Annals of Fuzzy Mathematics and Informatics Volume 9, No. 3, (March 2015), pp. 513–527 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fixed point theorem for 2-fuzzy *n*-*b* metric spaces

THANGARAJ BEAULA, S. CHRISTINAL GUNASEELI

Received 9 March 2014; Revised 26 August 2014; Accepted 3 September 2014

ABSTRACT. The object of this paper is to define 2-fuzzy n-b metric space and to establish the common fixed point theorem using two self-mappings satisfying a contractive condition in the 2-fuzzy n-b metric space.

2010 AMS Classification: 46S40, 03E72

Keywords: 2-fuzzy n-b metric space, φ - fuzzy weak contraction, 2- fuzzy n-b convergent sequence, 2-fuzzy n-b Cauchy sequence.

Corresponding Author: Thangaraj Beaula (edwinbeaula@yahoo.co.in)

1. INTRODUCTION

In 1965, the concept of fuzzy sets was introduced by Zadeh [5]. After that many authors have expansively developed the theory of fuzzy sets and applications George and Veeramani modified the concept of fuzzy metric space which introduced by Kramosil and Michalek [2]. R. M. Somasundaram and Thangaraj Beaula [4] has coined 2-fuzzy sets and developed 2-fuzzy 2-normed linear space. Especially, Kailash Namdeo, S. S Rajput and Rajesh Shrivastava [3] have introduced the concept of fixed point theorem for fuzzy 2- metric spaces in different ways. Recently, Zaheer K. Ansari, Rajesh Shrivastava, Gunjan Ansari and ArunGarg [1] have also studied the fixed point theorems in fuzzy 2-metric and fuzzy 3- metric spaces. In this paper we have defined the new concept of 2-fuzzy n-b-metric space. Convergent and Cauchy sequences are defined related to this space. Some of the fixed point theorems using altering function are proved for weakly compatible self mappings.

2. Preliminaries

Definition 2.1. An altering distance function (or) control function is a function $\psi : [0, \infty] \to [0, \infty]$ such that the following axioms hold:

i) ψ is monotonic increasing and continuous.

ii) $\psi(t)=0$ if and only if t=0.

Definition 2.2. A function $\varphi : R \to R^+$ is said to satisfy the condition * if the following axioms hold:

i) $\varphi(t) = 0$ if and only if t = 0.

ii) $\varphi(t)$ is increasing and $\varphi(t) \to \infty$ as $t \to \infty$.

iii) φ is left continuous in $(0, \infty)$.

iv) φ is continuous at 0.

Definition 2.3. The 3-tuple (X, M, *) is called fuzzy metric space if X is an arbitrary set, M is a fuzzy set in $X^2 \times [0, \infty)$ satisfying the following conditions:

i)
$$M(x, y, 0) = 0.$$

ii) M(x, y, t) = 1, for all t > 0 if and only if x = y.

iii) M(x, y, t) = M(y, x, t).

iv) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s).$

v) $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous $\forall x, y, z \in X$ and t, s > 0.

Then M is called a fuzzy metric on X and M(x, y, t) denotes the degree of nearness between x and y with respect to t.

Definition 2.4. The 3-tuple (X, M, *) is called fuzzy 2-metric space if X is an arbitrary set, * is a continuous t - norm and M is a fuzzy set in $X^3 \times [0, \infty)$ satisfying the following conditions for all $x, y, z, u \in X$ and $t_1, t_2, t_3 > 0$

- i) M(x, y, z, 0) = 0.
- ii) M(x, y, z, t) = 1, t > 0 and when at least two of the three points are equal.
- iii) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t) (Symmetry about three variables).
- iv) $M(x, y, z, t_1 + t_2 + t_3) \ge M(x, y, u, t_1) * M(x, u, z, t_2) * M(u, y, z, t_3).$
- (This is corresponds to tetrahedron inequality in 2-metric space)

v) $M(x, y, z, \cdot) : [0, 1) \to (0, 1]$ is left continuous.

Definition 2.5. Let X be a set and let $s \ge 1$ be given real number. A function $d: X \times X \to R^+$ is said to be a b - metric if and only if for all $x, y, z \in X$ the following conditions are satisfied:

i) d(x, y) = 0 if and only if x = y. ii) d(x, y) = d(y, x). iii) $d(x, z) \le s[d(x, y) + d(y, z)]$.

The pair (X, d) is called a *b*- metric space with parameter *s*.

There exists more examples in the literature [1, 3, 5] showing that the class of b - metric spaces, since a b - metrics in effectively larger than that of metric spaces, since a b - metric is a metric when s = 1 in the above condition 3.

Example 2.6. Let $X = \{0, 1, 2\}$ and $d(2, 0) = d(0, 2) = m \ge 1$ d(0, 1) = d(1, 2) = d(0, 1) = d(2, 1) = 1 and d(0, 0) = d(1, 1) = d(2, 2) = 0Then $d(x, y) \le \frac{m}{2} [d(x, z) + d(z, y)]$ for all $x, y, z \in X$.

Example 2.7. Let X = [0, 1] and $d(x, y) = |x - y|^2$ for all $x, y \in X$. It is obviously a b-metric on X but d is not a metric on X.

Example 2.8. Let $X = l_p(\mathbb{R})$ with 0514 where $l_p(\mathbb{R}) = \{ x = \{ x_n \} \subset \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^p < \infty \}$.

Then $d(x,y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p\right)^{\frac{1}{p}}$ is a b-metric on X with $s = 2^{\frac{1}{p}}$ as by elemenary calculation we obtain that $d(x,y) \le 2^{\frac{1}{p}} [d(x,y) + d(y,z)].$

Definition 2.9 ([6]). Let (X, d) be a metric space. A mapping $T : X \to X$ is said to be a φ - weak contraction if $d(Tx, Ty) \leq d(x, y) - \varphi(d(x, y))$ for all $x, y \in X$, where $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and non decreasing function with $\varphi(t) = 0$ if and only if t = 0.

Definition 2.10. A 2- fuzzy set on X is a fuzzy set on F(X).

3. 2-Fuzzy n-b metric space

 $\begin{array}{l} \textbf{Definition 3.1. Let } X \text{ be an arbitrary set, } * be the continuous t-norm and } F(X) \\ \text{be the set of all fuzzy sets on } X. \text{ Let } s \text{ be a real number, a fuzzy set } M \text{ on} \\ [F(X)]^{n+1} \times [0,\infty) \text{ is said to be a 2-fuzzy } n - b \text{ metric if and only if for all } \\ f', f'', f_1, f_2, ..., f_{n-1} \in F(X) \text{ the following conditions are satisfied.} \\ \text{i) } (2FM^{nb} - 1)M(f', f'', f_1, ..., f_{n-1}, 0) = 0. \\ \text{ii) } (2FM^{nb} - 2)M(f', f'', f_1, f_2, ..., f_{n-1}, t) = 1 \text{ for all } t > 0 \text{ if and only if at least } \\ 'n' \text{ elements of } \{ f', f'', f_1, ..., f_{n-1} \} \text{ are linearly dependent.} \\ \text{iii) } (2FM^{nb} - 3)M(f', f'', f_1, ..., f_{n-1}, t) = M(f'', f_1, ..., f_{n-1}, t). \\ &= M(f', f_1, f''..., f_{n-1}, t) = (Symmetry about 'n' variables) \\ \text{iv) } (2FM^{nb} - 4)M(f', f'', f_1, ..., f_{n-1}, t_1 + t_2 + ... + t_{n+1}) \\ &\geq s[M(f', f'', ..., f_{n-2}, g, t_1) * M(f', f'', ..., g, f_{n-1}, t_2) * \\ & * M(g, f'', f_1, ..., f_{n-1}, t_{n+1})]. \end{array}$

The pair (F(X), M) is called a 2- fuzzy n - b metric space with parameter s. A 2-fuzzy n - b metric is a n - metric whenever s = 1.

