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1. Introduction

In 1965, the concept of fuzzy sets was introduced by Zadeh [5]. After that
many authors have expansively developed the theory of fuzzy sets and applications
George and Veeramani modified the concept of fuzzy metric space which introduced
by Kramosil and Michalek [2]. R. M. Somasundaram and Thangaraj Beaula [4] has
coined 2-fuzzy sets and developed 2-fuzzy 2-normed linear space. Especially, Kailash
Namdeo, S. S Rajput and Rajesh Shrivastava [3] have introduced the concept of
fixed point theorem for fuzzy 2- metric spaces in different ways. Recently, Zaheer K.
Ansari, Rajesh Shrivastava, Gunjan Ansari and ArunGarg [1] have also studied the
fixed point theorems in fuzzy 2-metric and fuzzy 3- metric spaces. In this paper we
have defined the new concept of 2-fuzzy n-b-metric space. Convergent and Cauchy
sequences are defined related to this space. Some of the fixed point theorems using
altering function are proved for weakly compatible self mappings.

2. Preliminaries

Definition 2.1. An altering distance function (or) control function is a function
ψ : [0,∞] → [0,∞] such that the following axioms hold:

i) ψ is monotonic increasing and continuous.
ii) ψ(t)=0 if and only if t = 0.
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Definition 2.2. A function ϕ : R → R+ is said to satisfy the condition ∗ if the
following axioms hold:

i) ϕ(t) = 0 if and only if t = 0.
ii) ϕ(t) is increasing and ϕ(t) →∞ as t →∞.
iii) ϕ is left continuous in (0,∞).
iv) ϕ is continuous at 0.

Definition 2.3. The 3-tuple (X, M, ∗) is called fuzzy metric space if X is an arbi-
trary set, M is a fuzzy set in X2 × [0,∞) satisfying the following conditions:

i) M(x, y, 0) = 0.
ii) M(x, y, t) = 1, for all t > 0 if and only if x = y.
iii) M(x, y, t) = M(y, x, t).
iv) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s).
v) M(x, y, ·) : [0,∞) → [0, 1] is left continuous ∀x, y, z ∈ X and t, s > 0.
Then M is called a fuzzy metric on X and M(x, y, t) denotes the degree of nearness

between x and y with respect to t.

Definition 2.4. The 3-tuple (X,M, ∗) is called fuzzy 2-metric space if X is an
arbitrary set, ∗ is a continuous t - norm and M is a fuzzy set in X3×[0,∞) satisfying
the following conditions for all x, y, z, u ∈ X and t1, t2, t3 > 0

i) M(x, y, z, 0) = 0.
ii) M(x, y, z, t) = 1, t > 0 and when atleast two of the three points are equal.
iii) M(x, y, z, t) = M(x, z, y, t) = M(y, z, x, t) (Symmetry about three variables).
iv) M(x, y, z, t1 + t2 + t3) ≥ M(x, y, u, t1) ∗M(x, u, z, t2) ∗M(u, y, z, t3).

(This is corresponds to tetrahedron inequality in 2-metric space)
v) M(x, y, z, ·) : [0, 1) → (0, 1] is left continuous.

Definition 2.5. Let X be a set and let s ≥ 1 be given real number. A function
d : X × X → R+ is said to be a b - metric if and only if for all x, y, z ∈ X the
following conditions are satisfied:

i) d(x, y) = 0 if and only if x = y.
ii) d(x, y) = d(y, x).
iii) d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b- metric space with parameter s.
There exists more examples in the literature [1, 3, 5] showing that the class of b

- metric spaces, since a b - metrics in effectively larger than that of metric spaces,
since a b - metric is a metric when s = 1 in the above condition 3.

Example 2.6. Let X = { 0, 1, 2} and d(2, 0) = d(0, 2) = m ≥ 1
d(0, 1) = d(1, 2) = d(0, 1) = d(2, 1) = 1 and d(0, 0) = d(1, 1) = d(2, 2) = 0
Then d(x, y) ≤ m

2 [d(x, z) + d(z, y)] for all x, y, z ∈ X.

Example 2.7. Let X = [0, 1] and d(x, y) = |x− y|2 for all x, y ∈ X. It is obviously
a b-metric on X but d is not a metric on X.

Example 2.8. Let X = lp(R) with 0 < p < 1
514
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where lp(R) = { x = { xn} ⊂ R :
∞∑

n=1
|xn|p < ∞} .

Then d(x, y) = (
∞∑

n=1
|xn − yn|p)

1
p is a b-metric on X with s = 2

1
p as by elemenary

calculation we obtain that d(x, y) ≤ 2
1
p [d(x, y) + d(y, z)].

Definition 2.9 ([6]). Let (X, d) be a metric space. A mapping T : X → X is said
to be a ϕ - weak contraction if d(Tx, Ty) ≤ d(x, y) − ϕ(d(x, y)) for all x, y ∈ X,
where ϕ : [0,∞) → [0,∞) is a continuous and non decreasing function with ϕ(t) = 0
if and only if t = 0.

Definition 2.10. A 2- fuzzy set on X is a fuzzy set on F (X).

