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Abstract. In this paper, we present the concept of r-(τi, τj)-generalized
fuzzy closed (briefly, r-(τi, τj)-gfc) sets in the smooth bitopological spaces
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we define a new fuzzy closure operator referred to as (i, j)-GC which gen-
erates a new smooth topology, τ(i,j)-GC. An application of these sets the
definition of (i, j)-T 1

2
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1. Introduction

Šostak [18], introduced the fundamental concept of a ‘fuzzy topological struc-
ture’, as an extension of both crisp topology and Chang’s fuzzy topology [3], indicat-
ing that not only the object were fuzzified, but also the axiomatics. Subsequently,
Badard [2], introduced the concept of ‘smooth topological space’. Chattopadhyay et
al. [4] and Chattopadhyay and Samanta [5] re-introduced the same concept, calling
it ‘gradation of openess’. Ramadan [16] and his colleagues introduced a similar def-
inition, namely, smooth topological space for lattice L = [0, 1]. Following Ramadan,
several authors have re-introduced and further studied smooth topological space (cf.
[4, 5, 6, 8, 19]). Thus, the terms ‘fuzzy topology’, in Šostak’s sense, ‘gradation of
openness’ and ‘smooth topology’ are essentially referring to the same concept. In our
paper, we adopt the term smooth topology. Lee et al. [13] introduced the concept
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of smooth bitopological space as a generalization of smooth topological space and
Kandil’s fuzzy bitopological spaces [9].

Levine [14], introduced the concept of generalized closed sets of a topological
space and a class of topological spaces called T 1

2
spaces. Subsequently, Fukutake

[7], introduced the concept of generalized closed sets in bitopological spaces. Bala-
subramanian and Sundaram [1] introduced the concept of generalized fuzzy closed
sets within Chang’s fuzzy topology, as an extension of the generalized closed sets of
Levine. Kim and Ko [11] defined r-generalized fuzzy closed sets in smooth topolog-
ical spaces. Recently, we [20] introduced the concept of generalized fuzzy closed set
in smooth bitopological space (X, τ1, τ2) by using smooth supra topological space
(X, τ12) induced from smooth bitopological space (X, τ1, τ2).

In this paper, we introduce r-(τi, τj)-gfc sets in smooth bitopological space (X, τ1,
τ2), following the introduction of r-generalized fuzzy closed sets in smooth topologi-
cal space of Kim and Ko [11] and Fukutake [7], and we show properties of these sets.
Moreover, we introduce the concept (i, j)-T 1

2
space and strongly fuzzy pairwise T 1

2

space in a smooth bitopological space (X, τ1, τ2). Following Fukutake [7] (given that
in a bitopological space (X, T1, T2), if λ is (Ti, Tj)-generalized closed then CTj

(λ)−λ
contains no non empty Ti-closed set), we show that this result is not true in a smooth
bitopological space (see Remark 5.15). Consequently, many properties of T 1

2
space

which depend on this fact (e.g. Proposition 2.13(ii), pp.21 and Theorem 2.15, pp.22
in [7]), have not varied. In addition, we define a new fuzzy closure operator (i, j)-
GC by using r-(τi, τj)-gfc sets and consequently we obtain a new smooth topology,
τ(i,j)−GC (see Theorem 4.5). Finally, we define and study (i, j)-GF -continuous (re-
spectively, irresolute) mappings and investigate some of their properties.

2. Preliminaries

Throughout this paper, let X be a non-empty set, I = [0, 1], I0 = (0, 1] and IX be
the family of all fuzzy sets on X. For any µ1, µ2 ∈ IX , µ1 ∧µ2 = min{µ1(x), µ2(x) :
x ∈ X}, µ1 ∨ µ2 = max{µ1(x), µ2(x) : x ∈ X} and µ1 − µ2 = min{µ1(x), 1̄− µ2(x) :
x ∈ X}. For α ∈ I, ᾱ(x) = α ∀x ∈ X. By 0̄ and 1̄, we denote constant maps on X
with value 0 and 1, respectively. For x ∈ X and t ∈ I0, a fuzzy point xt is defined
by

xt(y) =

{
t if x = y,

0 if x 6= y.

Let Pt(X) be the family of all fuzzy points in X. The fuzzy point xt is said to be
contained in a fuzzy set λ iff λ(x) ≥ t. For λ ∈ IX , 1̄ − λ denotes the complement
of λ. FP stand for fuzzy pairwise. The indices are i, j ∈ {1, 2} and i 6= j. All other
notations and definitions are standard in the fuzzy set theory.

Definition 2.1 ([2, 4, 16, 18]). A smooth topology on X is a mapping τ : IX → I
which satisfies the following properties:

(1) τ(0̄) = τ(1̄) = 1,
(2) τ(µ1 ∧ µ2) ≥ τ(µ1) ∧ τ(µ2), ∀ µ1, µ2 ∈ IX ,
(3) τ(

∨
i∈J µi) ≥

∧
i∈J τ(µi), for any {µi : i ∈ J} ⊆ IX .
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The pair (X, τ) is called a smooth topological space. For r ∈ I0, µ is an r-open fuzzy
set of X if τ(µ) ≥ r, and µ is an r-closed fuzzy set of X if τ(1̄−µ) ≥ r. Note, Šostak
[18] used the term ‘fuzzy topology’ and Chattopadhyay [4], the term ‘gradation of
openness’ for a smooth topology τ .

Definition 2.2 ([13]). A triple (X, τ1, τ2) consisting of the set X endowed with
smooth topologies τ1 and τ2 on X is called a smooth bitopological space (smooth
bts, for short). For λ ∈ IX and r ∈ I0, r-τi-open (resp., closed) fuzzy set denotes
the r-open (resp., closed) fuzzy set in (X, τi), for i = 1, 2.