Example 3.2. Let X be a non-empty set, define a metric $D : X^2 \to [0, \infty)$ as $D(x, y) = (x + y)^2$ For s = 2,

$$D(x,y) = (x+y)^{2}$$

$$\leq (x+z+z+y)^{2}$$

$$= (x+z)^{2} + (z+y)^{2} + 2(x+z)(z+y)$$

$$\leq 2[(x+z)^{2} + (z+y)^{2}]$$

$$= 2[D(x,z) + D(z,y)]$$

Then (X, d) is a *b*-metric space. Define $M(x, y, t) = \frac{t}{t + D(x, y)}$ is a fuzzy *b*-metric space.

Example 3.3. Let $F(X) = \{ f | f : X \to [0, 1] \}$ Define $D : [F(X)]^{n+1} \to \mathbb{R}^+$ as $D(f', f'', f_1, ..., f_{n-1}) = \sqrt[3]{\sup_{x \in X} [|f'(x)| + |f''(x)| + |f_1(x)| + ... + |f_{n-1}|]^3}$ is a *n*-*b* metric with constant $s = \sqrt[3]{4}$. For this note, if $a_1, a_2, ..., a_{n+1}$ are non-negative real numbers. then $(a_1 + a_2 + ... + a_{n+1})^3 \le 4(a_1^3 + a_2^3 + ... + a_{n+1}^3)$ and

 $\sqrt[3]{(a_1 + a_2 + ... + a_{n-1})} \le \sqrt[3]{a_1} + \sqrt[3]{a_2} + ... + \sqrt[3]{a_n}$ Now let us define a fuzzy set

 $M: [F(X)]^{n+1} \times (0,\infty) \to [0,1]$ as

 $M(f', f'', f_1, ..., f_{n-1}, t) = \frac{t}{t + D(f', f'', f_1, ..., f_{n-1}, t)}$ which is a fuzzy *n*-*b*-metric.

Definition 3.4. Let (F(X), M, *) be 2- fuzzy n - b metric space. A mapping $T: F(X) \to F(X)$ is said to be a φ - fuzzy weak contraction if

$$M(Tf, Th, g_1, ..., g_{n-1}, \varphi(t)) \ge M(f, h, g_1, ..., g_{n-1}, t) - \psi(M(f, h, g_1, ..., g_{n-1}, t))$$

For all $f, h, g_1, ..., g_{n-1} \in F(X)$ where $\varphi : [0, \infty) \to [0, \infty)$ is a continuous and non decreasing function with $\varphi(t) = 0$ if and only if t = 0.

Definition 3.5. Let (F(X), M, *) be 2- fuzzy n - b metric space. Then a sequence $\{f_n\}_{n \in N}$ is called

i) 2-fuzzy n - b convergent if there exists $f \in F(X)$ such that

 $M(f_n, f, g_1, \dots, g_{n-1}, t) \to 1 \text{ as } n \to \infty.$

In this case we write $\lim_{n\to\infty} f_n = f$.

ii) 2-fuzzy n - b Cauchy if $M(f_n, f_m, g_1, ..., g_{n-1}, t) \to 1$ as $n, m \to \infty$. **Proposition 3.6.** In a 2- fuzzy n - b metric space (F(X), M, *) the following as-

sertions hold: A n - b convergent sequence has a unique limit.

Proof. Let $\{f_n\}$ converges to f_1 and f_2 in F(X).

Then $M(f_n - f_1, g_1, ..., g_n, t) > 1 - r$ and $M(f_n - f_2, g_1, ..., g_n, t) > 1 - r$ for all t > 0 and choose r such that 0 < r < 1, where $(1 - r) * (1 - r) > 1 - \varepsilon$ Now,

$$\begin{split} M(f_1 - f_2, g_1, ..., g_n, t) &= M(f_1 - f_n + f_n - f_2, g_1, ..., g_n, \frac{t}{2} + \frac{t}{2}) \\ &= M(f - f_n) + (f_n - f_2, g_1, ..., g_n, \frac{t}{2} + \frac{t}{2}) \\ &\geq M(f_1 - f_n, g_1, ..., g_n, \frac{t}{2}) * M(f_n - f_2, g_1, ..., g_n, \frac{t}{2}) \\ &\geq (1 - r) * (1 - r) = \varepsilon. \end{split}$$

Therefore $f_1 = f_2$, so the limits are equal.

Main Result

Theorem 3.7. Let (F(X), M, *) be a complete 2- fuzzy n - b metric space with parameter s and, $T : F(X) \to F(X)$ be a fuzzy continuous mapping such that

$$M(T(f), T(h), g_1, \dots, g_{n-1}, qt) \\ \geq \frac{\alpha M(h, T(h), g_1, \dots, g_{n-1}, t), M(f, T(f), g_1, \dots, g_{n-1}, qt)}{M(f, h, g_1, \dots, g_{n-1}, t)} + \beta M(f, h, g_1, \dots, g_n(n-1), t) \qquad \dots \dots (1)$$

for all $f, h, g_1, ..., g_{n-1} \in F(X), f \neq h$ where α, β are positive real constants such that $s\beta + \alpha < 1$, then T has a unique fixed point.