3. 2-Fuzzy n-b metric space

Definition 3.1. Let X be an arbitrary set, ∗ be the continuous t-norm and F (X)
be the set of all fuzzy sets on X. Let s be a real number, a fuzzy set M on
[F (X)]n+1 × [0,∞) is said to be a 2-fuzzy n - b metric if and only if for all
f ′, f ′′, f1, f2, ..., fn−1 ∈ F (X) the following conditions are satisfied.

i) (2FMnb − 1)M(f ′, f ′′, f1, ..., fn−1, 0) = 0.
ii) (2FMnb − 2)M(f ′, f ′′, f1, f2, ..., fn−1, t) = 1 for all t > 0 if and only if atleast

′n′ elements of { f ′, f ′′, f1, ..., fn−1} are linearly dependent.
iii) (2FMnb − 3)M(f ′, f ′′, f1, ..., fn−1, t) = M(f ′′, f ′, f1, ..., fn−1, t).

= M(f ′, f1, f
′′..., fn−1, t) = ...... (Symmetry about ’n’ variables)

iv) (2FMnb − 4)M(f ′, f ′′, f1, ..., fn−1, t1 + t2+, ... + tn+1)
≥ s[M(f ′, f ′′, ..., fn−2, g, t1) ∗M(f ′, f ′′, ..., g, fn−1, t2) ∗ ....

∗M(g, f ′′, f1, ..., fn−1, tn+1)].

The pair (F (X),M) is called a 2- fuzzy n - b metric space with parameter s. A
2-fuzzy n - b metric is a n - metric whenever s = 1.

Example 3.2. Let X be a non-empty set, define a metric D : X2 → [0,∞) as
D(x, y) = (x + y)2

For s = 2,

D(x, y) = (x + y)2

≤ (x + z + z + y)2

= (x + z)2 + (z + y)2 + 2(x + z)(z + y)

≤ 2[(x + z)2 + (z + y)2]

= 2[D(x, z) + D(z, y)]

Then (X, d) is a b-metric space. Define M(x, y, t) = t
t+D(x,y) is a fuzzy b-metric

space.

Example 3.3. Let F (X) = { f |f : X → [0, 1]}
Define D : [F (X)]n+1 → R+ as
D(f ′, f ′′, f1, ..., fn−1) = 3

√
supx∈X [|f ′(x)|+ |f ′′(x)|+ |f1(x)|+ ... + |fn−1|]3

is a n-b metric with constant s = 3
√

4.
515
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For this note, if a1, a2, ..., an+1 are non-negative real numbers.
then (a1 + a2 + ... + an+1)3 ≤ 4(a3

1 + a3
2 + ... + a3

n+1) and
3
√

(a1 + a2 + ... + an−1) ≤ 3
√

a1 + 3
√

a2 + ... + 3
√

an

Now let us define a fuzzy set
M : [F (X)]n+1 × (0,∞) → [0, 1] as
M(f ′, f ′′, f1, ..., fn−1, t) = t

t+D(f ′,f ′′,f1,...,fn−1,t) which is a fuzzy n-b-metric.

Definition 3.4. Let (F (X),M, ∗) be 2- fuzzy n - b metric space. A mapping
T : F (X) → F (X) is said to be a ϕ - fuzzy weak contraction if

M(Tf, Th, g1, ..., gn−1, ϕ(t)) ≥ M(f, h, g1, ..., gn−1, t)− ψ(M(f, h, g1, ..., gn−1, t))

For all f, h, g1, ..., gn−1 ∈ F (X) where ϕ : [0,∞) → [0,∞) is a continuous and
non decreasing function with ϕ(t) = 0 if and only if t = 0.

Definition 3.5. Let (F (X),M, ∗) be 2- fuzzy n - b metric space. Then a sequence
{ fn} n∈N is called

i) 2-fuzzy n - b convergent if there exists f ∈ F (X) such that
M(fn, f, g1, ..., gn−1, t) → 1 as n →∞.

In this case we write limn→∞fn = f.
ii) 2-fuzzy n - b Cauchy if M(fn, fm, g1, ..., gn−1, t) → 1 as n,m →∞.

Proposition 3.6. In a 2- fuzzy n - b metric space (F (X),M, ∗) the following as-
sertions hold: A n - b convergent sequence has a unique limit.

Proof. Let { fn} converges to f1 and f2 in F (X).
Then M(fn − f1, g1, ..., gn, t) > 1 − r and M(fn − f2, g1, ...gn, t) > 1 − r for all

t > 0 and choose r such that 0 < r < 1, where (1− r) ∗ (1− r) > 1− ε
Now,

M(f1 − f2, g1, ..., gn, t) = M(f1 − fn + fn − f2, g1, ..., gn,
t

2
+

t

2
)

= M(f − fn) + (fn − f2, g1, ..., gn,
t

2
+

t

2
)

≥ M(f1 − fn, g1, ..., gn,
t

2
) ∗M(fn − f2, g1, ..., gn,

t

2
)

≥ (1− r) ∗ (1− r) = ε.

Therefore f1 = f2, so the limits are equal. ¤
Main Result

Theorem 3.7. Let (F (X),M, ∗) be a complete 2- fuzzy n - b metric space with
parameter s and, T : F (X) → F (X) be a fuzzy continuous mapping such that

M(T (f), T (h), g1, ..., gn−1, qt)

≥ αM(h,T (h),g1,...,gn−1,t),M(f,T (f),g1,...gn−1,qt)
M(f,h,g1,...gn−1,t) +

βM(f, h, g1, ...g(n− 1), t) · · · · · · (1)

for all f, h, g1, ..., gn−1 ∈ F (X), f 6= h where α, β are positive real constants such
that sβ + α < 1, then T has a unique fixed point.
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Proof. For an arbitrary f0 ∈ F (X) construct the sequence (fn)n∈N such that fn+1 =
T (fn).