Subsequently, the fuzzy closure for any fuzzy set in smooth topological space is
given as follows:

Definition 2.3 ([5]). Let (X, τ) be a smooth topological space. For λ ∈ IX and
r ∈ I0, a fuzzy closure of λ is a mapping Cτ : IX × I0 → IX such that

Cτ (λ, r) =
∧
{µ ∈ IX | µ ≥ λ, τ(1̄− µ) ≥ r}.

Definition 2.4 ([5]). A mapping C : IX×I0 → IX is called a fuzzy closure operator
if, for λ, µ ∈ IX and r, s ∈ I0, the mapping C satisfies the following conditions:

(C1) C(0̄, r) = 0̄,
(C2) λ ≤ C(λ, r),
(C3) C(λ, r) ∨ C(µ, r) = C(λ ∨ µ, r),
(C4) C(λ, r) ≤ C(λ, s) if r ≤ s,
(C5) C(C(λ, r), r) = C(λ, r).
The fuzzy closure operator C generates a smooth topology τC : IX −→ I given

by
τC(λ) =

∨
{r ∈ I| C(1̄− λ, r) = 1̄− λ}.

In a similar pattern, a fuzzy interior operator was defined.

Definition 2.5 ([10, 17]). A mapping I : IX × I0 → IX is called a fuzzy inte-
rior operator if, for λ, µ ∈ IX and r, s ∈ I0, the mapping I satisfies the following
conditions:

(I1) I(1̄, r) = 1̄,
(I2) I(λ, r) ≤ λ,
(I3) I(λ, r) ∧ I(µ, r) = I(λ ∧ µ, r),
(I4) I(λ, r) ≥ I(λ, s) if r ≤ s,
(I5) I(I(λ, r), r) = I(λ, r).
The fuzzy interior operator I generates a smooth fuzzy topology τI : IX −→ I as

follows:
τI(λ) =

∨
{r ∈ I| I(λ, r) = λ}.

Theorem 2.6 ([5, 12]). Let (X, τ1, τ2) be a smooth bts. For λ ∈ IX and r ∈ I0, a
τi-fuzzy closure of λ is a mapping Cτi : IX × I0 −→ IX , defined as

Cτi(λ, r) =
∧
{µ ∈ IX | µ ≥ λ, τi(1̄− µ) ≥ r}.

And, a τi-fuzzy interior of λ is a mapping Iτi : IX × I0 −→ IX , defined as

Iτi(λ, r) =
∨
{µ ∈ IX | µ ≤ λ, τi(µ) ≥ r}.
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Then:
(1) Cτi

(resp., Iτi
) is a fuzzy closure (resp., interior) operator.

(2) τCτi
= τIτi

= τi.
(3) Iτi

(1̄− λ, r) = 1̄− Cτi
(λ, r), ∀ r ∈ I0, λ ∈ IX .

Definition 2.7 ([11]). Let (X, τ) be a smooth topological space, let λ, µ ∈ IX and
r ∈ I0. A fuzzy set λ is called an r-generalized fuzzy closed (r-gfc, for short) if
Cτ (λ, s) ≤ µ whenever λ ≤ µ and τ(µ) ≥ s for all 0 < s ≤ r. The complement of
r-gfc is called an r-generalized fuzzy open (r-gfo, for short).

Lemma 2.8 ([15]). Let f : X −→ Y be a mapping and let λ and µ be fuzzy sets in
X and Y , respectively, then the following properties hold:

(1) λ ≤ f−1(f(λ)) and equality holds if f is injective.
(2) f(f−1(µ)) ≤ µ and equality holds if f is surjective.
(3) For any fuzzy point xt in X, f(xt) is a fuzzy point in Y and f(xt) = (f(x))t.
(4) When f(λ) ≤ µ, λ ≤ f−1(µ).

Definition 2.9 ([4]). Let (X, τ) and (Y, σ) be smooth topological spaces. A mapping
f : (X, τ) −→ (Y, σ) is said to be fuzzy continuous if τ(f−1(µ)) ≥ σ(µ), for each
µ ∈ IY .

Definition 2.10 ([10]). Let (X, τ1, τ2) and (Y, σ1, σ2) be smooth bitopological spaces.
A mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) is said to be FP -continuous if and only if
τi(f−1(µ)) ≥ σi(µ), for each µ ∈ IY and i = 1, 2.

3. r-(τi, τj)-generalized fuzzy closed sets

In this section we introduce and investigate the concept of r-(τi, τj)-generalized
fuzzy closed sets in smooth bts (X, τ1, τ2).

Definition 3.1. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then λ is
called:

(1) an r-(τi, τj)-generalized fuzzy closed (r-(τi, τj)-gfc, for short), if Cτj (λ, s) ≤
µ, whenever λ ≤ µ such that τi(µ) ≥ s for all 0 < s ≤ r.

(2) an r-(τi, τj)-generalized fuzzy open (r-(τi, τj)-gfo, for short), if 1̄ − λ is an
r-(τi, τj)-gfc.

Remark 3.2. If τ1 = τ2 in Definition 3.1, then r-(τi, τj)-gfc is an r-gfc in Definition
2.7 in the sense of Kim [11].

Remark 3.3. We denote to the family of all r-(τi, τj)-gfc sets in smooth bts (X, τ1, τ2)
by rgc(τi, τj).

The next proposition shows the relationship between r-τj-closed (resp., open)
fuzzy sets and r-(τi, τj)-gfc (resp., gfo) sets in smooth bts (X, τ1, τ2).