Proof. For an arbitrary $f_0 \in F(X)$ construct the sequence $(f_n)_{n \in N}$ such that $f_{n+1} = T(f_n)$.

$$M(f_1, f_2, g_1, \dots, g_{n-1}, qt) = M(Tf_0, Tf_1, g_1, \dots, g_{n-1}, qt)$$

$$\geq \frac{\alpha M(f_0, Tf_0, g_1, \dots, g_{n-1}, t) M(f_1, T(f_1), g_1, \dots, g_{n-1}, qt)}{M(f_0, f_1, g_1, \dots, g_{n-1}, t)} + \beta M(f_0, f_1, g_1, \dots, g_{n-1}, t)$$

$$= \frac{\alpha M(f_0, f_1, g_1, \dots, g_{n-1}, t) M(f_1, f_2, g_1, \dots, g_{n-1}, qt)}{M(f_0, f_1, g_1, \dots, g_{n-1}, t)} + \beta M(f_0, f_1, g_1, \dots, g_{n-1}, t)$$

$$\begin{split} M(f_1, f_2, g_1, ..., g_{n-1}, qt) &\geq \alpha M(f_1, f_2, g_1, ..., g_{n-1}, qt) + \beta M(f_0, f_1, g_1, ..., g_{n-1}, t) \\ M(f_1, f_2, g_1, ..., g_{n-1}, qt)(1 - \alpha) &\geq \beta M(f_0, f_1, g_1, ..., g_{n-1}, t) \end{split}$$

$$M(f_1, f_2, g_1, \dots, g_{n-1}, t) \ge \frac{\beta}{1-\alpha} M(f_0, f_1, g_1, \dots, g_{n-1}, \frac{t}{|q|}), q > 0$$

where $\frac{\beta}{1-\alpha} = k < 1$. Similarly,

$$\begin{split} M(f_{2},f_{3},g_{1},...,g_{n-1},qt) &= M(Tf_{1},Tf_{2},g_{1},...,g_{n-1},qt) \\ &\geq \frac{\alpha M(f_{1},Tf_{1},g_{1},...,g_{n-1},t)M(f_{2},T(f_{2}),g_{1},...,g_{n-1},qt)}{M(f_{1},f_{2},g_{1},...,g_{n-1},t)} \\ &\quad + \beta M(f_{1},f_{2},g_{1},...,g_{n-1},t) \\ &= \frac{\alpha M(f_{1},f_{2},g_{1},...,g_{n-1},t)M(f_{2},f_{3},g_{1},...,g_{n-1},qt)}{M(f_{1},f_{2},g_{1},...,g_{n-1},t)} \\ &\quad + \beta M(f_{1},f_{2},g_{1},...,g_{n-1},t) \\ M(f_{2},f_{3},g_{1},...,g_{n-1},qt) \geq \alpha M(f_{2},f_{3},g_{1},...,g_{n-1},qt) + \beta M(f_{1},f_{2},g_{1},...,g_{n-1},t) \end{split}$$

$$M(f_2, f_3, g_1, ..., g_{n-1}, qt)(1 - \alpha) \ge \beta M(f_1, f_2, g_1, ..., g_{n-1}, t)$$
$$M(f_2, f_3, g_1, ..., g_{(n-1)}, t) \ge \frac{\beta}{1-\alpha} M(f_1, f_2, g_1, ..., g_{n-1}, \frac{t}{q}), q > 0$$
$$= \left(\frac{\beta}{1-\alpha}\right)^2 M(f_0, f_1, g_1, ..., g_{n-1}, \frac{t}{q^2}), q > 0t)(1 - \alpha)$$
$$\ge \beta M(f_1, f_2, g_1, ..., g_{n-1}, t)$$

where $\frac{\beta}{1-\alpha} = k < 1$. Inductively,

$$M(f_n, f_{n+1}, g_1, ..., g_{n-1}, qt) = M(Tf_{n-1}, Tf_n, g_1, ..., g_{n-1}, t)$$

$$\geq \frac{\alpha M(f_{n-1}, Tf_{n-1}, g_1, ..., g_{n-1}, t) M(f_n, Tf_n, g_1, ..., g_{n-1}, t)}{M(f_{n-1}, f_n, g_1, ..., g_{n-1}, t)} + \beta M(f_{n-1}, f_n, g_1, ..., g_{n-1}, t)$$

$$\geq \frac{\beta}{1-\alpha} M(f_{n-1}, f_n, g_1, ..., g_{n-1}, qt)$$

Inductively,

$$M(f_n, f_{n+1}, g_1, ..., g_{n-1}, qt) \ge kM(f_0, f_1, g_1, ..., g_{n-1}, \frac{t}{q^n})$$

For every positive integer p and k in N we have

$$M(f_k, f_{K+1}, g_1, ..., g_{n-1}, qt) \to 1$$

The above sequence is Cauchy in complete 2- fuzzy n - b metric space (F(X), M, *) so there exists a $f \in F(X)$ such that $\lim_{n\to\infty} f_n = f$ 517 By the continuity of T and MWe have

$$Tf = T(\lim_{n \to \infty} f_n)$$

=
$$\lim_{n \to \infty} Tf_n$$

=
$$\lim_{n \to \infty} f_n(n+1)$$

=
$$\lim_{n \to \infty} f_n$$

=
$$f$$

Therefore $Tf = f$

And this proves that f is a fixed point.

If there exists a another point $g \neq f$ in F(X) such that Tg = g then

$$\begin{split} M(g, f, g_1, ..., g_{n-1}, qt) &= M(Tg, Tf, g_1, ..., g_{n-1}, t) \\ &\geq \frac{\alpha M(g, Tg, g_1, ..., g_{n-1}, t) M(f, Tf, g_1, ..., g_{n-1}, qt)}{M(g, f, g_1, ..., g_{n-1}, t)} \\ &+ \beta M(g, f, g_1, ..., g_{n-1}, t) \\ &= \beta M(g, f, g_1, ..., g_{n-1}, qt) \\ &\geq M(g, f, g_1, ..., g_{n-1}, qt) \end{split}$$

which implies

 $M(g, f_{n+1}, g_1, ..., g_{n-1}, qt) \ge M(g, f_{n+1}, g_1, ..., g_{n-1}, qt)$ and hence f = gHence the fixed point is unique.

Theorem 3.8. Let (F(X), M, *) be a complete 2-fuzzy n - b metric space and S, T: $F(X) \rightarrow F(X)$ be two self-mappings satisfying $i) TF(X) \subseteq SF(X)$

ii) The functions $\psi, \alpha : [0,1] \to [0,1]$ are continuous, monotonically increasing with $\psi(0) = 0 = \alpha(0)$ and $t - \frac{1}{s}(\alpha(t) - \psi(t)) < 0$ also $\frac{1}{s^n}(\alpha - \psi)^n(a_n) \to 1$ when $a_n \to 1$ as $n \to \infty$

iii) $\frac{1}{s}M(Sf, Sh, g_1, ..., g_{n-1}, \varphi(t)) > 0$ for all t > 0 where the function φ satisfies the definition

iv)
$$sM(Tf, Th, g_1, ..., g_{n-1}, \varphi(ct)) \ge M(f, h, g_1, ..., g_{n-1}, t) -\psi(M(f, h, g_1, ..., g_{n-1}, t))$$

Also the contraction with above conditions

$$\frac{1}{M(Tf,Th,g_1,\dots,g_{n-1},\varphi(ct))} \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sf,Sh,g_1,\dots,g_{n-1},\psi(t))} \right) -\psi \left(\frac{1}{M(Sf,Sh,g_1,\dots,g_{n-1},\varphi(t))} \right) \right]$$
(1)

holds for all $f, h \in F(X), t > 0, 0 < c < 1$.

If S(F(X)) is a complete subspace of F(X) and the mappings (S,T) are weakly compatible, then S and T have a unique common fixed point.

Proof. Let f_0 be an element in F(X). Define two sequences (h_n) and (f_n) such that $h_n = Tf_n = Sf_{n+1}$, we claim that $\{h_n\}$ is a Cauchy sequence.