M(f1, f2, g1, ..., gn−1, qt) = M(Tf0, T f1, g1, ..., gn−1, qt)

≥ αM(f0,Tf0,g1,...,gn−1,t)M(f1,T (f1),g1,...,gn−1,qt)
M(f0,f1,g1,...,gn−1,t)

+ βM(f0, f1, g1, ..., gn−1, t)

= αM(f0,f1,g1,...,gn−1,t)M(f1,f2,g1,...,gn−1,qt)
M(f0,f1,g1,...,gn−1,t)

+ βM(f0, f1, g1, ..., gn−1, t)

M(f1, f2, g1, ..., gn−1, qt) ≥ αM(f1, f2, g1, ..., gn−1, qt) + βM(f0, f1, g1, ..., gn−1, t)

M(f1, f2, g1, ..., gn−1, qt)(1− α) ≥ βM(f0, f1, g1, ..., gn−1, t)

M(f1, f2, g1, ..., gn−1, t) ≥ β
1−αM(f0, f1, g1, ..., gn−1,

t
|q| ), q > 0

where β
1−α = k < 1. Similarly,

M(f2, f3, g1, ..., gn−1, qt) = M(Tf1, T f2, g1, ..., gn−1, qt)

≥ αM(f1,Tf1,g1,...,gn−1,t)M(f2,T (f2),g1,...,gn−1,qt)
M(f1,f2,g1,...,gn−1,t)

+ βM(f1, f2, g1, ..., gn−1, t)

= αM(f1,f2,g1,...,gn−1,t)M(f2,f3,g1,..,gn−1,qt)
M(f1,f2,g1,...,gn−1,t)

+ βM(f1, f2, g1, ..., gn−1, t)

M(f2, f3, g1, ..., gn−1, qt) ≥ αM(f2, f3, g1, ..., gn−1, qt) + βM(f1, f2, g1, ..., gn−1, t)

M(f2, f3, g1, ..., gn−1, qt)(1− α) ≥ βM(f1, f2, g1, ..., gn−1, t)

M(f2, f3, g1, ...g(n− 1), t) ≥ β
1−αM(f1, f2, g1, ..., gn−1,

t
q ), q > 0

=
(

β
1−α

)2

M(f0, f1, g1, ..., gn−1,
t

q2 ), q > 0t)(1− α)

≥ βM(f1, f2, g1, ..., gn−1, t)

where β
1−α = k < 1. Inductively,

M(fn, fn+1, g1, ..., gn−1, qt) = M(Tfn−1, T fn, g1, ..., gn−1, t)

≥ αM(fn−1,Tfn−1,g1,...,gn−1,t)M(fn,Tfn,g1,...,gn−1,t)
M(fn−1,fn,g1,...,gn−1,t)

+ βM(fn−1, fn, g1, ..., gn−1, t)

≥ β
1−αM(fn−1, fn, g1, ..., gn−1, qt)

Inductively,

M(fn, fn+1, g1, ..., gn−1, qt) ≥ kM(f0, f1, g1, ..., gn−1,
t

qn
)

For every positive integer p and k in N we have

M(fk, fK+1, g1, ..., gn−1, qt) → 1

The above sequence is Cauchy in complete 2- fuzzy n - b metric space (F (X),M, ∗)
so there exists a f ∈ F (X) such that limn→∞ fn = f

517
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By the continuity of T and M
We have

Tf = T ( lim
n→∞

fn)

= lim
n→∞

Tfn

= lim
n→∞

f(n + 1)

= lim
n→∞

fn

= f

Therefore Tf = f

And this proves that f is a fixed point.
If there exists a another point g 6= f in F (X) such that Tg = g then

M(g, f, g1, ..., gn−1, qt) = M(Tg, Tf, g1, ..., gn−1, t)

≥ αM(g, Tg, g1, ..., gn−1, t)M(f, Tf, g1, ..., gn−1, qt)
M(g, f, g1, ..., gn−1, t)

+βM(g, f, g1, ..., gn−1, t)
= βM(g, f, g1, ..., gn−1, qt)
≥ M(g, f, g1, ..., gn−1, qt)

which implies
M(g, fn+1, g1, ..., gn−1, qt) ≥ M(g, fn+1, g1, ..., gn−1, qt)
and hence f = g
Hence the fixed point is unique. ¤

Theorem 3.8. Let (F (X),M, ∗) be a complete 2-fuzzy n - b metric space and S, T :
F (X) → F (X) be two self-mappings satisfying

i) TF (X) ⊆ SF (X)
ii) The functions ψ, α : [0, 1] → [0, 1] are continuous, monotonically increasing

with ψ(0) = 0 = α(0) and t − 1
s (α(t) − ψ(t)) < 0 also 1

sn (α − ψ)n(an) → 1 when
an → 1 as n →∞

iii) 1
sM(Sf, Sh, g1, ..., gn−1, ϕ(t)) > 0 for all t > 0 where the function ϕ satisfies

the definition
iv) sM(Tf, Th, g1, ..., gn−1, ϕ(ct)) ≥ M(f, h, g1, ..., gn−1, t)

−ψ(M(f, h, g1, ..., gn−1, t))
Also the contraction with above conditions

1
M(Tf,Th,g1,..,gn−1,ϕ(ct)) ≥ 1

s

[
α

(
1

M(Sf,Sh,g1,...,gn−1,ψ(t))

)

−ψ

(
1

M(Sf,Sh,g1,..,gn−1,ϕ(t))

)]
(1)

holds for all f, h ∈ F (X), t > 0, 0 < c < 1.
If S(F (X)) is a complete subspace of F (X) and the mappings (S, T ) are weakly

compatible, then S and T have a unique common fixed point.