Proposition 3.4. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then:
(1) If λ is an r-τj-closed fuzzy set, then λ is an r-(τi, τj)-gfc.
(2) If λ is an r-τj-open fuzzy set, then λ is an r-(τi, τj)-gfo.
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Proof. To show (1), let λ ≤ µ such that τi(µ) ≥ s for 0 < s ≤ r. Since τj(1̄−λ) ≥ r,
then Cτj (λ, r) = λ. In view of Theorem 2.6(1) and Definition 2.4(C4), we get
Cτj

(λ, s) ≤ Cτj
(λ, r) = λ for all s ≤ r. Thus, Cτj

(λ, s) ≤ µ. Hence, λ is an r-
(τi, τj)-gfc. To prove (2), clearly 1̄− λ is an r-τj-closed fuzzy set. By using (1), we
get that λ is an r-(τi, τj)-gfo. ¤

The converse of the above proposition is not true as seen from the following
example.

Example 3.5. Let X = {a, b}. We define smooth topologies τ1, τ2 : IX −→ I as
follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a0.5 ∨ b0.8,

0 otherwise;
and τ2(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a0.7 ∨ b0.5,

0 otherwise.

Then for r = 1
2 the fuzzy set λ = a0.3∨b0.3 is a 1

2 -(τ1, τ2)-gfc but λ is not a 1
2 -τ2-closed

fuzzy set.

Theorem 3.6. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. If λ is both
r-τi-open fuzzy set and r-(τi, τj)-gfc, then λ is an r-τj-closed fuzzy set.

Proof. Since λ is an r-τi-open fuzzy set. i.e., τi(λ) ≥ r, then τi(λ) ≥ s for 0 < s ≤ r.
Since λ ≤ λ and λ is an r-(τi, τj)-gfc, then from Definition 3.1(1), Cτj (λ, s) ≤ λ for
0 < s ≤ r. However, λ ≤ Cτj (λ, s). Thus, Cτj (λ, s) = λ for 0 < s ≤ r. Consequently,
Cτj (λ, r) = λ. Hence, λ is an r-τj-closed fuzzy set. ¤

Remark 3.7. The notions of r-(τi, τj)-gfc sets and r-gfc set in (X, τi) are indepen-
dent. For, in Example 3.5, the fuzzy set λ = a0.3 ∨ b0.3 is a 1

2 -(τ1, τ2)-gfc but λ is
not a 1

2 -gfc in (X, τ1), and the fuzzy set λ = a0.4 ∨ b0.2 is a 1
2 -gfc in (X, τ1) but λ is

not a 1
2 -(τ1, τ2)-gfc in (X, τ1, τ2).

Proposition 3.8. Let (X, τ1, τ2) be a smooth bts, λ1, λ2 ∈ IX and r ∈ I0. Then:

(1) If λ1, λ2 are r-(τi, τj)-gfc sets, then λ1 ∨ λ2 is an r-(τi, τj)-gfc.
(2) If λ1, λ2 are r-(τi, τj)-gfo sets, then λ1 ∧ λ2 is an r-(τi, τj)-gfo.

Proof. To prove part (1), let λ1 ∨ λ2 ≤ µ such that τi(µ) ≥ s for 0 < s ≤ r. This
yields, λ1 ≤ µ and λ2 ≤ µ. Since λ1, λ2 are r-(τi, τj)-gfc sets, then Cτj (λ1, s) ≤ µ
and Cτj (λ2, s) ≤ µ, imply Cτj (λ1, s)∨Cτj (λ2, s) ≤ µ. In view of Definition 2.4(C3),
Cτj (λ1 ∨ λ2, s) = Cτj (λ1, s)∨Cτj (λ2, s) ≤ µ. Hence, λ1 ∨ λ2 is an r-(τi, τj)-gfc. The
proof of (2), follows from the duality of (1). ¤

Remark 3.9. The intersection (resp., union) of two r-(τi, τj)-gfc (resp., gfo) sets
cannot to be an r-(τi, τj)-gfc (resp., gfo) set as seen from the following example.
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Example 3.10. Let X = {a, b, c}. We define smooth topologies τ1, τ2 : IX −→ I
as follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a0.5,
1
3 if λ = b0.4 ∨ c0.4,
1
2 if λ = a0.5 ∨ b0.4 ∨ c0.4,

0 otherwise;

and τ2(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = b0.4,
1
3 if λ = c0.4,
1
2 if λ = b0.4 ∨ c0.4,

0 otherwise.

Then for r = 1 the fuzzy sets ν1 = a0.5 ∨ b0.4 and ν2 = b0.4 ∨ c0.6 are 1-(τ2, τ1)-gfc
sets but ν1 ∧ ν2 is not a 1-(τ2, τ1)-gfc set.

Next we introduce some prosperities of r-(τi, τj)-gfc (resp., gfo) sets.

Proposition 3.11. Let (X, τ1, τ2) be a smooth bts. If τ1 ≤ τ2, then rgc(τ2, τ1) ⊆
rgc(τ1, τ2).

Proof. Let λ ∈ rgc(τ2, τ1), i.e., λ is an r-(τ2, τ1)-gfc. Let λ ≤ µ such that τ1(µ) ≥ s
for 0 < s ≤ r. Since τ1 ≤ τ2, then τ2(µ) ≥ s for 0 < s ≤ r. Since λ is an r-(τ2, τ1)-
gfc, we have Cτ1(λ, s) ≤ µ. Again since τ1 ≤ τ2, then Cτ2(λ, s) ≤ Cτ1(λ, s) ≤ µ. So,
Cτ2(λ, s) ≤ µ. Hence, λ ∈ rgc(τ1, τ2). ¤

Remark 3.12. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then:
(1) rgc(τ1, τ2) is generally not equal to rgc(τ2, τ1). To show this consider Example

3.5. Let λ = a0.3 ∨ b0.5, then λ is a 1
2 -(τ1, τ2)-gfc but not a 1

2 -(τ2, τ1).
(2) If λ ∈ rgc(τ1, τ2) ∩ rgc(τ2, τ1), then λ is called pairwise gfc.

