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1. Introduction and preliminary results

The usual notion of set topology was generalized with the introduction of fuzzy
topology by Chang [2] in 1968, based on the concept of fuzzy sets invented by Zadeh
in [12]. Since then various important concepts namely compactness, connectedness in
the general topology have been extended to fuzzy topology. Pu and Liu introduced
the notion of fuzzy connectedness in [9]. After that different parallel notions of
fuzzy connectedness were discussed by many researchers. The concept of grill in
topology was introduced by Choquet [5] and fuzzy grills on fuzzy topological spaces
was proposed by Azad [1]. Several applications of fuzzy grill have since then been
noticed, specially in the works of Srivastava and Gupta [11] and Chattopadhyay et
al. [4]. We have already introduced a new fuzzy topology τG , in terms of a fuzzy grill G
in [8]. In this paper we introduce fuzzy separation of fuzzy sets, fuzzy connectedness
and fuzzy hyperconnectedness via fuzzy grill G in usual fuzzy topological space and
fuzzy τG-topological space.

A fuzzy set A in X is characterized by a membership function in the sense of
Zadeh [12]. The basic fuzzy sets are the zero set, the whole set and the class of all
fuzzy sets in X, to be denoted by 0X , 1X and IX respectively. By a fuzzy topological
space (X, τ)(henceforth abbreviated as an fts X) , we mean a non-empty set X with
the fuzzy topology τ , as given by Chang [2]. For two fuzzy sets A, B in X, we write
A ≤ B if A(x) ≤ B(x) for each x ∈ X, whereas the notation AqB means that A is
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quasi-coincident [9] with B, written as AqB, if A(x) + B(x) > 1 for some x ∈ X.
The negations of these statements are denoted by A 6≤ B and AqB. A is called a
q-nbd of B [9] if BqU for some fuzzy open set U in X, with U ≤ A; if in addition, A
itself is fuzzy open then it is called an open-q-nbd of B. The collection of all open
q-nbds of any fuzzy point xα will be denoted by Q(xα). For a fuzzy set A in an fts
X, the fuzzy complement, fuzzy interior and fuzzy closure of A in X are written as
1−A, intA and clA respectively.

A non-void collection G of fuzzy sets in an fts (X, τ) is called a fuzzy grill on X [1]
if (i) 0X 6∈ G, (ii) A ∈ G, B ∈ IX and A ≤ B ⇒ B ∈ G and (iii) A,B ∈ IX and
A

∨
B ∈ G ⇒ A ∈ G or B ∈ G.

In a fuzzy topological space with a fuzzy grill G on X, an operator φ : IX → IX ,
denoted by φG(A) or simply by φ(A)(where A is a fuzzy set in X ) is defined
[in [8]] as the union of all fuzzy points xλ of X such that if U ∈ Q(xα), then
A ∗ U ∈ G, where A ∗ B is the Lukasiewicz conjunction on the power set IX , given
by A ∗B = max(0, A + B− 1X), for A,B ∈ IX ,where (A ∗B)(x) = A(x) + B(x)− 1
if A(x) + B(x) > 1 and (A ∗B)(x) = 0 otherwise.
Throughout this paper, by a fuzzy G-space (X, τ,G), we mean an fts (X, τ) endowed
with a fuzzy grill G.

Proposition 1.1 ([8]). Let (X, τ) be an fts. Then for any fuzzy sets A and B in
X, the following hold:
(i) If G is any fuzzy grill on X, then A ≤ B ⇒ φG(A) ≤ φG(B).
(ii) If G1 and G2 are any two fuzzy grills on X and G1 ⊆ G2, then φG1(A) ≤ φG1(A).
(iii) For any fuzzy grill G on X and for any fuzzy set A in X, if A 6∈ G, then
φG(A) = 0X 6∈ G and A is τG-closed.
(iv) φ(A

∨
B) = φ(A)

∨
φ(B)

(v) φ(φ(A)) ≤ φ(A) = cl(φ(A)) ≤ cl(A)
(vi) φ(A

∨
G) = φ(A), for every G 6∈ G.