For some n, assume that

$$\frac{1}{M(Tf_{n-1}, Tf_{n}, g_{1}, \dots, g_{n-1}, \varphi(ct))} \ge \frac{1}{M(Tf_{n}, Tf_{n+1}, g_{1}, \dots, g_{n-1}, \varphi(ct))}$$

is true. Then from condition (1)

$$\frac{s}{M(Tf_n, Tf_{n+1}, g_1, \dots, g_{n-1}, \varphi(ct))} \ge \alpha \left(\frac{1}{M(Sf_n, Sf_{n+1}, g_1, \dots, g_{n-1}, \varphi(t))}\right) -\psi \left(\frac{1}{M(Sf_n, Sf_{n+1}, g_1, \dots, g_{n-1}, \varphi(t))}\right)$$

Then using the above assumption contraction becomes,

$$\frac{1}{M(Tf_{n-1}, Tf_n, g_1, \dots, g_{n-1}, \varphi(ct))} \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Tf_{n-1}, Tf_n, g_1, \dots, g_{n-1}, \varphi(t))} \right) - \psi \left(\frac{1}{M(Tf_{n-1}, Tf_n, g_1, \dots, g_{n-1}, \varphi(t))} \right) \right]$$
(2).

Given $t - \frac{1}{s}(\alpha(t) - \psi(t)) < 0$ is a contrary to our assumption, because above inequality (1) yields $st - \alpha(t) + \psi(t) \ge 0$ $\frac{1}{M(Tf_n, Tf_{n+1}, g_1, \dots, g_{n-1}, \varphi(ct))} \ge \frac{1}{M(Tf_{n-1}, Tf_n, g_1, \dots, g_{n-1}, \varphi(ct))}$ (3)

Again assume $\{h_n\} \neq \{h_{n+1}\}$ for every n.

By virtue of the properties of φ , we can find a t > 0such that $sM(Sf_1, Sf_2, g_1, ..., g_{n-1}, \varphi(t)) > 0$ Therefore using condition (1) we get $\frac{1}{M(h_0, h_1, g_1, ..., g_{n-1}, \varphi(ct))} = \frac{1}{M(Tf_0, Tf_1, g_1, ..., g_{n-1}, \varphi(ct))} \text{ (since } h_n = Tf_n)$ $\geq \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sf_1, Sf_2, g_1, ..., g_{n-1}, \varphi(t))} \right) - \psi \left(\frac{1}{M(Sf_1, Sf_2, g_1, ..., g_{n-1}, \varphi(t))} \right) \right]$ On using (3) we get $\frac{1}{M(Tf_1, Tf_2, g_1, \dots, g_{n-1}, \varphi(ct))} \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \varphi(t))} \right) - \psi \left(\frac{1}{M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \varphi(t))} \right) \right]$

Since $\frac{1}{s}M(Sf_1, Sf_2, g_1, ..., g_{n-1}, \varphi(t)) > 0$ implies

 $\frac{1}{s}M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \varphi(\frac{t}{c})) > 0$

By applying in (1) we get $\begin{array}{l} \begin{array}{l} \text{By applying in (1) we get} \\ \hline \frac{1}{M(h_0,h_1,g_1,\ldots,g_{n-1},\varphi(t))} = \frac{1}{M(Tf_0,Tf_1,g_1,\ldots,g_{n-1},\varphi(t))} \\ \geq \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sf_1,Sf_2,g_1,\ldots,g_{n-1},\varphi(\frac{t}{c}))} \right) - \psi(\frac{1}{M(Sf_1,Sf_2,g_1,\ldots,g_{n-1},\psi(\frac{t}{c}))} \right) \right] \\ \text{Again by using (3),} \end{array}$ $\frac{1}{M(Tf_1, Tf_2, g_1, \dots, g_{n-1}, \varphi(t))} \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \varphi(\frac{t}{c}))} \right) - \psi \left(\frac{1}{M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \psi(\frac{t}{c}))} \right) \right]$

Repeating the process n times, we obtain

$$\frac{1}{M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varphi(t))} \ge \frac{1}{s^n} (\alpha - \psi)^n \left(\frac{1}{M(Sf_1, Sf_2, g_1, \dots, g_{n-1}, \varphi(\frac{t}{c^n}))}\right)$$

Since $\frac{1}{s}M(Sf_2, Sh_3, g_1, ..., g_{n-1}, \varphi(ct)) > 0$ (by condition (iii))

Then following the above process we get,

$$\frac{1}{M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varphi(t))} \ge \frac{1}{s^n} (\alpha - \psi)^n \left(\frac{1}{M(Sf_2, Sf_3, g_1, \dots, g_{n-1}, \varphi(\frac{ct}{c^n}))}\right)$$

Continuing this process r times, We get,

$$\frac{1}{M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varphi(c^r t))} \ge \frac{1}{s^{n-r+1}(\alpha - \psi)^{n-r+1}} \left(\frac{1}{M(Sf_{r+1}, Sf_{n+2}, g_1, \dots, g_{n-1}, \varphi((\frac{c^r t}{c^{n-r+1}})))}\right)$$

Take $h_n = Sf_{n+1}$ then 1

$$\overline{M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varphi(c^r t))} \geq \frac{1}{s^{n-r+1}} (\alpha - \psi)^{n-r+1} \left(\frac{1}{M(h_r, h_{r+1}, g_1, \dots, g_{n-1}, \varphi(\frac{c^r t}{c^{n-r+1}})} \right)$$

Since

 $\frac{1}{s^n}(\alpha - \psi)^n(a_n) \to 1$ when $a_n \to 1$ as $n \to \infty$,

hence for all r > 0.

$$\frac{1}{M(h_{n-1},h_n,g_1,\ldots g_{n-1},\varphi(c^rt))}\geq 1$$

Therefore as $n \to \infty$

$$M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varphi(c^r t)) \to 1 \text{as} n \to \infty$$

Choose $\varphi(c^r t) < \varepsilon$ then it follows that $M(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \varepsilon) \to 1$ as $n \to \infty$

By triangle inequality,

$$M(h_n, h_{n+p}, g_1, \dots, g_{n-1}, \varepsilon) \ge M\left(h_n, h_{n+1}, g_1, \dots, g_{n-1}, \frac{\varepsilon}{p}\right) * \dots$$
$$* M\left(h_{n+p}, h_{n+p+1}, g_1, \dots, g_{n-1}, \frac{\varepsilon}{p}\right)$$

And so

 $M(h_n, h_{n+p}, g_1, \dots, g_{n-1}, \varepsilon) \to 1 \text{ as } n \to \infty$

which implies $\{h_n\}$ is a Cauchy sequence and it converges to $h \in F(X)$ such that $h_n \to h$ as $n \to \infty$

Let $h_n = Tf_n = Sf_{n+1} \rightarrow h$ Our aim is to show that Th = hSince

$$M(Th, h, g_1, \dots, g_{n-1}, \varepsilon) \ge M(Th, h_n, g_1, \dots, g_{n-1}, \frac{\varepsilon}{2}) * M(h_n, h, g_1, \dots, g_{n-1}, \frac{\varepsilon}{2})$$