Theorem 3.13. Let (X, τ1, τ2) be a smooth bts, λ, µ ∈ IX and r ∈ I0. Then:
(1) If λ is an r-(τi, τj)-gfc such that λ ≤ µ ≤ Cτj (λ, r), then µ is an r-(τi, τj)-gfc.
(2) λ is an r-(τi, τj)-gfo if and only if µ ≤ Iτj (λ, r), whenever µ ≤ λ and µ is

an r-τi-closed fuzzy set.
(3) If λ is an r-(τi, τj)-gfo such that Iτj (λ, r) ≤ µ ≤ λ, then µ is an r-(τi, τj)-gfo.

Proof. To prove (1), let µ ≤ ν such that τi(ν) ≥ s for 0 < s ≤ r. Since λ ≤ µ, we
obtain λ ≤ ν. Since λ is an r-(τi, τj)-gfc, this yields Cτj (λ, s) ≤ ν for 0 < s ≤ r.
From Definition 3.1(1) and Definition 2.4(C5), we have

Cτj (µ, s) ≤ Cτj (Cτj (λ, s), s) = Cτj (λ, s) ≤ ν.

Thus, Cτj (µ, s) ≤ ν and consequently, µ is an r-(τi, τj)-gfc.
Next to prove (2), for the necessity, let 1̄−λ ≤ 1̄−µ and τi(1̄−µ) ≥ s for 0 < s ≤ r

and apply Definition 3.1(1) and Theorem 2.6(3), giving the required result.
Conversely, let 1̄−λ ≤ µ such that τi(µ) ≥ s for 0 < s ≤ r. i.e., 1̄−µ ≤ λ such that

1̄−µ is an s-closed fuzzy set for 0 < s ≤ r. Assuming we have 1̄−µ ≤ Iτj (λ, s), this
implies 1̄− Iτj (λ, s) ≤ µ. In view of Theorem 2.6(3), we then have Cτj (1̄−λ, s) ≤ µ.
Thus, 1̄ − λ is an r-(τi, τj)-gfc. Hence, λ is an r-(τi, τj)-gfo. Finally, to prove (3),
taking 1̄−λ as an r-(τi, τj)-gfc and then applying (1), we have the required result. ¤

Theorem 3.14. Let (X, τ1, τ2) be a smooth bts. Then for each x ∈ X and t = 1, xt

is an r-τi-closed fuzzy set or 1̄− xt is an r-(τi, τj)-gfc.
542



O. Tantawy et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 4, 537–551

Proof. If xt is not an r-τi-closed fuzzy set, then 1̄− xt is not an r-τi-open fuzzy set,
implying that the only r-τi-open fuzzy set in X which containing 1̄− xt is 1̄. Thus,
Cτj

(1̄− xt, s) ≤ 1̄ for all 0 < s ≤ r. Therefore, 1̄− xt is an r-(τi, τj)-gfc. ¤

4. Characterization of (i, j)-generalized fuzzy closure operator

In this section, we introduce a new fuzzy closure operator by using r-(τi, τj)-gfc
sets and study some of their properties. Also, we introduce a new smooth topology
by using the fuzzy closure operator.

Definition 4.1. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. The (i, j)-
generalized fuzzy closure of λ is a map, (i, j)-GC : IX × I0 −→ IX defined by

(i, j)-GC(λ, r) =
∧
{ρ ∈ IX | ρ ≥ λ, ρ is r-(τi, τj)-gfc},

and the (i, j)-generalized fuzzy interior of λ is a map, (i, j)-GI : IX × I0 −→ IX

defined by

(i, j)-GI(λ, r) =
∨
{ρ ∈ IX | ρ ≤ λ, ρ is r-(τi, τj)-gfo}.

Proposition 4.2. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then,

Iτj (λ, r) ≤ (i, j)-GI(λ, r) ≤ λ ≤ (i, j)-GC(λ, r) ≤ Cτj (λ, r).

Proof. Since every r-τj-closed (resp., open) fuzzy set is an r-(τi, τj)-gfc (resp., gfo)
set, the proof is established. ¤

Next, we state some basic properties of (i, j)-GC and (i, j)-GI in the following
proposition.

Proposition 4.3. Let (X, τ1, τ2) be a smooth bts, λ, λ1 and λ2 ∈ IX and r ∈ I0.
Then:

(1) (i, j)-GI(1̄− λ, r) = 1̄−(i, j)-GC(λ, r).
(2) If λ1 ≤ λ2, then (i, j)-GC(λ1, r) ≤ (i, j)-GC(λ2, r).
(3) If λ is an r-(τi, τj)-gfc, then (i, j)-GC(λ, r) = λ.
(4) If λ1 ≤ λ2, then (i, j)-GI(λ1, r) ≤ (i, j)-GI(λ2, r).
(5) If λ is an r-(τi, τj)-gfo, then (i, j)-GI(λ, r) = λ.

Proof. We prove (1) using Definition 4.1:

1̄− (i, j)-GC(λ, r) = 1̄−
∧
{ρ ∈ IX | ρ ≥ λ, ρ is r-(τi, τj)-gfc}

=
∨
{1̄− ρ ∈ IX | 1̄− ρ ≤ 1̄− λ, 1̄− ρ is r-(i, j)-gfo}

= (i, j)-GI(1̄− λ, r).

The proof of (2), follows from Definition 4.1 while the proof of (3), follows from
Definition 4.1 and Proposition 4.2. The proof of (4), comes by taking the complement
of (2) and from (1). Finally, the proof of (5) is from the same elements as are in
(3). ¤

In Proposition 4.3 the converse of (3) and (5) is not true as the following example
show. The example in inspired by the one introduced in ([11], pp.333).
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Example 4.4. Let X = {a, b}. Define smooth topologies τ1, τ2 : IX −→ I as
follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a0.7,

0 otherwise;
and τ2(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a0.8,

0 otherwise.