(vi) φ(A) is τG-closed.

Definition 1.2 ([8]). In an fts (X, τ), corresponding to a fuzzy grill G, there exists
a unique fuzzy topology τG on X given by τG = {U ∈ IX/ψ(1X − U) = 1X − U},
where for any A ∈ IX , ψ(A) = A

∨
φ(A) = τG-cl(A).

Definition 1.3 ([8]). Let G be a fuzzy grill on an fts (X, τ). Then τ is said to be
suitable for the fuzzy grill G, if for every fuzzy set A in X : if corresponding to each
fuzzy point xα ≤ A, there exists a U ∈ Q(xα) such that A ∗ U 6∈ G, then A 6∈ G.

Corollary 1.4 ([8]). For a fuzzy G space (X, τ,G), τ ⊆ τG.

Theorem 1.5 ([6]). Let (X, τ,G) be a fuzzy G-space. Then the following are equiv-
alent:
(i) φ(1X) = 1X , (ii) τ \ {0X} ⊆ G, (iii) intG = 0X for each G 6∈ G.

2. G-separated fuzzy sets

Pu and Liu [9] defined separation and Q-separation for two fuzzy sets in an fts.
We now want to define G-separation of fuzzy sets in a fuzzy G-space in an analogous
way and discuss some properties which we will need later in the study of fuzzy
connectedness via fuzzy grill.
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Definition 2.1 ([9]). Two fuzzy sets A1 and A2 in an fts (X, τ) are said to be
separated if there exist Ui ∈ τ(i = 1, 2) such that Ai ≤ Ui(i = 1, 2) and U1 ∧ A2 =
0X = U2 ∧A1.

Definition 2.2 ([9]). Two fuzzy sets A1 and A2 in (X, τ) are said to be Q-separated
if there exist fuzzy closed sets H1 and H2 such that A1 ≤ H1, A2 ≤ H2 and
H1 ∧A2 = 0X = H2 ∧A1.

It is obvious that A1 and A2 are Q-separated iff clA1 ∧A2 = 0X = clA2 ∧A1.

Definition 2.3. In a fuzzy G-space (X, τ,G), any two fuzzy sets A (6= 0X , 1X) and
B (6= 0X , 1X) are said to be fuzzy G-separated if τG-clA ∧ B = 0X = A ∧ clB or
τG-clB ∧A = 0X = B ∧ clA.

Remark 2.4. According to Piu and Liu [9], fuzzy separation and fuzzy Q-separation
do not imply each other. Now since τG-clA ≤ clA [by Proposition 1.1(v) and Defi-
nition 1.2], Q-separation implies G-separation of fuzzy sets. But the converse is not
true in general which we show by the following:

Example 2.5. Let X = {a, b}, and τ = {0X , 1X , P} be a fuzzy topology on X
where P (a) = 1, P (b) = 0.4. Let G = {G ∈ IX : 0.3 ≤ G(x) ≤ 1, x ∈ X} be a fuzzy
grill on X. Let us take two fuzzy sets A and B such that A(a) = 0.8, A(b) = 0 and
B(a) = 0, B(b) = 0.3. Since A 6∈ G, A is τG-closed [by Proposition 1.1(iii)]. Then
τG-clA ∧ B = A ∧ B = 0X . Also clB = 1− P and so A ∧ clB = A ∧ (1− P ) = 0X .
Thus A and B are fuzzy G-separated. However, A and B are not fuzzy Q-separated
since clA = 1X and hence clA ∧B 6= 0X .

We also note that the notions of fuzzy separation and fuzzy G-separation are
independent of each other. We show this by the following examples:

Example 2.6. Let X = {a, b}, τ = {0X , 1X , P, Q, P ∨ Q} such that P (a) = 0.8,
P (b) = 0; Q(a) = 0, Q(b) = 0.6, be a fuzzy topology on X and G be a fuzzy grill
on X. Let A and B be two fuzzy sets in X such that A(a) = 0.5, A(b) = 0 and
B(a) = 0, B(b) = 0.3. Then A and B are fuzzy separated since P and Q are two
fuzzy open sets such that A ≤ P and B ≤ Q and P ∧ Q = 0X . But A and B are
fuzzy G-separated. In fact, clB = 1 − (P ∨ Q) where 1 − (P ∨ Q)(a) = 0.2 and
1 − (P ∨Q)(b) = 0.4 and A ∧ clB = A ∧ (1 − P ∨Q) 6= 0X ; and also clA = 1 −Q,
so that B ∧ clA 6= 0X .