Proof. Let f0 be an element in F (X). Define two sequences (hn) and (fn) such that
hn = Tfn = Sfn+1, we claim that { hn} is a Cauchy sequence.
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For some n, assume that

1
M(Tfn−1,Tfn,g1,...,gn−1,ϕ(ct)) ≥ 1

M(Tfn,Tfn+1,g1,...,gn−1,ϕ(ct))

is true. Then from condition (1)
s

M(Tfn,Tfn+1,g1,...,gn−1,ϕ(ct)) ≥ α

(
1

M(Sfn,Sfn+1,g1,...,gn−1,ϕ(t))

)

−ψ

(
1

M(Sfn,Sfn+1,g1,...,gn−1,ϕ(t))

)
.

Then using the above assumption contraction becomes,
1

M(Tfn−1,Tfn,g1,...,gn−1,ϕ(ct)) ≥ 1
s

[
α

(
1

M(Tfn−1,Tfn,g1,...,gn−1,ϕ(t))

)

−ψ

(
1

M(Tfn−1,Tfn,g1,...,gn−1,ϕ(t))

)]
(2).

Given t − 1
s (α(t) − ψ(t)) < 0 is a contrary to our assumption, because above

inequality (1) yields st− α(t) + ψ(t) ≥ 0
1

M(Tfn,Tfn+1,g1,...,gn−1,ϕ(ct)) ≥ 1
M(Tfn−1,Tfn,g1,...,gn−1,ϕ(ct)) (3)

Again assume { hn} 6= { hn+1} for every n.

By virtue of the properties of ϕ, we can find a t > 0
such that sM(Sf1, Sf2, g1, .., gn−1, ϕ(t)) > 0 Therefore using condition (1) we get

1
M(h0,h1,g1,...,gn−1,ϕ(ct)) = 1

M(Tf0,Tf1,g1,...,gn−1,ϕ(ct)) (since hn = Tfn)

≥ 1
s

[
α

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ(t))

)
− ψ

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ(t))

)]

On using (3) we get
1

M(Tf1,Tf2,g1,...gn−1,ϕ(ct)) ≥ 1
s

[
α

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ(t))

)

−ψ

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ(t))

)]

Since 1
sM(Sf1, Sf2, g1, ...gn−1, ϕ(t)) > 0 implies

1
sM(Sf1, Sf2, g1, ...gn−1, ϕ( t

c )) > 0

By applying in (1) we get
1

M(h0,h1,g1,...gn−1,ϕ(t)) = 1
M(Tf0,Tf1,g1,...gn−1,ϕ(t))

≥ 1
s

[
α

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ( t
c ))

)
− ψ( 1

M(Sf1,Sf2,g1,...gn−1,ψ( t
c ))

)]

Again by using (3),
1

M(Tf1,Tf2,g1,...gn−1,ϕ(t)) ≥ 1
s

[
α

(
1

M(Sf1,Sf2,g1,...gn−1,ϕ( t
c ))

)

−ψ

(
1

M(Sf1,Sf2,g1,...gn−1,ψ( t
c ))

)]
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Repeating the process n times, we obtain

1
M(hn−1, hn, g1, ...gn−1, ϕ(t))

≥ 1
sn

(α− ψ)n

(
1

M(Sf1, Sf2, g1, ...gn−1, ϕ( t
cn ))

)

Since 1
sM(Sf2, Sh3, g1, ...gn−1, ϕ(ct)) > 0 (by condition (iii))

Then following the above process we get,

1
M(hn−1, hn, g1, ...gn−1, ϕ(t))

≥ 1
sn

(α− ψ)n

(
1

M(Sf2, Sf3, g1, ...gn−1, ϕ( ct
cn ))

)

Continuing this process r times, We get,
1

M(hn−1, hn, g1, ...gn−1, ϕ(crt))

≥ 1
sn−r+1(α− ψ)n−r+1

(
1

M(Sfr+1, Sfn+2, g1, ...gn−1, ϕ(( crt
cn−r+1 ))

)

Take hn = Sfn+1 then
1

M(hn−1, hn, g1, ...gn−1, ϕ(crt))

≥ 1
sn−r+1

(α− ψ)n−r+1

(
1

M(hr, hr+1, g1, ...gn−1, ϕ( crt
cn−r+1)

)

Since
1

sn (α− ψ)n(an) → 1 when an →1 as n →∞,

hence for all r > 0.
1

M(hn−1, hn, g1, ...gn−1, ϕ(crt))
≥ 1

Therefore as n →∞
M(hn−1, hn, g1, ...gn−1, ϕ(crt)) → 1asn →∞

Choose ϕ(crt) < ε then it follows that M(hn−1, hn, g1, ...gn−1, ε) → 1 as n →∞

By triangle inequality,

M(hn, hn+p, g1, ...gn−1, ε) ≥ M

(
hn, hn+1, g1, ...gn−1,

ε

p

)
∗ ...