Then (X, τ1, τ2) is a smooth bts. The fuzzy set a0.7 is not a 1-(τ1, τ2)-gfc set on X
because a0.7 ≤ a0.7, τ1(a0.7) ≥ s, 0 < s ≤ 1, Cτ2(a0.7, s) = 1̄ � a0.7.
Since a0.7 ∨ bs is a 1-(τ1, τ2)-gfc set for s ∈ I0, then (1, 2)-GC(a0.7, 1) =

∧
s∈I0

(a0.7 ∨
bs) = a0.7 ∨

∧
s∈I0

bs = a0.7.

Theorem 4.5. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then:
(1) (i, j)-GC(resp., (i, j)-GI) is a fuzzy closure (resp., interior) operator.
(2) define τ(i,j)-GC : IX −→ I as

τ(i,j)-GC(λ) =
∨
{r ∈ I | (i, j)-GC(1̄− λ, r) = 1̄− λ}.

Then, τ(i,j)-GC is a smooth topology on X such that τj ≤ τ(i,j)-GC.

Proof. We have proven that (i, j)-GC is a fuzzy closure operator and in a similar
way can prove that (i, j)-GI is a fuzzy interior operator. To prove (1), we need to
satisfy conditions (C1)− (C5) in Definition 2.4.

(C1) Since 0̄ is an r-τj-closed fuzzy set in X, then from Proposition 3.4(1), 0̄ is
an r-(τi, τj)-gfc in X and, from Proposition 4.3(3), we have (i, j)-GC(0̄, r) = 0̄.

(C2) Follows immediately from Definition 4.1.
(C3) Since λ ≤ λ ∨ µ and µ ≤ λ ∨ µ, then from Proposition 4.3(2),

(i, j)-GC(λ, r) ≤ (i, j)-GC(λ ∨ µ, r) and (i, j)-GC(µ, r) ≤ (i, j)-GC(λ ∨ µ, r).

This implies that (i, j)-GC(λ, r)∨ (i, j)-GC(µ, r) ≤ (i, j)-GC(λ ∨ µ, r).
Suppose (i, j)-GC(λ∨µ, r) � (i, j)-GC(λ, r)∨ (i, j)-GC(µ, r). Consequently, x ∈ X

and t ∈ (0, 1) exist such that

(4.1) (i, j)-GC(λ, r)(x) ∨ (i, j)-GC(µ, r)(x) < t < (i, j)-GC(λ ∨ µ, r)(x).

Since (i, j)-GC(λ, r)(x) < t and (i, j)-GC(µ, r)(x) < t, there exist r-(τi, τj)-gfc sets
ρ1, ρ2 with λ ≤ ρ1 and µ ≤ ρ2 such that

ρ1(x) < t, ρ2(x) < t.

Since λ∨µ ≤ ρ1∨ρ2 and ρ1∨ρ2 is an r-(τi, τj)-gfc from Proposition 3.8(1), we have
(i, j)-GC(λ ∨ µ, r)(x) ≤ (ρ1 ∨ ρ2)(x) < t. This, however, contradicts (4.1). Hence,
(i, j)-GC(λ, r)∨ (i, j)-GC(µ, r) = (i, j)-GC(λ ∨ µ, r).

(C4) Let r ≤ s, r, s ∈ I0. Suppose (i, j)-GC(λ, r) � (i, j)-GC(λ, s). Consequently,
x ∈ X and t ∈ (0, 1) exist such that

(4.2) (i, j)-GC(λ, s)(x) < t < (i, j)-GC(λ, r)(x).

Since (i, j)-GC(λ, s)(x) < t, there is an s-(τi, τj)-gfc set ρ with λ ≤ ρ such that
ρ(x) < t. This yields Cτj (ρ, s1) ≤ µ, whenever ρ ≤ µ and τi(µ) ≥ s1, for 0 <
s1 ≤ s. Since r ≤ s, then Cτj (ρ, r1) ≤ µ whenever ρ ≤ µ and τi(µ) ≥ r1, for
0 < r1 ≤ r ≤ s1 ≤ s. This implies ρ is an r-(τi, τj)-gfc. From Definition 4.1, we have
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(i, j)-GC(λ, r)(x) ≤ ρ(x) < t. This contradicts (4.2). Hence, (i, j)-GC(λ, r) ≤ (i, j)-
GC(λ, s).

(C5) Let ρ be any r-(τi, τj)-gfc containing λ. Then, from Definition 4.1, we have
(i, j)-GC(λ, r) ≤ ρ. From proposition 4.3(2), we obtain (i, j)-GC( (i, j)-GC(λ, r), r) ≤
(i, j)-GC(ρ, r) = ρ. This mean that (i, j)-GC( (i, j)-GC(λ, r), r) is contained in every
r-(τi, τj)-gfc set containing λ. Hence, (i, j)-GC( (i, j)-GC(λ, r), r) ≤ (i, j)-GC(λ, r).
However, (i, j)-GC(λ, r) ≤ (i, j)-GC( (i, j)-GC(λ, r), r). Therefore, (i, j)-GC( (i, j)-
GC(λ, r), r) = (i, j)-GC(λ, r). Thus (i, j)-GC is a fuzzy closure operator.

To prove (2), using (1) and Definition 2.4, we get τ(i,j)-GC , which is a smooth
topology. By Proposition 4.2, we have (i, j)-GC(λ, r) ≤ Cτj

(λ, r). This means
that Cτj (1̄ − λ, r) = 1̄ − λ and implies (i, j)-GC(1̄ − λ, r) = 1̄ − λ. Thus, τj(λ) ≤
τ(i,j)-GC(λ) ∀λ ∈ IX . ¤

Proposition 4.6. Let (X, τ1, τ2) be a smooth bts, λ ∈ IX and r ∈ I0. Then:
(1) If τ1 ≤ τ2, then (1, 2)-GC(λ, r) ≤ (2, 1)-GC(λ, r).
(2) If λ is an r-(τi, τj)-gfc, then λ is an r-τ(i,j)-GC-closed fuzzy set.
(3) If τ1 ≤ τ2, then τ(2,1)-GC ≤ τ(1,2)-GC.