Example 2.7. Let X = {a, b} and τ = {0X , 1X , U, V, U ∧ V }, where U(a) = 1,
U(b) = 0.6; V (a) = 0.4, V (b) = 1, be a fuzzy topology on X and G be a fuzzy grill
on X. Let G and H be two fuzzy sets in X such that G(a) = 0, G(b) = 0.2 and
H(a) = 0.3, H(b) = 0. Now clH = 1 − V . Thus G ∧ clH = G ∧ (1 − V ) = 0X .
Also clG = 1−U and clG∧H = 0X ⇒ τG-clG∧H = 0X . Thus G and H are fuzzy
G-separated. But we have fuzzy open sets U and V such that G ≤ U and H ≤ V
and U ∧ V 6= 0X which implies that G and H are not fuzzy separated.

However fuzzy G-separated sets may be made fuzzy Q-separated if some condition
is assumed. For this, we recall the following:

Definition 2.8 ([7]). Any fuzzy set A in a fuzzy G-space (X, τ,G) is said to be
τG-dense-in-itself if A ≤ φ(A).
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Theorem 2.9. Any two fuzzy G-separated sets in a fuzzy G-space (X, τ,G) are fuzzy
Q-separated if one of them is τG-dense-in-itself, whose τG-closure has a void inter-
section with the other.

Proof. Let A and B be any two fuzzy G-separated sets in (X, τ,G). Then τG-clA ∧
B = 0X = A ∧ clB or τG-clB ∧A = 0X = B ∧ clA.
Without any loss of generality, let τG-clA∧B = 0X = A∧ clB. Now, A is τG-dense-
in-itself ⇒ A ≤ φ(A) ⇒ clA ≤ clφ(A) ≤ clA [by Proposition1.1(v)] ⇒ φ(A) = clA.
Thus τG-clA = A ∨ φ(A) = φ(A) = clA and so clA ∧ B = 0X = A ∧ clB and
consequently A and B are fuzzy Q-separated. ¤

Theorem 2.10. In a fuzzy G-space (X, τ,G), if A and B are two fuzzy G-separated
sets then so are φ(A) and φ(B).

Proof. Let A and B be any two fuzzy G-separated sets in (X, τ,G). Then either
τG-clA ∧B = 0X = A ∧ clB or τG-clB ∧A = 0X = B ∧ clA.

Case-I : τG-clA ∧B = 0X = A ∧ clB.
Then φ(A) ∧ B = 0X = A ∧ φ(B)[since φ(A) ≤ cl(A)] ⇒ cl(φ(A)) ∧ B = 0X =
A ∧ cl(φ(B))[by Proposition1.1(v)] ⇒ τG-cl(φ(A)) ∧ B = 0X = A ∧ cl(φ(B))[since
τG-cl(φ(A)) ≤ cl(φ(A))] ⇒ φ(A) and φ(B) are fuzzy G-separated.

Case-II: τG-clB ∧A = 0X = B ∧ clA.
Interchanging A and B in case-I we obtain the same conclusion. ¤

Theorem 2.11. For any two fuzzy G-separated sets in a fuzzy G-space (X, τ,G),
Aqφ(B) and Bqφ(A).