∗M

(
hn+p, hn+p+1, g1, ...gn−1,

ε

p

)

And so
M(hn, hn+p, g1, ...gn−1, ε) → 1 as n →∞

which implies { hn} is a Cauchy sequence and it converges to h ∈ F (X) such that
hn → h as n →∞

Let hn = Tfn = Sfn+1 → h
Our aim is to show that Th = h
Since
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M(Th, h, g1, ...gn−1, ε) ≥ M(Th, hn, g1, ...gn−1,
ε
2 ) ∗M(hn, h, g1, ...gn−1,

ε
2 )

By the property of ϕ, there exists a t1 > 0 such that ϕ(t1) < ε
2 as hn → h as

n →∞, there exists m ∈ N such that for all n > m,

M(hn, h, g1, ...gn−1, ϕ(t1)) > 0, then for n > m

1
M(Th, hn, g1, ...gn−1,

ε
2 )

=
1

M(Th, Tfn, g1, ...gn−1, ϕ(t1))

≥ 1
s

[
α

(
1

M(Sh, Shn+1, g1, ...gn−1, ϕ( t1
c ))

)

− ψ

(
1

M(Sh, Sfn+1, g1, ...gn−1, ϕ( t1
c ))

)]

Again on applying (1) we get

(
1

M(Th, Tfn+1, g1, ...gn−1, ϕ(t1))

)
≥ 1

s

[
α

(
1

M(Sh, Sfn+1, g1, ...gn−1, ϕ( t1
c ))

)

−ψ

(
1

M(Sh, Sfn+1, g1, ...gn−1, ϕ( t1
c ))

)]

Proceeding the limit as n →∞ we obtain

M(Th, hn, g1, ...gn−1,
t1
2

) → 1 as n →∞

As n → ∞, hn → h and M(Th, h, g1, ...gn−1, ε) = 1, for every ε > 0 gives Th = h.
Thus Sh = Th = h which implies that h is a common fixed point of S and T .

Finally let us prove the uniqueness of h.
Let h, h′ be two fixed points of S and T . by the properties of ϕ there exists k > 0

such that M(h, h′, g1, ...gn−1, ϕ(k)) > 0 then again by applying (1) we obtain the
following equation

1
M(h, h′, g1, ....gn−1, ϕ(k))

=
1

((Th, Th′, g1, ...gn−1, ϕ(ck)))

≥ 1
s

[
α

(
1

M(Sh, Sh′, g1, ....gn−1, ϕ(k))

)

− ψ

(
1

M(Sh, Sh′, g1, ...gn−1, ϕ(k))

)]

On replacing k by k
c we get,

1
M(h, h′, g1, ...gn−1, ϕ(k))

≥ 1
s

[
α
( 1
M(Sh, Sh′, g1, ...gn−1, ϕ(S

c ))

)

− ψ

(
1

M(Sh, Sh′, g1, ...gn−1, ϕ(S
c ))

)]
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Repeating the procedure ′n′ times

1
M(h, h′, g1, ...gn−1, ϕ(S))

≥ 1
sn

(α− ψ)n

(
1

M(Sh, Sh′, g1, ...gn−1, ϕ(S
c ))

)

and so M(h, h′, g1, ...gn−1, ϕ(S)) → 1 as n → ∞ since 1
sn (α − ψ)n(an) → 1 when

an → 1 as n →∞
which establishes the uniqueness of fixed point. ¤

Theorem 3.9. Let (F (X),M, ∗) be a complete 2-fuzzy n-metric space and let S
and T be continuous mappings of F (X) in F (X) then S and T have common fixed
point in F(X) if there exists continuous mapping A of F(X) into S(F (X))∩T (F (X))
which commute weakly with S and T and

M(Af ′, Af ′′, g1, ...gn−1, qt)

≥ smin{ M(Tf ′′, Af ′′, g1, ...gn−1, t), M(Sf ′, Af ′, g1, ...gn−1, t),

M(Sf ′, T f ′′, g1, ...gn−1, t),
M(Sf ′, T f ′′, g1, ...gn−1, t))
M(Af ′, T f ′′, g1, ...gn−1, t)

} (1)

For all f ′, f ′′, ...fn+1, g1, ...., gn−1 ∈ F (X), t > 0 and 0 < q < 1 and
limn→∞M(f ′, f ′′, ...fn+1, g1, ...gn−1, t) = 1 for all f ′, f ′′, ...fn+1, g1, ....gn−1 in

F(X).
Then S, T and A have a unique common fixed point.

Proof. We define a sequence { f ′n} such that
Af ′2n = Sf ′2n−1 and Af ′2n−1 = Tf ′2n, n = 1, 2, ..
We shall prove that { Af ′n} is a Cauchy sequence. For this suppose f ′ = f2n and

f ′′ = f2n+1, we write
M(Af ′2n, Af ′2n+1, g1, ..., gn−1, qt)

≥ s min{ M(Tf ′2n+1, Af ′2n+1, g1, ..., gn−1, t), M(S′f2n, Af ′2n, g1, ..., gn−1, t),

M(Sf ′2n, T f ′2n+1, g1, ..., gn−1, t),
M(Sf ′2n, T f ′2n+1, g1, ..., gn−1, t)
M(Af ′2n, Af ′2n+1, g1, ..., gn−1, t)

}

M(Af ′2n, Af ′2n+1, g1, . . . gn−1, qt)

≥ s min{ M(Af ′2n, Af ′2n+1, g1, . . . gn−1, t),M(Af ′2n+1, Af ′2n, g1, . . . gn−1, t),