Proof. To show (1), suppose (1, 2)-GC(λ, r) � (2, 1)-GC(λ, r). There exists x ∈ X
and t ∈ (0, 1) such that

(4.3) (2, 1)-GC(λ, r)(x) < t < (1, 2)-GC(λ, r)(x).

Since (2, 1)-GC(λ, r)(x) < t, there exists an r-(τ2, τ1)-gfc set ρ such that λ ≤ ρ
and ρ(x) < t. From Proposition 3.11, ρ is an r-(τ1, τ2)-gfc, which implies (1, 2)-
GC(λ, r)(x) < ρ(x) < t. This contradicts (4.3).

The proof of (2) follows from Proposition 4.3(3). Finally (3), follows directly from
(1). ¤

The following example shows that the converse of Proposition 4.6(2) is not true.

Example 4.7. Let X = {a, b, c}. We define smooth topologies τ1, τ2 : IX −→ I as
follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = a1,
1
4 if λ = b1 ∨ c1,

0 otherwise;

and τ2(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = b1,
1
2 if λ = c1,
1
2 if λ = b1 ∨ c1,
1
4 if λ = a1 ∨ c1,

0 otherwise.

Then (X, τ1, τ2) is a smooth bts. The fuzzy set λ = b1 is a 1
2 -closed fuzzy set in

τ(2,1)-GC but not a 1
2 -(τ2, τ1)-gfc.

5. (i, j)-GF -continuous and (i, j)-GF -irresolute mappings

In this section we introduce the concepts of (i, j)-generalized fuzzy continuous
(resp., irresolute) mappings in smooth bts and study the relationship between them.
We also investigate some of their properties and also, we introduce the definition of
(i, j)-T 1

2
space and the strongly fuzzy pairwise T 1

2
space in smooth bts (X, τ1, τ2).
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Throughout this section consider (X, τ1, τ2), (Y, σ1, σ2) and (Z, ϕ1, ϕ2) as smooth
bts’s. For a mapping f from (X, τ1, τ2) into (Y, σ1, σ2), we shall denote the fuzzy
continuous (resp., closed, open) mapping from (X, τj) into (Y, σj), j ∈ {1, 2} by
j-fuzzy continuous (resp., closed, open) mapping. Firstly, we state the definition of
(i, j)-generalized fuzzy continuous (resp., irresolute) mappings.

Definition 5.1. A mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) is called:
(1) (i, j)-generalized fuzzy continuous ((i, j)-GF -continuous, for short) if f−1(µ)

is an r-(τi, τj)-gfc in X for each µ ∈ IY with σj(1̄− µ) ≥ r.
(2) (i, j)-generalized fuzzy irresolute ((i, j)-GF -irresolute, for short) if f−1(µ) is

an r-(τi, τj)-gfc in X for each r-(σi, σj)-gfc µ ∈ IY .

The following theorem gives an equivalent definition of (i, j)-GF -continuous map-
ping.

Theorem 5.2. A mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) is (i, j)-GF -continuous if
and only if f−1(µ) is an r-(τi, τj)-gfo in X for each µ ∈ IY with σj(µ) ≥ r.

Proof. This follows directly from Definition 3.1(2) and Definition 5.1(1). ¤
The relationship between the concepts of fuzzy continuous, FP -continuous and

(i, j)-GF -continuous will be introduced in the following theorem and its corollary.

Theorem 5.3. If f : (X, τ1, τ2) −→ (Y, σ1, σ2) is a j-fuzzy continuous, then f is
(i, j)-GF -continuous.

Proof. Let µ ∈ IY , such that σj(1̄ − µ) ≥ r. Since f is a j-fuzzy continuous, then
τj(f−1(1̄ − µ)) ≥ r. Consequently, f−1(µ) is an r-τj-closed fuzzy set in X. From
Proposition 3.4(1), we have that f−1(µ) is an r-(τi, τj)-gfc. Hence, f is (i, j)-GF -
continuous. ¤

The proof of the next corollary follows directly from Theorem 5.3.

Corollary 5.4. If f : (X, τ1, τ2) −→ (Y, σ1, σ2) is FP -continuous, then f is (i, j)-
GF -continuous.

The converse of above Theorem 5.3 is not true as seen from the following example.

Example 5.5. Let X = {a, b, c} and Y = {p, q}. Define fuzzy sets λ1, λ2 ∈ IX and
µ1, µ2 ∈ IY as follows:

λ1 = a0.5 ∨ b0.3 ∨ c0.7, λ2 = a0.5 ∨ b0.4 ∨ c0.8, µ1 = p0.7 ∨ q0.4, µ2 = p0.9 ∨ q0.2.

We define smooth topologies τ1, τ2 : IX −→ I and σ1, σ2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = λ1,

0 otherwise;
τ2(λ) =





1 if λ = 0̄, 1̄,
1
2 if λ = λ2,

0 otherwise;

σ1(µ) =





1 if µ = 0̄, 1̄,
1
2 if µ = µ1,

0 otherwise;
and σ2(µ) =





1 if µ = 0̄, 1̄,
1
2 if µ = µ2,

0 otherwise.
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Consider the mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) defined by f(a) = p, f(b) =
p, f(c) = q. Then, f is (1, 2)-GF -continuous but not 2-fuzzy continuous, as µ2 is a
1
2 -σ2-open fuzzy set in Y . However, f−1(µ2) = a0.9 ∨ b0.9 ∨ c0.2 is not a 1

2 -τ2-open
fuzzy set in X.