Proof. Since A and B are fuzzy G-separated sets then τG-clA ∧ B = 0X = A ∧ clB
or τG-clB ∧ A = 0X = B ∧ clA. Now τG-clA ∧ B = 0X ⇒ τG-clAqB ⇒ Bqφ(A)[as
τG-clA = A ∨ φ(A)].
Also, A ∧ clB = 0X ⇒ A ∧ τG-clB = 0X ⇒ Aqφ(B).
Similarly we will get the same result if the other possibility occurs. ¤

3. G-connected fuzzy sets

We will now discuss about an important concept of fuzzy topology, namely fuzzy
connectedness for two fuzzy G-spaces (X, τ,G) and (X, τG ,G). For this we require to
recall the following definition and lemma given by Pu and Liu [9]

Definition 3.1. A fuzzy set D in (X, τ) is called disconnected if there exist two
non-null fuzzy sets A and B such that A and B are Q-separated and D = A∨B. A
fuzzy set is called connected iff it is not disconnected.

Lemma 3.2. A fuzzy set D in an fts X is disconnected iff there are fuzzy closed
sets A and B such that A ∧D 6= 0X , B ∧D 6= 0X , A ∧B = 0X and D ≤ A ∨B.

Remark 3.3. From Definition 3.1and Lemma 3.2, we can state that a fuzzy topo-
logical space (X, τ) is disconnected iff there exists non-null τ -closed fuzzy sets A, B
in X such that A ∧B = 0X and A ∨B = 1X .
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We now want to relate the connectedness defined in terms of the grill-oriented
topology τG with the original topology τ on the same underlying set X.

Theorem 3.4. Let (X, τ,G) be a fuzzy G-space such that τ \ {0X} ⊆ G. Then
(X, τ,G) is fuzzy connected iff (X, τG ,G) is fuzzy connected.

Proof. Since τ ⊆ τG , if (X, τG ,G) is fuzzy connected then (X, τ,G) is also so. Con-
versely, suppose (X, τG ,G) is fuzzy disconnected. Then there exist non-null τG-closed
fuzzy sets A and B in (X, τ,G) such that A ∧B = 0X and A ∨B = 1X ...(1)
Then φ(1X) = φ(A∨B) ⇒ 1X = φ(A)∨φ(B)) [Using Theorem 1.5, and Proposition
1.1(iv)] ...(2)
Now, A is τG-closed ⇒ A = τG-clA = A ∨ φ(A) ⇒ φ(A) ≤ A. Similarly φ(B) ≤ B.
Thus A ∧B = 0X ⇒ φ(A) ∧ φ(B)) = 0X .
Also φ(A) and φ(B)) are non-null. Indeed, if φ(A)(say) = 0X , then φ(B)) =
1X [by(2)] ⇒ 1X = φ(B)) ≤ B ≤ 1X ⇒ B = 1X ⇒ A ∧ B 6= 0X , contradicting
(1). Thus φ(A) and φ(B) are non-null τ -closed sets [by Proposition 1.1(v)] in X
such that φ(A) ∧ φ(B)) = 0X and φ(A) ∨ φ(B)) = 1X . Thus (X, τ,G) is fuzzy
disconnected. ¤

Next we discuss about another type of fuzzy connectedness namely fuzzy hyper-
connectedness of a fuzzy G-space (X, τ,G).

Definition 3.5 ([3]). An fts (X, τ) is said to be fuzzy hyperconnected if every fuzzy
open set in X is fuzzy dense in X. i.e., clU = 1X , for each U ∈ τ .

Theorem 3.6. For any fuzzy G-space (X, τ,G), the following are equivalent:
(i) X is fuzzy hyperconnected and U ≤ φ(U), for each U ∈ τ .
(ii) for each non-null fuzzy open set U in X, φ(U) = 1X .

Proof. i) ⇒ ii): X is fuzzy hyperconnected and U(6= 0X) ∈ τ ⇒ clU = 1X . Then
1X = clU ≤ clφ(U) [by (i)] = φ(U)[by Proposition 1.1(v)] = 1X ⇒ φ(U) = 1X .

ii) ⇒ i): Let U( 6= 0X) be any fuzzy open set in X such that φ(U) = 1X . Then
obviously U ≤ φ(U). Now for each fuzzy point yβ in X, yβ ≤ 1X = φ(U) ≤ clU [by
Proposition 1.1(v)]. Thus clU = 1X and hence X is fuzzy hyperconnected. ¤

Now we define fuzzy connectedness and fuzzy hyperconnectedness in terms of
fuzzy grills and we want to show their relationships with the corresponding ones
with respect to the original topology.