By the property of φ , there exists a $t_1 > 0$ such that $\varphi(t_1) < \frac{\varepsilon}{2}$ as $h_n \to h$ as $n \to \infty$, there exists $m \in N$ such that for all n > m,

$$\begin{split} M(h_n, h, g_1, \dots g_{n-1}, \varphi(t_1)) &> 0, \text{ then for } n > m \\ \frac{1}{M(Th, h_n, g_1, \dots g_{n-1}, \frac{\varepsilon}{2})} &= \frac{1}{M(Th, Tf_n, g_1, \dots g_{n-1}, \varphi(t_1))} \\ &\geq \frac{1}{s} \bigg[\alpha \bigg(\frac{1}{M(Sh, Sh_{n+1}, g_1, \dots g_{n-1}, \varphi(\frac{t_1}{c}))} \bigg) \\ &- \psi \bigg(\frac{1}{M(Sh, Sf_{n+1}, g_1, \dots g_{n-1}, \varphi(\frac{t_1}{c}))} \bigg) \bigg] \end{split}$$

Again on applying (1) we get

$$\left(\frac{1}{M(Th, Tf_{n+1}, g_1, \dots, g_{n-1}, \varphi(t_1))} \right) \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sh, Sf_{n+1}, g_1, \dots, g_{n-1}, \varphi(\frac{t_1}{c}))} \right) - \psi \left(\frac{1}{M(Sh, Sf_{n+1}, g_1, \dots, g_{n-1}, \varphi(\frac{t_1}{c}))} \right) \right]$$

Proceeding the limit as $n \to \infty$ we obtain

$$M(Th, h_n, g_1, ..., g_{n-1}, \frac{t_1}{2}) \to 1 \text{ as } n \to \infty$$

As $n \to \infty$, $h_n \to h$ and $M(Th, h, g_1, \dots, g_{n-1}, \varepsilon) = 1$, for every $\varepsilon > 0$ gives Th = h. Thus Sh = Th = h which implies that h is a common fixed point of S and T.

Finally let us prove the uniqueness of h.

Let h, h' be two fixed points of S and T. by the properties of φ there exists k > 0 such that $M(h, h', g_1, \dots, g_{n-1}, \varphi(k)) > 0$ then again by applying (1) we obtain the following equation

$$\frac{1}{M(h,h',g_1,...,g_{n-1},\varphi(k))} = \frac{1}{((Th,Th',g_1,...,g_{n-1},\varphi(ck)))} \\ \ge \frac{1}{s} \bigg[\alpha \bigg(\frac{1}{M(Sh,Sh',g_1,...,g_{n-1},\varphi(k))} \bigg) \\ - \psi \bigg(\frac{1}{M(Sh,Sh',g_1,...,g_{n-1},\varphi(k))} \bigg) \bigg]$$

On replacing k by $\frac{k}{c}$ we get,

$$\frac{1}{M(h,h',g_1,\dots,g_{n-1},\varphi(k))} \ge \frac{1}{s} \left[\alpha \left(\frac{1}{M(Sh,Sh',g_1,\dots,g_{n-1},\varphi(\frac{S}{c}))} \right) - \psi \left(\frac{1}{M(Sh,Sh',g_1,\dots,g_{n-1},\varphi(\frac{S}{c}))} \right) \right]$$
521

Repeating the procedure 'n' times

$$\frac{1}{M(h,h',g_1,...g_{n-1},\varphi(S))} \ge \frac{1}{s^n} (\alpha - \psi)^n \left(\frac{1}{M(Sh,Sh',g_1,...g_{n-1},\varphi(\frac{S}{c}))}\right)^{n-1}$$

and so $M(h, h', g_1, \dots, g_{n-1}, \varphi(S)) \to 1$ as $n \to \infty$ since $\frac{1}{s^n} (\alpha - \psi)^n (a_n) \to 1$ when $a_n \to 1$ as $n \to \infty$

which establishes the uniqueness of fixed point.

Theorem 3.9. Let (F(X), M, *) be a complete 2-fuzzy n-metric space and let S and T be continuous mappings of F(X) in F(X) then S and T have common fixed point in F(X) if there exists continuous mapping A of F(X) into $S(F(X)) \cap T(F(X))$ which commute weakly with S and T and

$$M(Af', Af'', g_1, \dots, g_{n-1}, qt) \geq smin\{ M(Tf'', Af'', g_1, \dots, g_{n-1}, t), M(Sf', Af', g_1, \dots, g_{n-1}, t), M(Sf', Tf'', g_1, \dots, g_{n-1}, t), \frac{M(Sf', Tf'', g_1, \dots, g_{n-1}, t))}{M(Af', Tf'', g_1, \dots, g_{n-1}, t)} \}$$
(1)

For all $f', f'', \dots f_{n+1}, g_1, \dots, g_{n-1} \in F(X), t > 0$ and 0 < q < 1 and $\lim_{n \to \infty} M(f', f'', \dots f_{n+1}, g_1, \dots g_{n-1}, t) = 1$ for all $f', f'', \dots f_{n+1}, g_1, \dots g_{n-1}$ in F(X).

Then S, T and A have a unique common fixed point.

 $\begin{array}{l} Proof. \text{ We define a sequence } \{ \ f_n' \} \text{ such that} \\ Af_{2n}' = Sf_{2n-1}' \text{ and } Af_{2n-1}' = Tf_{2n}', n = 1, 2, ... \\ \text{We shall prove that } \{ \ Af_n' \} \text{ is a Cauchy sequence. For this suppose } f' = f_{2n} \text{ and} \\ f'' = f_{2n+1}, \text{ we write} \\ M(Af_{2n}', Af_{2n+1}', g_1, ..., g_{n-1}, qt) \\ \geq s \min\{ \ M(Tf_{2n+1}', Af_{2n+1}', g_1, ..., g_{n-1}, t), M(S'f_{2n}, Af_{2n}', g_1, ..., g_{n-1}, t), \\ M(Sf_{2n}', Tf_{2n+1}', g_1, ..., g_{n-1}, t), \frac{M(Sf_{2n}', Tf_{2n+1}', g_1, ..., g_{n-1}, t)}{M(Af_{2n}', Af_{2n+1}', g_1, ..., g_{n-1}, t)} \} \end{array}$

 $M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, q_t)$

$$\geq s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t), M(Af'_{2n+1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), \\ MAf'_{2n+1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), \frac{M(Af'_{2n+1}, Af'_{2n}, g_1, \dots, g_{n-1}, t)}{M(Af'_{2n}, Af_{2n}, g_1, \dots, g_{n-1}, t)} \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t), M(Af'_{2n+1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), \\ M(Af'_{2n+1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), 1 \}$$

$$= s \min\{ M(Af'_{2n-1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), M(Af'_{2n-1}, Af'_{2n-1}, g_1, \dots, g_{n-1}, t), \\ M(Af'_{2n-1}, Af'_{2n}, g_1, \dots, g_{n-1}, t), 1 \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$= s \min\{ M(Af'_{2n}, Af'_{2n+1}, g_1, \dots, g_{n-1}, t) \}$$

$$M(Af'_{2k}, Af'_{2m+1}, g_1, \dots, g_{n-1}, qt) \ge sM\left(Af'_{2m}, Af'_{2k-1}, g_1, \dots, g_{n-1}, \frac{t}{q}\right)$$
(2)
522