Thus we have the following implication and none of them is reversible.

FP -continuous =⇒ j-fuzzy continuous =⇒ (i, j)-GF -continuous

Theorem 5.6. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a mapping. If f is (i, j)-GF -
irresolute, then f is (i, j)-GF -continuous.

Proof. This follows directly from Proposition 3.4(1) and Definition 5.1(2). ¤
Then converse of above theorem is not true as seen from the following example.

Example 5.7. Let X = {a, b, c} and Y = {p, q}. Define fuzzy sets λ1, λ2 ∈ IX and
µ1, µ2 ∈ IY as follows:

λ1 = a0.5 ∨ b0.3 ∨ c0.7, λ2 = a0.5 ∨ b0.4 ∨ c0.8, µ1 = p0.9 ∨ q0.6, µ2 = p0.1 ∨ q0.8.

We define smooth topologies τ1, τ2 : IX −→ I and σ1, σ2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
4 if λ = λ1,

0 otherwise;
τ2(λ) =





1 if λ = 0̄, 1̄,
1
4 if λ = λ2,

0 otherwise;

σ1(µ) =





1 if µ = 0̄, 1̄,
1
4 if µ = µ1,

0 otherwise;
and σ2(µ) =





1 if µ = 0̄, 1̄,
1
4 if µ = µ2,

0 otherwise.

Consider the mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) defined by f(a) = p, f(b) =
q, f(c) = q. Then, f is (1, 2)-GF -continuous but not (1, 2)-GF -irresolute, as µ =
p0.3 ∨ q0.2 is a 1

4 -(σ1, σ2)-gfc set in Y . However, f−1(µ) = a0.3 ∨ b0.2 is not a 1
4 -

(τ1, τ2)-gfc set in X.

The following theorem provides the conditions to establish (i, j)-GF -irresolute
from (i, j)-GF -continuous.

Theorem 5.8. If f : (X, τ1, τ2) −→ (Y, σ1, σ2) is bijective, i-fuzzy open and (i, j)-
GF -continuous, then f is (i, j)-GF -irresolute.

Proof. Let µ be an r-(σi, σj)-gfc of Y . Let f−1(µ) ≤ ν, where τi(ν) ≥ s for
0 < s ≤ r. Clearly, µ ≤ f(ν) as f is a i-fuzzy open. Then, f(ν) is an r-
σi-open fuzzy set. As µ is an r-(σi, σj)-gfc in Y , then Cσj (µ, s) ≤ f(ν) implies
f−1(Cσj (µ, s)) ≤ ν. Since f is (i, j)-GF -continuous, then f−1(Cσj (µ, s)) is r-(τi, τj)-
gfc in X and given f−1(Cσj (µ, s)) ≤ ν, we have Cτj (f

−1(Cσj (µ, s)), s) ≤ ν, which
implies Cτj (f

−1(µ), s) ≤ ν. Therefore, f−1(µ) is an r-(τi, τj)-gfc in X. Hence f is
(i, j)-GF -irresolute. ¤
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Theorem 5.9. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a mapping. Consider the fol-
lowing statements:

(1) f is (i, j)-GF -continuous.
(2) f((i, j)-GC(λ, r)) ≤ Cσj

(f(λ), r), for each λ ∈ IX , r ∈ I0.
(3) (i, j)-GC(f−1(µ), r) ≤ f−1(Cσj (µ, r)), for each µ ∈ IY .

Then (1)⇒(2)⇒(3).

Proof. (1) ⇒ (2) Let λ ∈ IX . Since f(λ) ∈ IY , then f(λ) ≤ Cσj
(f(λ), r). Then,

λ ≤ f−1(Cσj
(f(λ), r)). Since f is (i, j)-GF -continuous, then f−1(Cσj

(f(λ), r)) is
an r-(τi, τj)-gfc in X. Hence, (i, j)-GC(λ, r) ≤ f−1(Cσj

(f(λ), r)) implies

f((i, j)-GC(λ, r)) ≤ f(f−1(Cσj
(f(λ), r))).

Thus, f((i, j)− GC(λ, r)) ≤ Cσj (f(λ), r).
(2) ⇒ (3) Letting λ = f−1(µ) and applying (2), we arrive at f((i, j)-GC(f−1(µ), r))

≤ Cσj
(f(f−1(µ)), r) ≤ Cσj

(µ, r). Consequently, f((i, j)-GC(f−1(µ), r)) ≤ Cσj
(µ, r)

implies f−1 (f((i, j)-GC(f−1(µ), r))) ≤ f−1(Cσj (µ, r)), which yields

(i, j)-GC(f−1(µ), r) ≤ f−1(Cσj (µ, r)).

¤
Next, we give an example to show that (3) does not lead to (1) in above theorem.

Example 5.10. Let X = {a, b} and Y = {p, q}. Define λ1, λ2 ∈ IX and µ1, µ2 ∈ IY

as follows:

λ1 = a0.6 ∨ b0.3, λ2 = a0.7 ∨ b0.6, µ1 = p0.4 ∨ q0.6, µ2 = p0.4 ∨ q0.7.

We define smooth topologies τ1, τ2 : IX −→ I and σ1, σ2 : IY −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
3 if λ = λ1,

0 otherwise;
τ2(λ) =





1 if λ = 0̄, 1̄,
1
3 if λ = λ2,

0 otherwise;

σ1(µ) =





1 if µ = 0̄, 1̄,
1
3 if µ = µ1,

0 otherwise;
and σ2(µ) =





1 if µ = 0̄, 1̄,
1
3 if µ = µ2,

0 otherwise.

