) ≤ Ref(R) ≤ S([R] < R > A, < R > A)
(b) Sim(R) ≤ Ref(R) ≤ S([R]A,< R > [R]A)
Next we prove the following inequalities:
(c) Sim(R) ≤ S(< R > A, [R] < R > A)
(d) Sim(R) ≤ S(< R > [R]A, [R]A)
Let x, y ∈ X. Then by Lemma 2.3 (1) and (2):
Sim(R) ∗ (< R > A)(x) ∗R(x, y) =
= Sim(R) ∗ [

∨

z∈X

R(x, z) ∗A(z)] ∗R(x, y) =

=
∨

z∈X

Sim(R) ∗R(x, y) ∗R(x, z) ∗A(z) ≤

≤
∨

z∈X

Tr(R) ∗ (Sym(R) ∗R(x, y)) ∗R(x, z) ∗A(z)

≤
∨

z∈X

Tr(R) ∗R(y, x) ∗R(x, z) ∗A(z) ≤
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≤
∨

z∈X

R(y, z) ∗A(z)

Then by Lemma 2.1 (1)
Sim(R) ∗ (< R > A)(x) ≤ R(x, y) →

∨

z∈X

R(y, z) ∗A(z)

Then
Sim(R) ∗ (< R > A)(x) ≤

∧

y∈X

[R(x, y) →
∨

z∈X

R(y, z) ∗A(z)] =

= ([R] < R > A)(x)
Applying again Lemma 2.1 (1) for any x ∈ X one obtains:
Sim(R) ≤ (< R > A)(x) → ([R] < R > A)(x)
from where it follows
Sim(R) ≤

∧

x∈X

[(< R > A)(x) → ([R] < R > A)(x)] =

= S(< R > A, [R] < R > A)
We prove now inequality (d). Let x, y ∈ X. Applying Lemma 2.3 (1), (2) and

Lemma 2.1 (2) it follows
Sim(R) ∗ (< R > [R]A)(x) ∗R(x, y) =
= Sim(R) ∗ [

∨

u∈X

(R(x, u) ∗
∧

v∈X

(R(u, v) → A(v)))] ∗R(x, y)

=
∨

u∈X

[Sim(R) ∗R(x, u) ∗R(x, y) ∗
∧

v∈X

(R(u, v) → A(u))] ≤

≤
∨

u∈X

[Tr(R) ∗ (Sym(R) ∗R(x, u)) ∗R(x, y) ∗ (R(u, y) → A(y))] ≤

≤
∨

u∈X

[Tr(R) ∗R(u, x) ∗R(x, y) ∗ (R(u, y) → A(y))] ≤

≤
∨

u∈X

[R(u, y) ∗ (R(u, y) → A(y))] ≤ A(y)

By Lemma 2.1 (1)
Sim(R) ∗ (< R > [R]A)(x) ≤ R(x, y) → A(y) for all y ∈ X
therefore
Sim(R) ∗ (< R > [R]A)(x) ≤

∧

y∈X

(R(x, y) → A(y)) = ([R]A)(x)

Applying again Lemma 2.1 one obtains
Sim(R) ≤ (< R > [R]A)(x) → ([R]A)(x) for any x ∈ X
from where
Sim(R) ≤

∧

x∈X

[(< R > [R]A)(x) → ([R]A)(x)] =

= S(< R > [R]A, [R]A)
From (a) and (c) it follows
Sim(R) ≤ S([R] < R > A, < R > A) ∧ S(< R > A, [R] < R > A) =

= E([R] < R > A, [R]A)
Similarly from (b) and (d) it follows (ii). ¤

Corollary 4.4 ([31]). Let R be a similarity relation on X. Then for any A ∈ F the
following equalities are true:

[R] < R > A =< R > A, < R > [R]A = [R]A
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Proof. By Lemma 4.1, Sim(R) = 1, thus from Theorem 4.3 (i) it follows
E([R] < R > A, < R > A) = 1. Thus [R] < R > A =< R > A.
The second equality is proved similarly. ¤