For every k and m in N,

Further if 2m + 1 > 2k then,

$$M\left(Af'_{2k}, Af'_{2m+1}, g_1, \dots, g_{n-1}, qt\right) \ge sM\left(Af'_{2k-1}, Af'_{2m}, g_1, \dots, g_{n-1}, \frac{t}{q}\right)$$

$$\ge s^{2k}M\left(Af_0, Af'_{2m+1-2k}, g_1, \dots, g_{n-1}, \frac{t}{q^{2k}}\right)(3)$$

If 2k > 2m+1 then,

$$M\left(Af_{2k}', Af_{2m+1}', g_1, \dots, g_{n-1}, qt\right) \ge sM\left(Af_{2k-1}', Af_{2m}', g_1, \dots, g_{n-1}, \frac{t}{q}\right)$$
$$\ge s^{2m+1}M\left(Af_{2k-(2m+1)}', Af_0, g_1, \dots, g_{n-1}, \frac{t}{q^{2m+1}}\right)$$
(4)

By simple induction with $\left(3\right)$ and $\left(4\right)$, we have

$$M\left(Af_{n}, Af_{n+p}, g_{1}, \dots, g_{n-1}, qt\right) \geq s^{n}M\left(Af_{0}, Af_{p}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right)$$

For n = 2k, p = 2m + 1 (or) n = 2k + 1, p = 2m + 1 and by (2FMⁿ - 3)
 $M\left(Af_{n}, Af_{n+p}, g_{1}, \dots, g_{n-1}, qt\right)$
 $\geq s^{n}(s) \left[M\left(Af_{0}, Af_{1}, g_{1}, \dots, g_{n-1}, \frac{t}{2q^{n}}\right) * M\left(Af_{1}, Af_{p}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right)\right]$ (5)
where $0 \leq s \leq 1$
For every positive integer p and n in N we have
 $M\left(Af_{0}, Af_{p}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right) \to 1$ as $n \to \infty$

Thus $\{Af_n\}$ is a Cauchy sequence.

Since the space F(X) is complete there exists $f_{n+1} \in F(X)$ such that, $\lim_{n\to\infty} Af_n = \lim_{n\to\infty} Sf_{2n-1} = \lim_{n\to\infty} Tf_{2n} = h$

It follows that Ah = Sh = Th and therefore,

$$M(Ah, AAh, g_1, \dots, g_{n-1}, qt) \\ \ge s \min\{ M(TAh, AAh, g_1, \dots, g_{n-1}, t), M(Sh, Ah, g_1, \dots, g_{n-1}, t), \\ M(Sh, TAh, g_1, \dots, g_{n-1}, t), \frac{M(Sh, TAh, g_1, \dots, g_{n-1}, t)}{M(Ah, TAh, g_1, \dots, g_{n-1}, t)} \}$$

$$M(Ah, A^{2}h, g_{1}, \dots, g_{n-1}, qt) \geq s M(Sh, TAh, g_{1}, \dots, g_{n-1}, t)$$

$$\geq s M(Sh, ATh, g_{1}, \dots, g_{n-1}, t)$$

$$\geq sM(Ah, A^{2}h, g_{1}, \dots, g_{n-1}, t)$$

$$\geq s^{n}M\left(Ah, A^{2}h, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right)$$

Since, $\lim_{n\to\infty} M\left(Ah, A^2h, g_1, \dots, g_{n-1}, \frac{t}{q^n}\right) = 1$ $\Rightarrow Ah = A^2h$

Thus h is common fixed point of A, S and T. For uniqueness let $k(k \neq h)$ be another common fixed point of S, T and A 523

By (1) we write,

$$\begin{split} M\left(Ah, Ak, g_{1}, \dots g_{n-1}, qt\right) &\geq s \min\{ M\left(Tk, Ak, g_{1}, \dots g_{n-1}, t\right), \\ M\left(Sh, Ah, g_{1}, \dots g_{n-1}, t\right), M\left(Sh, Tk, g_{1}, \dots g_{n-1}, t\right), \\ \frac{M\left(Sh, Tk, g_{1}, \dots g_{n-1}, t\right)}{M\left(Ah, Tk, g_{1}, \dots g_{n-1}, t\right)} \\ \\ M\left(Ah, Ak, g_{1}, \dots g_{n-1}, qt\right) &\geq s \min\{M\left(h, k, g_{1}, \dots g_{n-1}, t\right)\} \end{split}$$

This implies that,

 $M(h, k, g_1, \dots, g_{n-1}, qt) \ge smin \{ M(h, k, g_1, \dots, g_{n-1}, t) \}$ hence h = k and this completes the proof.

 $\begin{array}{l} \textbf{Theorem 3.10. } Let \left(F(X), \ M_{1}, \ \ast\right) \ and \left(F(Y), \ M_{2}, \ \ast\right) \ be \ two \ complete \ 2- \ fuzzy\\ n - b \ metric \ spaces. \ Let \ A \ and \ B \ be \ mappings \ from \ F(X) \ to \ F(Y) \ and \ S \ and \ T \ be\\ mappings \ from \ F(Y) \ to \ F(X) \ satisfying \ the \ following \ inequalities:\\ M_{1}\left(f, f', g_{1}, \ldots, g_{n-1}, t\right) \ M_{1}\left(SAf, TBf', g_{1}, \ldots, g_{n-1}, t\right) \\ & \geq s \ \left\{ \ min\{M_{1}(f', f, g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f', TBf', g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f', SAf', g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f, SAf, g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f', TBf', g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f', TBf', g_{1}, \ldots, g_{n-1}, t), \ M_{1}(f, f', g_{1}, \ldots, g_{n-1}, t), \ M_{2}\left(h, h', g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(h', ATh', g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(h', BSh', g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(h', BSh', g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(h, h', g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(BSh, h, g_{1}, \ldots, g_{n-1}, t\right), \ M_{2}\left(h, h', g_{1}, \ldots, g_{n-1}$

For all f and f' in F(X) and h and h' in F(Y) and 0 < q < 1. If one of the mapping A, B, S and T is continuous, then SA and TB have a common fixed point g in F(X) and BS and AT have a common fixed point k in F(Y).

Further, Ag = Bg = k and Sk = Tk = g.

Proof. Let f be an arbitrary point in F(X). we define sequence $\{f_n\}$ in F(X) and $\{h_n\}$ in F(Y) such that $Af_{2n} = h_{2n+1}, Bf_{2n-1} = h_{2n}, Th_{2n} = f_{2n}$ and $Sh_{2n-1} = f_{2n-1}$ for n = 1, 2, ...