Definition 3.7. A fuzzy set D in a fuzzy G-space (X, τ,G) is said to be a fuzzy
G-connected set if D cannot be expressed as the union of two fuzzy G-separated sets.
A fuzzy set D is called fuzzy G-disconnected iff it is not fuzzy G-connected.

In particular, a fuzzy G-space (X, τ,G) is said to be a fuzzy G-disconnected if
there exist two fuzzy sets A and B (6= 0X , 1X) such that A and B are fuzzy G-
separated and 1X = A ∨ B. (X, τ,G) is called fuzzy G-connected space iff it is not
fuzzy G-connected.

Definition 3.8. A fuzzy G-space (X, τ,G) is said to be fuzzy G-hyperconnected if
for each U ∈ τG , τG-clU = 1X .
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Theorem 3.9. For any fuzzy G-space (X, τ,G), the following hold:
i) Every fuzzy G-connected space is fuzzy connected.
ii) Every fuzzy G-hyperconnected space is fuzzy hyperconnected.

Proof. i) Follows from Remark 2.4.
ii) Let (X, τ,G) be fuzzy G-hyperconnected. Then for each U ∈ τG , τG-clU = 1X .
Since τ ⊆ τG , 1X = τG-clU ≤ clU for all U ∈ τG ⇒ cl(U) = 1X , ∀U ∈ τ ⇒ (X, τ,G)
is fuzzy hyperconnected. ¤

However, the converses of the results in the above theorem are not true in general,
as we show by the following two examples:

Example 3.10. Let X = {a, b} and τ = {0X , 1X , A}, where A(a) = 1, A(b) = 0,
be a fuzzy topology on X and G = {G ∈ IX/0 < G(x) ≤ 1, x ∈ X} be a fuzzy grill
on X. Let us consider a fuzzy set B in X such that B(a) = 0, B(b) = 1. Then A
and B are non-null fuzzy sets such that 1X = A ∨ B and A ∧ B = 0X . To show
that A and B are fuzzy G-separated, we see that A , B 6∈ G. So by Proposition
1.1(iii), A and B are τG-closed. Thus τG-clA∧B = A∧B = 0X = A∧ (1−A)[since
B = 1−A = clB] = A ∧ clB and consequently X is fuzzy G-disconnected.
But (X, τ,G) is fuzzy connected since if 1X = P ∨Q, where P and Q are two non-null
τ -closed fuzzy sets in X and P ∧Q = 0X , then each of clP and clQ is either (1−A)
or 1X but (1−A)∧1X 6= 0X . In any case P ∧Q 6= 0X contradicting our hypothesis.

Example 3.11. Consider the fuzzy G-space (X, τ,G), where X = {a, b}, τ =
{0X , 1X , P} with P (a) = 0.4 and P (b) = 0.6; and G = {G ∈ IX/0.6 < G(x) ≤
1, x ∈ X}. We have clP = 1X and hence X is fuzzy hyperconnected. Also X is
fuzzy G-connected since 1X cannot be expressed as a disjoint union of two fuzzy
G-separated sets. Indeed, if possible, 1X = A ∨ B, where A, B( 6= 0X , 1X) are two
fuzzy sets such that τG-clA∧B = 0X = A∧ clB or τG-clB ∧A = 0X = B ∧ clA. But
clB is either 1−P or 1X . But there cannot exist any non-null set A such that either
A ∧ (1− P ) = 0X or A ∧ 1X = 0X . Similarly B ∧ clA = 0X is also not possible.
But X is not fuzzy G-hyperconnected. In fact, for P ∈ τ ⊆ τG , we claim that P = τG-
clP . Indeed, for any fuzzy point xλ in X and for any U ∈ Q(xλ), P + U − 1 6∈ G,
so that φ(P ) = 0X . Thus P = P ∨ φ(P ) = τG-clP 6= 1X ⇒ X is not fuzzy G-
hyperconnected.