Theorem 4.5. Assume that ∗ is the Gödel t-norm ∧. Then for any A ∈ F the
following inequalities hold:

(i) Sim(R) ≤ E([R][R]A, [R]A)
(ii) Sim(R) ≤ E(< R >< R > A,< R > A)

Proof. By Theorems 3.1 and 3.5:
Sim(R) ≤ Ref(R) ≤ S(R][R]A, [R]A)
Sim(R) ≤ Ref(R) ≤ S(< R > A, < R >< R > A)
Sim(R) ≤ Tr(R) ≤ S([R]A, [R][R]A)
Sim(R) ≤ Tr(R) ≤ S(< R >< R > A, < R > A)
Then, from the first and the third inequality it follows (i):
Sim(R) ≤ S([R]R]A, [R]A) ∧ S([R]A, [R][R]A) = E([R][R]A, [R]A)
Similarly, (ii) follows from the other two inequalities. ¤

Remark 4.6. If R is a similarity relation then, according to Lemma 2.2, Sim(R) =
1, from where it follows that in Theorems 4.3 and 4.5 we have equalities instead of
inequalities. The comparison of the left side member with the right side member in
the inequalities of the two theorems depends on the form of the fuzzy set A; to find
other sufficient conditions in order to have equalities seems a difficult problem.

5. Order indicators

In social choice theory [3] and consumer theory [26] individual preferences are
modeled by binary relations called preference relations. Usually, a preference relation
needs to be reflexive and transitive.

Reflexivity and transitivity properties appear also in case of fuzzy preference
relations [20], [21]. A fuzzy preorder is a reflexive and transitive fuzzy relation.

In fuzzy decision making it is accepted the idea that a fuzzy criterion is mathe-
matically represented by a fuzzy preorder [20]. Nevertheless when the decisions are
multicriterial, the fuzzy relation R obtained by aggregating criteria R1, . . . , Rn is not
always transitive. Then the fuzzy relation R turns into a transitive fuzzy relation
R̂ (usually, the transitive closure of R) (see [20], p. 176). A fuzzy criterion R̂ is
obtained, whose effect can be far away from what criteria R1, . . . , Rn express.

A way to avoid this inconvenience is, instead of reflexivity and transitivity con-
ditions, an indicator of fuzzy preorder to be used. If R is a fuzzy relation on a set
of alternatives X then we define

FPreOrd(R) = Ref(R) ∧ Tr(R).
By Lemma 2.2 (a) and (c), R is a fuzzy preorder iff FPreOrd(R) = 1. FPreOrd(R)

is called the fuzzy preorder indicator of R; it measures the degree to which the fuzzy
relation R is a fuzzy preorder.

Then we will no longer require that a criterion to be a fuzzy preorder; instead we
will require conditions on the fuzzy preorder indicator. For example, we will impose
the condition FPreOrd(R) ≥ α where α is a pre-chosen level. The inequality
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FPreOrd(R) ≥ α can be read: relation R satisfies the condition of being criterion
to a larger extent than the threshold α.

By Theorems 3.1 and 3.5, the fuzzy preorder indicator can be expressed through
fuzzy modal operators <> and [ ], therefore it can be formalized in a fuzzy modal
logic system.

(Partial or total) order relations play an important role in social choice theory
and consumer theory [3], [26]. In defining a notion of fuzzy order the property of
antisymmetry of a fuzzy relation should appear. There exist several proposals to
define antisymmetry of a fuzzy relation (one of them is in [20], p. 50). The most
satisfying definition of antisymmetry of a fuzzy relation seems to be in [8], based on
similarity relations. We recall the definition of fuzzy order from [8].

Let X be a set of alternatives and Ω a similarity relation on X (w.r.t. a left–
continuous t–norm ∗ ). A fuzzy relation R on X is said to be
• Ω–reflexive, if Ω(x, y) ≤ R(x, y), for all x, y ∈ X;
• Ω–antisymmetric, if R(x, y) ∗R(y, x) ≤ Ω(x, y), for all x, y ∈ X.
A fuzzy relation R on X is called Ω–order if it is Ω–reflexive, Ω–antisymmetric

and transitive.
Given a similarity relation Ω on X, in [22] the following indicators were intro-

duced:
RefΩ(R) =

∧

x,y∈X

(Ω(x, y) → R(x, y))

AntΩ(R) =
∧

x,y∈X

(R(x, y) ∗R(y, x) → Ω(x, y)).