Applying inequality (1) we have,

$$\begin{split} M_1\left(f_{2n}, f_{2n-1}, g_1, \ldots g_{n-1}, t\right) & M_1\left(f_{2n+1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) \\ & \geq s \, \min M_1\left(f_{2n-1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) \, M_1\left(f_{2n-1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) \\ & M_1\left(f_{2n-1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) M_1\left(f_{2n}, f_{2n+1}, g_1, \ldots g_{n-1}, t\right) \\ & M_1\left(f_{2n-1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) M_2\left(h_{2n}, h_{2n+1}, g_1, \ldots g_{n-1}, t\right) \\ & M_1\left(f_{2n}, f_{2n-1}, g_1, \ldots g_{n-1}, t\right) M_1\left(f_{2n}, f_{2n}, g_1, \ldots g_{n-1}, t\right) \\ & M_1\left(f_{2n+1}, f_{2n}, g_1, \ldots g_{n-1}, t\right) M_1\left(f_{2n}, f_{2n-1}, g_1, \ldots g_{n-1}, t\right), \end{split}$$
 i.e. $M_1\left(f_{2n+1}, f_{2n}, g_1, \ldots g_{n-1}, q_1\right) \geq s \, \min\{M_1\left(f_{2n}, f_{2n-1}, g_1, \ldots g_{n-1}, t\right), \end{split}$

 $M_2(h_{2n+1}, h_{2n}, g_1, \dots, g_{n-1}, t), M_1(f_{2n+1}, f_{2n}, g_1, \dots, g_{n-1}, t), 1\}$ which implies that,

 $M_{1}(f_{2n+1}, f_{2n}, g_{1}, \dots, g_{n-1}, qt) \geq s \min\{M_{1}(f_{2n}, f_{2n-1}, g_{1}, \dots, g_{n-1}, t), M_{2}(h_{2n+1}, h_{2n}, g_{1}, \dots, g_{n-1}, t)\} \dots (3)$ Applying inequality (2), we have $M_{2}(h_{2n}, h_{2n-1}, g_{1}, \dots, g_{n-1}, t) M_{2}(h_{2n+1}, h_{2n}, g_{1}, \dots, g_{n-1}, qt)$

 $= M_2(h_{2n}, h_{2n-1}, g_1, \dots, g_{n-1}, t) M_2(BSh_{2n}, ATh_{2n-1}, g_1, \dots, g_{n-1}, q_t),$ $\geq s \min\{M_2(h_{2n}, h_{2n-1}, g_1, \dots, g_{n-1}, t), M_2(h_{2n-1}, h_{2n}, g_1, \dots, g_{n-1}, t), \}$ $M_2(h_{2n-1}, h_{2n}, g_1, \dots, g_{n-1}, t), M_2(h_{2n-1}, h_{2n}, g_1, \dots, g_{n-1}, t),$ $M_2(h_{2n-1}, h_{2n}, g_1, \dots, g_{n-1}, t), M_1(f_{2n}, f_{2n-1}, g_1, \dots, g_{n-1}, t),$ $M_2(h_{2n-1}, h_{2n}, g_1, \dots, g_{n-1}, t), M_2(h_{2n}, h_{2n}, g_1, \dots, g_{n-1}, t)\}.$ This implies that, $M_2(h_{2n+1}, h_{2n}, g_1, \dots, g_{n-1}, qt)$ $\geq s \min\{M_2(h_{2n}, h_{2n-1}, g_1, \dots, g_{n-1}, t), M_1(f_{2n}, f_{2n-1}, g_1, \dots, g_{n-1}, t)\}$ (4) In general we have, $M_1(f_n, f_{n+1}, g_1, \dots, g_{n-1}, qt) \ge s \min\{M_1(f_{n-1}, f_n, g_1, \dots, g_{n-1}, t),\$ $M_2(h_n, h_{n+1}, g_1, \dots, g_{n-1}, t)$ and $M_2(h_n, h_{n+1}, g_1, \dots g_{n-1}, t) \ge s \min\{M_2(h_{n-1}, h_n, g_1, \dots g_{n-1}, t),\$ $M_1(f_{n-1}, f_n, g_1, \dots, g_{n-1}, t)$ i.e. $M_1(f_n, f_{n+1}, g_1, \dots, g_{n-1}, t) \ge s \min\{M_1(f_{n-1}, f_n, g_1, \dots, g_{n-1}, \frac{t}{q}),\$ $M_2\left(h_n, h_{n+1}, g_1, \dots, g_{n-1}, \frac{t}{q}\right) \cdots \cdots (5)$ and $M_2(h_n, h_{n+1}, g_1, \dots, g_{n-1}, t) \ge s \min\{M_2(h_{n-1}, h_n, g_1, \dots, g_{n-1}, \frac{t}{q}),\$ $M_1\left(f_{n-1}, f_n, g_1, \dots, g_{n-1}, \frac{t}{q}\right) \cdots \cdots (6)$ repeated use of (5) and (6) give

$$M_1(f_n, f_{n+1}, g_1, \dots, g_{n-1}, t) \ge s^n \min\{M_1\left(f_0, f_1, g_1, \dots, g_{n-1}, \frac{t}{q^n}\right), M_2\left(h_1, h_2, g_1, \dots, g_{n-1}, \frac{t}{q^n}\right) \to 1$$

as $n \to \infty$

and

$$M_{2}(h_{n}, h_{n+1}, g_{1}, \dots, g_{n-1}, t) \geq s^{n} \min\{M_{2}\left(h_{0}, h_{1}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right), \\M_{1}\left(f_{0}, f_{1}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right) \to 1$$
as $n \to \infty$

In general,

$$M_1(f_n, f_{n+m}, g_1, \dots, g_{n-1}, t) \ge s^n \min\{M_1\left(f_0, f_m, g_1, \dots, g_{n-1}, \frac{t}{q^n}\right), \\M_2\left(h_1, h_{m+1}, g_1, \dots, g_{n-1}, \frac{t}{q^n}\right) \to 1$$
as $n \to \infty$

and

$$M_{2}(h_{n}, h_{n+m}, g_{1}, \dots, g_{n-1}, t) \geq s^{n} \min\{M_{2}\left(h_{0}, h_{m}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right), \\M_{1}\left(f_{0}, f_{m}, g_{1}, \dots, g_{n-1}, \frac{t}{q^{n}}\right) \to 1$$

For n = 1, 2,..., since q < 1, it follows that $\{f_n\}$ and $\{h_n\}$ are Cauchy sequences in F(X) and F(Y) with limits g in F(X) and k in F(Y) respectively. i.e. $\lim_{n\to\infty} f_n = g$ and $\lim_{n\to\infty} h_n = k$.