MAf ′2n+1, Af ′2n, g1, . . . gn−1, t),
M(Af ′2n+1, Af ′2n, g1, . . . gn−1, t

M(Af ′2n, Af2n, g1, . . . gn−1, t)
}

= s min{ M(Af ′2n, Af ′2n+1, g1, . . . gn−1, t),M(Af ′2n+1, Af ′2n, g1, . . . gn−1, t),
M(Af ′2n+1, Af ′2n, g1, . . . gn−1, t), 1}
= s min

{
M

(
Af ′2n−1, Af ′2n, g1, . . . gn−1,

t
q

)
,M

(
Af ′2n, Af ′2n−1, g1, . . . gn−1,

t
q

)}

Therefore, M(Af ′2n, Af ′2n+1, g1, . . . gn−1, qt) ≥ sM
(
Af ′2n−1, Af ′2n, g1, . . . gn−1,

t
q

)

By induction

M(Af ′2k, Af ′2m+1, g1, . . . gn−1, qt) ≥ sM
(
Af ′2m, Af ′2k−1, g1, . . . gn−1,

t
q

)
(2)
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For every k and m in N ,
Further if 2m + 1 > 2k then,

M
(
Af ′2k, Af ′2m+1, g1, . . . gn−1, qt

) ≥ sM
(
Af ′2k−1, Af ′2m, g1, . . . gn−1,

t
q

)

≥ s2kM
(
Af0, Af ′2m+1−2k, g1, . . . gn−1,

t
q2k

)
(3)

If 2k > 2m+1 then,

M
(
Af ′2k, Af ′2m+1, g1, . . . gn−1, qt

) ≥ sM

(
Af ′2k−1, Af ′2m, g1, . . . gn−1,

t

q

)

≥ s2m+1M

(
Af ′2k−(2m+1), Af0, g1, . . . gn−1,

t

q2m+1

)
(4)

By simple induction with (3) and (4) , we have
M (Afn, Afn+p, g1, . . . gn−1, qt) ≥ snM

(
Af0, Afp, g1, . . . gn−1,

t
qn

)

For n = 2k, p = 2m + 1 (or) n = 2k + 1, p = 2m + 1 and by (2FMn – 3)
M (Afn, Afn+p, g1, . . . gn−1, qt)

≥ sn(s)
[
M

(
Af0, Af1, g1, . . . gn−1,

t
2qn

)
∗M

(
Af1, Afp, g1, . . . gn−1,

t
qn

)]
(5)

where 0 ≤ s ≤ 1
For every positive integer p and n in N we have
M

(
Af0, Afp, g1, . . . gn−1,

t
qn

)
→ 1 as n →∞

Thus {Afn} is a Cauchy sequence.

Since the space F(X) is complete there exists fn+1 ∈ F (X) such that,
limn→∞Afn = limn→∞ Sf2n−1 = limn→∞ Tf2n = h

It follows that Ah = Sh = Th and therefore,

M (Ah,AAh, g1, . . . gn−1, qt)

≥ s min{ M (TAh, AAh, g1, . . . gn−1, t) ,M (Sh, Ah, g1, . . . gn−1, t) ,

M (Sh, TAh, g1, . . . gn−1, t) ,
M (Sh, TAh, g1, . . . gn−1, t)
M (Ah, TAh, g1, . . . gn−1, t)

}

M
(
Ah,A2h, g1, . . . gn−1, qt

) ≥ s M (Sh, TAh, g1, . . . gn−1, t)

≥ s M (Sh,ATh, g1, . . . gn−1, t)

≥ sM
(
Ah,A2h, g1, . . . gn−1, t

)

≥ snM

(
Ah, A2h, g1, . . . gn−1,

t

qn

)

Since, limn→∞M
(
Ah,A2h, g1, . . . gn−1,

t
qn

)
= 1

⇒ Ah = A2h
Thus h is common fixed point of A, S and T.
For uniqueness let k(k 6= h) be another common fixed point of S, T and A
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By (1) we write,

M (Ah,Ak, g1, . . . gn−1, qt) ≥ s min{ M (Tk, Ak, g1, . . . gn−1, t) ,

M (Sh, Ah, g1, . . . gn−1, t) ,M (Sh, Tk, g1, . . . gn−1, t) ,

M (Sh, Tk, g1, . . . gn−1, t)
M (Ah, Tk, g1, . . . gn−1, t)

}

M (Ah,Ak, g1, . . . gn−1, qt) ≥ s min {M (h, k, g1, . . . gn−1, t)}
This implies that,
M (h, k, g1, . . . gn−1, qt) ≥ smin {M (h, k, g1, . . . gn−1, t)} hence h = k and this com-
pletes the proof. ¤

Theorem 3.10. Let (F (X), M1, ∗) and (F (Y ), M2, ∗) be two complete 2- fuzzy
n - b metric spaces. Let A and B be mappings from F(X) to F(Y) and S and T be
mappings from F(Y) to F(X) satisfying the following inequalities:
M1 (f, f ′, g1, . . . gn−1, t)M1 (SAf, TBf ′, g1, . . . gn−1, t)
≥ s { min{M1(f ′, f, g1, . . . gn−1, t),M1(f ′, TBf ′, g1, . . . gn−1, t),

M1(f ′, SAf ′, g1, . . . gn−1, t), M1(f, SAf, g1, . . . gn−1, t),
M1(f ′, TBf ′, g1, . . . gn−1, t), M2(h,BTh, g1, . . . gn−1, t),
M1(f, f ′, g1, . . . gn−1, t),M1(TBf, TBf ′, g1, . . . gn−1, t)} · · · · · · (1)