Using these definitions and Lemma 2.1 (3) the equivalences follow immediately:
• RefΩ(R) = 1 iff R is Ω–reflexive.
• AntΩ(R) = 1 iff R is Ω–antisymmetric.
Then RefΩ(R) will be called the Ω–reflexivity indicator, and AntΩ(R) the Ω–

antisymmetry indicator.
Naturally, the fuzzy order indicator FOrdΩ(R) will be defined by
FOrdΩ(R) = RefΩ(R) ∧AntΩ(R) ∧ Tr(R).
An open problem is the characterization of RefΩ(R), AntΩ(R) and FOrdΩ(R)

indicators by means of fuzzy modal operators <> and [ ]. These will allow their
formalization in a fuzzy modal logic.

Szpilrajn theorem (every partial order can be extended to a linear order) is an
important result in crisp binary relation theory. It has several applications in social
choice theory, economics, game theory, etc. (see the introduction of [1] for references
on the applications of Szpilrajn theorem). Extensions of Szpilrajn theorem to fuzzy
relations can be found in [9], [21], [1], [2]. In [22] it is proved a Szpilrajn–type theorem
formulated in terms of FOrdΩ(R) indicator. An open problem is to formulate this
result by fuzzy modal operators <> and [ ] and to prove it in the framework of a
fuzzy modal logic system.

6. Concluding remarks

This paper connects two important notions from the theory of fuzzy relations:
indicators and fuzzy modal operators. Some belong to a more intuitive level: they
measure the degree to which a fuzzy relation verifies a property. The other can be
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regarded in the formal context of fuzzy modal logic. The main propositions char-
acterize the indicators of reflexivity, symmetry, transitivity, euclideanity, seriality
w.r.t. fuzzy modal operators.

Such results give an idea on the way important properties of fuzzy relations can
be analyzed by formal mechanisms of fuzzy modal logic. Of course this desideratum
is a problem to be solved.

Also the proved formulas can lead to computation methods in the analysis of
attributes expressed by properties of fuzzy relations, accordingly in multicriterial
decisions.

We remark some perspectives to continue the findings of the paper by enumerating
the following open problems:

(a) To prove similar characterization theorems for other important indicators of
fuzzy relations: irreflexivity, asymmetry, transitivity, semitransitivity, Ferrers, etc.

(b) To analyze the way similar results are reflected in the properties of the indi-
cators of rationality, revealed preference and consistency of fuzzy choice functions.

Theorem 4.9 of [23] shows that the Arrow index of a fuzzy choice function C coin-
cides with the congruence indicators of C and all three indicators can be expressed
with respect to the transitivity indicator Tr(RC) of the fuzzy revealed preference
relation RC (see [21], p. 92). The mentioned result is a fuzzy version of Arrow–Sen
theorem from classic revealed preference theory [30]. By Theorem 3.5, this fuzzy
Arrow–Sen theorem can be expressed in terms of the fuzzy modal operators <> and
[ ]. This remark could be a first step to build a fuzzy modal logic system where
fuzzy Arrow–Sen theorem should be formalized.

(c) Which is the impact of the theorems of the paper on the applications of fuzzy
modal operators in fuzzy morphology and fuzzy rough sets?

(d) Fuzzy social choice theory (in particular, various fuzzy versions of Arrow’s
impossibility theorem) uses essentially properties of fuzzy preference relations (see
e.g. [4], [5]). How can the indicators of fuzzy relations and fuzzy modal operators
be applied to fuzzy social choice? Can one formulate and prove a form of fuzzy
Arrow’s impossibility theorem in terms of the indicators of fuzzy relations and of
fuzzy modal operators?

Acknowledgements. The author gratefully acknowledges the valuable sugges-
tions of three anonymous referees who contributed to improve the paper.
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