If A is continuous then $\lim_{n\to\infty} Af_{2n} = \lim_{n\to\infty} h_{2n+1}$ i.e. Ag = k Applying inequality (1), we have

$$\begin{split} M_1 &(g, f_{2n-1}, g_1, \dots, g_{n-1}, t) \, M_1 \, (SAg, TBf_{2n-1}, g_1, \dots, g_{n-1}, qt) \\ &\geq s \, \min\{M_1 \, (f_{2n-1}, g, g_1, \dots, g_{n-1}, t) \,, M_1 \, (f_{2n-1}, TBf_{2n-1}, g_1, \dots, g_{n-1}, t) \,, \\ &M_1 \, (f_{2n-1}, SAf_{2n-1}, g_1, \dots, g_{n-1}, t) \,, M_1 \, (g, SAg, g_1, \dots, g_{n-1}, t) \,, \\ &M_1 \, (f_{2n-1}, TBf_{2n-1}, g_1, \dots, g_{n-1}, t) \,, M_2 \, (h_{2n}, h_{2n+1}, g_1, \dots, g_{n-1}, t) \,, \\ &M_1 \, (g, f_{2n-1}, g_1, \dots, g_{n-1}, t) \,, M_1 \, (f_{2n}, f_{2n}, g_1, \dots, g_{n-1}, t) \,, \end{split}$$

Taking limit $n \to \infty$, we have

 $M_1(SAg, g, g_1, \dots, g_{n-1}, qt) \ge s \min\{1, M_1(g, SAg, g_1, \dots, g_{n-1}, t)\}$ This implies that,

$$M_1(SAg, g, g_1, \dots, g_{n-1}, qt) \ge s M_1(g, SAg, g_1, \dots, g_{n-1}, t),$$

a contradiction

 $\begin{array}{l} \text{Therefore } SAg \ = \ g. \ \text{Hence } SAg \ = \ g \ = \ Sk \\ \text{Again by (2), we have} \\ M_2\left(k,h_{2n},g_1,\ldots g_{n-1},t\right), M_2\left(BSk,h_{2n+1},g_1,\ldots g_{n-1},qt\right) \\ \geq s \ \min \left\{ \begin{array}{l} M_2\left(k,h_{2n},g_1,\ldots g_{n-1},t\right), M_2\left(h_{2n},h_{2n+1},g_1,\ldots g_{n-1},t\right), \\ M_2\left(h_{2n},h_{2n+1},g_1,\ldots g_{n-1},t\right), M_2\left(h_{2n},h_{2n+1},g_1,\ldots g_{n-1},t\right), \\ M_1\left(Sk,f_{2n},g_1,\ldots g_{n-1},t\right), M_2\left(k,h_{2n},g_1,\ldots g_{n-1},t\right), \\ M_2\left(BSk,k,g_1,\ldots g_{n-1},t\right) \right\} \end{array} \right.$

Taking limit $n \to \infty$, we have

$$M_2(BSk, k, g_1, \dots, g_{n-1}, qt) \ge s \min\{M_2(BSk, k, g_1, \dots, g_{n-1}, t), 1\}$$

This implies that,

$$M_2(BSk, k, g_1, \dots, g_{n-1}, qt) \ge M_2(BSk, k, g_1, \dots, g_{n-1}, t)$$

a contradiction. Therefore, BSk = k, BSk = k = Bg and Ag = Bg = k. Again applying inequality (1), we have $M_1(g, g, g_1, \dots, g_{n-1}, t), M_1(SAg, TBg, g_1, \dots, g_{n-1}, qt)$

$$g, g_1, \dots, g_{n-1}, t), M_1(SAg, TBg, g_1, \dots, g_{n-1}, q_t) \\ \ge s \min\{M_1(g, g, g_1, \dots, g_{n-1}, t), M_1(g, TBg, g_1, \dots, g_{n-1}, t), \\ M_1(g, SAg, g_1, \dots, g_{n-1}, t), M_1(g, SAg, g_1, \dots, g_{n-1}, t), \\ M_1(g, TBg, g_1, \dots, g_{n-1}, t), M_2(h_{2n}, h_{2n+1}, g_1, \dots, g_{n-1}, t), \\ M_1(g, g, g_1, \dots, g_{n-1}, t), M_1(TBg, TBg, g_1, \dots, g_{n-1}, t)\}$$

i.e. $M_1(g, TBg, g_1, \dots, g_{n-1}, qt) \ge s \min\{M_1(g, TBg, g_1, \dots, g_{n-1}, t), 1\}$ this implies

$$M_1(g, TBg, g_1, \dots, g_{n-1}, qt) \ge M_1(g, TBg, g_1, \dots, g_{n-1}, t),$$

a contradiction. Therefore, TBg = g. Hence TBg = Tk = g and Sk = g= Tk. Again by using (2) we have

 $M_2(k, k, g_1, \dots, g_{n-1}, t) M_2(BSk, ATk, g_1, \dots, g_{n-1}, qt)$

$$\geq s \min\{M_2(k, k, g_1, \dots, g_{n-1}, t), M_2(k, ATk, g_1, \dots, g_{n-1}, t), M_2(k, ATk, g_1, \dots, g_{n-1}, t), M_2(k, BSk, g_1, \dots, g_{n-1}, t), M_2(k, BSk, g_1, \dots, g_{n-1}, t), M_1(Sk, Tk, g_1, \dots, g_{n-1}, t), 526$$

 $M_2(k, k, g_1, \dots, g_{n-1}, t), \quad M_2(BSk, k, g_1, \dots, g_{n-1}, t)\}$ i.e. $M_2(k, ATk, g_1, \dots, g_{n-1}, qt) \ge s \min\{M_2(k, ATk, g_1, \dots, g_{n-1}, t), M_2(k, ATk, g_1, \dots, g_{n-1}, t)\}$

this implies,

 $M_2(k, ATk, g_1, \dots, g_{n-1}, qt) \ge M_2(k, ATk, g_1, \dots, g_{n-1}, t)$ a contradiction Therefore, ATk = k, BSk = ATk = k

Ag = Bg = g and Tk = Sk = g

Hence g is a common fixed point of SA and TB and k is a common fixed point of BS and AT.

This completes the proof.

References

- Z. K. Ansari, R. Shrivastava, G. Ansari and A. Garg, Some fixed point theorems in fuzzy 2-metric and fuzzy 3-metric spaces, Int. J. Contemp. Math. Sci. 6(46) (2011) 2291–2301.
- [2] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Prague) 11(5) (1975) 336–344.
- [3] Kailash Namdeo, S. S. Rajput and Rajesh Shrivastavai, Fixed point theorem for fuzzy 2-metric spaces, Int. J. Theoretical & Applied Sciences 2(2) (2010) 16–18.
- [4] R. M. Somasundaram and Thangaraj Beaula, Some aspects of 2-fuzzy 2-normed linear space, Bull. Malays. Math. Sci. Soc. 32(2) (2009) 211–221.
- [5] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
- [6] Q. Zhang and Y. Song, Fixed point theory for generalised φ-weak contractions, Appl. Math. Lett. 22(1) (2009) 75–78.

<u>THANGARAJ BEAULA</u> (edwinbeaula@yahoo.co.in)

Mathematics Department, TBML College, Porayar, Tamil Nadu, India

S. Christinal Gunaseeli

Mathematics Department, TBML College, Porayar, Tamil Nadu, India