Consider the mapping f : (X, τ1, τ2) −→ (Y, σ1, σ2) defined by f(a) = p, f(b) = q.
Then (1, 2)-GC(f−1(µ), 1

3 ) ≤ f−1(Cσ2(µ, 1
3 )), for each µ ∈ IY , but f is not (1, 2)-

GF -continuous since 1̄− µ2 is a 1
3 -σ2-closed fuzzy set in Y , but f−1(1̄− µ2) is not

a 1
3 -(τ1, τ2)-gfc set in X.

Theorem 5.11. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a mapping. If f is (i, j)-GF -
continuous, then for each xt ∈ Pt(X) and for each r-σj-open fuzzy set ν in Y such
that f(xt) ∈ ν, there exists an r-(τi, τj)-gfo η in X such that xt ∈ η and f(η) ≤ ν.

Proof. Let xt ∈ Pt(X), let ν be an r-σj-open fuzzy set in Y such that f(xt) ∈ ν.
Since f is (i, j)-GF -continuous then, by Theorem 5.2, f−1(ν) is an r-(τi, τj)-gfo in
X such that xt ∈ f−1(ν), let η = f−1(ν), then f(η) ≤ ν. ¤
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Theorem 5.12. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) and g : (Y, σ1, σ2) −→ (Z, ϕ1, ϕ2)
be mappings. Then:

(1) If g is j-fuzzy continuous and f is (i, j)-GF -continuous, then g ◦ f is (i, j)-
GF -continuous.

(2) If g is (i, j)-GF -irresolute and f is (i, j)-GF -irresolute, then g ◦ f is (i, j)-
GF -irresolute.

(3) If g is (i, j)-GF -continuous and f is (i, j)-GF -irresolute, then g ◦f is (i, j)-
GF -continuous.

Proof. We prove (1), and the proof of (2) and (3) are similar to (1). Let µ be an r-ϕj-
closed fuzzy set of Z. Since g is a j-fuzzy continuous, then g−1(µ) is an r-σj-closed
fuzzy set of Y . When f is (i, j)-GF -continuous, then (g ◦ f)−1(µ) = f−1(g−1(µ)) is
an r-(τi, τj)-gfc of X. Hence, g ◦ f is (i, j)-GF -continuous. ¤

We now introduce the definition of (i, j)-T 1
2

space and strongly fuzzy pairwise T 1
2

space in a smooth bts (X, τ1, τ2).

Definition 5.13. A smooth bts (X, τ1, τ2) is said to be (i, j)-T 1
2

space if every
r-(τi, τj)-gfc is an r-τj-closed fuzzy set of X.

Definition 5.14. A smooth bts (X, τ1, τ2) is said to be strongly fuzzy pairwise T 1
2

space, if it is (1, 2)-T 1
2

space and (2, 1)-T 1
2

space.

Remark 5.15. In [7] (recall that in a bts (X, T1, T2), if λ is (Ti, Tj)-generalized
closed then CTj (λ) − λ contains no non-empty Ti-closed set), we notice that this
result is not true in a smooth bts. Yet many properties of T 1

2
space depend on

this fact (e.g. Proposition 2.13(ii), pp.21 and Theorem 2.15, pp.22). The following
example explains Remark 5.15.

Example 5.16. Let X = {a, b}. Define fuzzy sets λ1, λ2 ∈ IX as follows:

λ1 = a0.5 ∨ b0.8, λ2 = a0.5 ∨ b0.5.

We define smooth topologies τ1, τ2 : IX −→ I as follows:

τ1(λ) =





1 if λ = 0̄, 1̄,
1
3 if λ = λ1,

0 otherwise;
and τ2(λ) =





1 if λ = 0̄, 1̄,
1
3 if λ = λ2,

0 otherwise.

Then (X, τ1, τ2) is a smooth bts. The fuzzy set λ = a0.5 ∨ b0.2 is a 1
3 -(τ1, τ2)-gfc but

Cτ2(λ, 1
3 )− λ = a0.5 ∨ b0.5 contains a τ1-closed fuzzy set 1̄− λ1.

Theorem 5.17. If f : (X, τ1, τ2) −→ (Y, σ1, σ2) is (i, j)-GF -irresolute and X is
(i, j)-T 1

2
space, then f is a j-fuzzy continuous.

Proof. Let µ be an r-σj-closed fuzzy set of Y . Then, from Proposition 3.4(1), we
have that µ is an r-(τi, τj)-gfc of Y . Since f is (i, j)-GF -irresolute, then f−1(µ) is
an r-(τi, τj)-gfc of X, but X is (i, j)-T 1

2
space, which implies f−1(µ) is an r-τj-closed

fuzzy set of X. Hence, f is a j-fuzzy continuous. ¤
Theorem 5.18. If f : (X, τ1, τ2) −→ (Y, σ1, σ2) is i-fuzzy continuous and j-fuzzy
closed mapping, then every r-(τi, τj)-gfc set λ ∈ IX , f(λ) is an r-(τi, τj)-gfc in Y .
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Proof. Let λ be an r-(τi, τj)-gfc in X, let f(λ) ≤ µ, where σi(µ) ≥ s, for 0 <
s ≤ r. Then, λ ≤ f−1(µ) and f−1(µ) is an r-τi-open fuzzy set of X since f is a
i-fuzzy continuous. As λ is an r-(τi, τj)-gfc in X, then Cτj

(λ, s) ≤ f−1(µ) implies
f(Cτj

(λ, s)) ≤ µ. Since λ ≤ Cτj
(λ, s), then f(λ) ≤ f(Cτj

(λ, s)). Therefore we have,
Cσj (f(λ), s) ≤ Cσj (f(Cτj (λ, s)), s) = f(Cτj (λ, s)) ≤ µ since f is a j-fuzzy closed.
Hence, f(λ) is an r-(τi, τj)-gfc in Y . ¤
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