M2 (h, h′, g1, . . . gn−1, t) , M2 (BSh,ATh′, g1, . . . gn−1, qt)
≥ min{M2 (h, h′, g1, . . . gn−1, t) , M2 (h′, ATh′, g1, . . . gn−1, t) ,

M2 (h′, ATh′, g1, . . . gn−1, t) ,M2 (h′, BSh′, g1, . . . gn−1, t) ,
M2 (h′, BSh′, g1, . . . gn−1, t) , M1 (Sh′, Th′, g1, . . . gn−1, t) ,
M2 (h, h′, g1, . . . gn−1, t) , M2 (BSh, h, g1, . . . gn−1, t)} · · · · · · (2)

For all f and f ′ in F(X) and h and h′ in F(Y) and 0 < q < 1.
If one of the mapping A, B, S and T is continuous, then SA and TB have a common
fixed point g in F(X) and BS and AT have a common fixed point k in F(Y).

Further, Ag = Bg = k and Sk = Tk = g.

Proof. Let f be an arbitrary point in F(X). we define sequence {fn} in F(X) and {hn}
in F(Y) such that Af2n = h2n+1, Bf2n−1 = h2n, Th2n = f2n and Sh2n−1 = f2n−1for
n = 1, 2,,. . .
Applying inequality (1) we have,

M1 (f2n, f2n−1, g1, . . . gn−1, t) M1 (f2n+1, f2n, g1, . . . gn−1, t)

≥ s minM1 (f2n−1, f2n, g1, . . . gn−1, t) M1 (f2n−1, f2n, g1, . . . gn−1, t)

M1 (f2n−1, f2n, g1, . . . gn−1, t)M1 (f2n, f2n+1, g1, . . . gn−1, t)

M1 (f2n−1, f2n, g1, . . . gn−1, t) M2 (h2n, h2n+1, g1, . . . gn−1, t)

M1 (f2n, f2n−1, g1, . . . gn−1, t)M1 (f2n, f2n, g1, . . . gn−1, t) ,

i.e. M1 (f2n+1, f2n, g1, . . . gn−1, qt) ≥ s min{M1 (f2n, f2n−1, g1, . . . gn−1, t) ,
M2 (h2n+1, h2n, g1, . . . gn−1, t) ,M1 (f2n+1, f2n, g1, . . . gn−1, t) , 1}

which implies that,
M1 (f2n+1, f2n, g1, . . . gn−1, qt) ≥ s min{M1 (f2n, f2n−1, g1, . . . gn−1, t) ,

M2 (h2n+1, h2n, g1, . . . gn−1, t)} · · · · · · (3)
Applying inequality (2), we have
M2 (h2n, h2n−1, g1, . . . gn−1, t)M2 (h2n+1, h2n, g1, . . . gn−1, qt)
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= M2 (h2n, h2n−1, g1, . . . gn−1, t)M2 (BSh2n, ATh2n−1, g1, . . . gn−1, qt) ,
≥ s min{M2 (h2n, h2n−1, g1, . . . gn−1, t) ,M2 (h2n−1, h2n, g1, . . . gn−1, t) ,

M2 (h2n−1, h2n, g1, . . . gn−1, t) ,M2 (h2n−1, h2n, g1, . . . gn−1, t) ,
M2 (h2n−1, h2n, g1, . . . gn−1, t) , M1 (f2n, f2n−1, g1, . . . gn−1, t) ,
M2 (h2n−1, h2n, g1, . . . gn−1, t) ,M2 (h2n, h2n, g1, . . . gn−1, t)}.

This implies that, M2 (h2n+1, h2n, g1, . . . gn−1, qt)
≥ s min{M2 (h2n, h2n−1, g1, . . . gn−1, t) ,M1 (f2n, f2n−1, g1, . . . gn−1, t)} (4)

In general we have,
M1 (fn, fn+1, g1, . . . gn−1, qt) ≥ s min{M1 (fn−1, fn, g1, . . . gn−1, t) ,

M2 (hn, hn+1, g1, . . . gn−1, t)}
and

M2 (hn, hn+1, g1, . . . gn−1, t) ≥ s min{M2 (hn−1, hn, g1, . . . gn−1, t) ,
M1 (fn−1, fn, g1, . . . gn−1, t)

i.e.
M1 (fn, fn+1, g1, . . . gn−1, t) ≥ s min{M1

(
fn−1, fn, g1, . . . gn−1,

t
q

)
,

M2

(
hn, hn+1, g1, . . . gn−1,

t
q

)
· · · · · · (5)

and
M2 (hn, hn+1, g1, . . . gn−1, t) ≥ s min{M2

(
hn−1, hn, g1, . . . gn−1,

t
q

)
,

M1

(
fn−1, fn, g1, . . . gn−1,

t
q

)
· · · · · · (6)

repeated use of (5) and (6) give
M1 (fn, fn+1, g1, . . . gn−1, t) ≥ snmin{M1

(
f0, f1, g1, . . . gn−1,

t
qn

)
,

M2

(
h1, h2, g1, . . . gn−1,

t
qn

)
→ 1

as n →∞
and

M2 (hn, hn+1, g1, . . . gn−1, t) ≥ snmin{M2

(
h0, h1, g1, . . . gn−1,

t
qn

)
,

M1

(
f0, f1, g1, . . . gn−1,

t
qn

)
→ 1

as n →∞
In general,

M1 (fn, fn+m, g1, . . . gn−1, t) ≥ snmin{M1

(
f0, fm, g1, . . . gn−1,

t
qn

)
,

M2

(
h1, hm+1, g1, . . . gn−1,

t
qn

)
→ 1

as n →∞
and

M2 (hn, hn+m, g1, . . . gn−1, t) ≥ snmin{M2

(
h0, hm, g1, . . . gn−1,

t
qn

)
,

M1

(
f0, fm, g1, . . . gn−1,

t
qn

)
→ 1

as n →∞
For n = 1, 2,. . . , since q < 1, it follows that {fn} and {hn} are Cauchy sequences
in F(X) and F(Y) with limits g in F(X) and k in F(Y) respectively.
i.e. limn→∞ fn = g and limn→∞ hn = k.
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If A is continuous then limn→∞Af2n = limn→∞ h2n+1 i.e. Ag = k
Applying inequality (1), we have

M1 (g, f2n−1, g1, . . . gn−1, t) M1 (SAg, TBf2n−1, g1, . . . gn−1, qt)

≥ s min{M1 (f2n−1, g, g1, . . . gn−1, t) ,M1 (f2n−1, TBf2n−1, g1, . . . gn−1, t) ,

M1 (f2n−1, SAf2n−1, g1, . . . gn−1, t) ,M1 (g, SAg, g1, . . . gn−1, t) ,

M1 (f2n−1, TBf2n−1, g1, . . . gn−1, t) ,M2 (h2n, h2n+1, g1, . . . gn−1, t) ,

M1 (g, f2n−1, g1, . . . gn−1, t) , M1 (f2n, f2n, g1, . . . gn−1, t)}
Taking limit n →∞, we have

M1 (SAg, g, g1, . . . gn−1, qt) ≥ s min{1, M1 (g, SAg, g1, . . . gn−1, t)}
This implies that,

M1 (SAg, g, g1, . . . gn−1, qt) ≥ s M1 (g, SAg, g1, . . . gn−1, t) ,

a contradiction
Therefore SAg = g. Hence SAg = g = Sk
Again by (2), we have

M2 (k, h2n, g1, . . . gn−1, t) , M2 (BSk, h2n+1, g1, . . . gn−1, qt)
≥ s min{ M2 (k, h2n, g1, . . . gn−1, t) ,M2 (h2n, h2n+1, g1, . . . gn−1, t) ,

M2 (h2n, h2n+1, g1, . . . gn−1, t) , M2 (h2n, h2n+1, g1, . . . gn−1, t) ,
M1 (Sk, f2n, g1, . . . gn−1, t) , M2 (k, h2n, g1, . . . gn−1, t) ,
M2 (BSk, k, g1, . . . gn−1, t)}

Taking limit n →∞, we have

M2 (BSk, k, g1, . . . gn−1, qt) ≥ s min{M2 (BSk, k, g1, . . . gn−1, t) , 1}
This implies that,

M2 (BSk, k, g1, . . . gn−1, qt) ≥ M2 (BSk, k, g1, . . . gn−1, t) ,

a contradiction. Therefore, BSk = k, BSk = k = Bg and Ag = Bg = k.
Again applying inequality (1), we have

M1 (g, g, g1, . . . gn−1, t) ,M1 (SAg, TBg, g1, . . . gn−1, qt)

≥ s min{M1 (g, g, g1, . . . gn−1, t) , M1 (g, TBg, g1, . . . gn−1, t) ,

M1 (g, SAg, g1, . . . gn−1, t) , M1 (g, SAg, g1, . . . gn−1, t) ,

M1 (g, TBg, g1, . . . gn−1, t) , M2 (h2n, h2n+1, g1, . . . gn−1, t) ,

M1 (g, g, g1, . . . gn−1, t) , M1 (TBg, TBg, g1, . . . gn−1, t)}
i.e. M1 (g, TBg, g1, . . . gn−1, qt) ≥ s min{M1 (g, TBg, g1, . . . gn−1, t) , 1}

this implies

M1 (g, TBg, g1, . . . gn−1, qt) ≥ M1 (g, TBg, g1, . . . gn−1, t) ,

a contradiction. Therefore, TBg = g. Hence TBg = Tk = g and Sk = g= Tk.
Again by using (2) we have

M2 (k, k, g1, . . . gn−1, t)M2 (BSk, ATk, g1, . . . gn−1, qt)

≥ s min{M2 (k, k, g1, . . . gn−1, t) , M2 (k, ATk, g1, . . . gn−1, t) ,

M2 (k, ATk, g1, . . . gn−1, t) , M2 (k,BSk, g1, . . . gn−1, t) ,

M2 (k,BSk, g1, . . . gn−1, t) , M1 (Sk, Tk, g1, . . . gn−1, t) ,
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M2 (k, k, g1, . . . gn−1, t) , M2 (BSk, k, g1, . . . gn−1, t)}
i.e. M2 (k,ATk, g1, . . . gn−1, qt) ≥ s min{M2 (k, ATk, g1, . . . gn−1, t) ,

M2 (k, ATk, g1, . . . gn−1, t)}
this implies,
M2 (k, ATk, g1, . . . gn−1, qt) ≥ M2 (k, ATk, g1, . . . gn−1, t)a contradiction
Therefore, ATk = k, BSk = ATk = k
Ag = Bg = g and Tk = Sk = g
Hence g is a common fixed point of SA and TB and k is a common fixed point of
BS and AT.
This completes the proof. ¤
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