Lemma 3.12. In a fuzzy G-space (X, τ,G), if A and B are fuzzy G-separated sets in
X, and A1 and B1 are two non-null fuzzy sets in X such that A1 ≤ A and B1 ≤ B,
then A1 and B1 are also fuzzy G-separated.

Proof. Clear from definition of fuzzy G-separated sets. ¤

Theorem 3.13. A non-null fuzzy set C in a fuzzy G-space (X, τ,G) is fuzzy G-
connected iff for every pair of fuzzy G-separated sets A and B in X with C ≤ A∨B,
exactly one of the possibilities (a) and (b) holds:

(a) C ≤ A and C ∧B = 0X .

(b) C ≤ B and C ∧A = 0X .
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Proof. First let C be fuzzy G-connected. As C ≤ A ∨ B, both of C ∧ A = 0X and
C ∧ B = 0X cannot hold simultaneously. Also if C ∧ A 6= 0X and C ∧ B 6= 0X

hold then by Lemma 3.12, C ∧ A and C ∧ B are also fuzzy G-separated sets and
C = (C ∧A)∨ (C ∧B) which contradicts the fact that C is fuzzy G-connected. Thus
exactly one of the possibilities (C ∧A 6= 0X but C ∧B = 0X) and (C ∧A = 0X and
C ∧B 6= 0X) holds. Now if C ∧A = 0X then C ≤ B and if C ∧B = 0X then C ≤ A.
Conversely let the given condition hold. If possible, let C be not fuzzy G-connected.
Then there exist two fuzzy G-separated sets A and B in X such that C = A ∨ B.
By hypothesis, either C ∧ A = 0X or C ∧ B = 0X . i.e., either A = 0X or B = 0X ,
none of which is true. Thus C is fuzzy G-connected. ¤
Theorem 3.14. For any two fuzzy sets A and B in a fuzzy G-space (X, τ,G), if A
is fuzzy G-connected and A ≤ B ≤ τG-clA, then B is also fuzzy G-connected.

Proof. Suppose that B is not fuzzy G-connected. Then there exist non-null fuzzy G-
separated sets G and H such that B = G∨H. Then either τG-clG∧H = 0X = G∧clH
or τG-clH ∧ G = 0X = H ∧ clG holds. Without any loss of generality we take τG-
clG ∧H = 0X = G ∧ clH. Now A ≤ B ≤ G ∨H and A is fuzzy G-connected. Then
by Theorem 3.13, either (A ≤ G and H ∧A = 0X) or (A ≤ H and A∧G = 0X) but
not both.

Case-I. Suppose A ≤ G and H ∧ A = 0X . Then τG-clA ≤ τG-clG. So, τG-
clA ∧ H = 0X = G ∧ clH. Also by hypothesis, H ≤ B ≤ τG-clA ⇒ H = τG-
clA ∧H = 0X which contradicts that H is non-null.

Case-II. A ≤ H and A ∧ G = 0X . By similar arguments as in Case-I, we again
arrive at a contradiction.
Thus B is fuzzy G-connected. ¤
Definition 3.15 ([6]). A fuzzy set A in a fuzzy G-space (X, τ,G) is said to be a
fuzzy G-open set if A ≤ intφ(A).

Corollary 3.16. If A is a fuzzy G-connected set in a fuzzy G-space (X, τ,G), then
(a) τG-clA is fuzzy G-connected.

(b) φ(A) is fuzzy G-connected if A is fuzzy G-open.

Proof. (a) It is clear from Theorem 3.14.
(b) If A is a fuzzy G-open set in X, then A ≤ intφ(A) ≤ φ(A) ≤ τG-clA. So by

Theorem 3.14, φ(A) is fuzzy G-connected. ¤
Theorem 3.17. The union of any aggregate of fuzzy G-connected sets in a fuzzy
G-space (X, τ,G), no two of which are fuzzy G-separated, is a fuzzy G-connected set.

Proof. Let {Gα : α ∈ Λ} be a family of fuzzy G-connected sets in a fuzzy G-space
(X, τ,G), no two of which are fuzzy G-separated in X and let G =

∨{Gα : α ∈ Λ}.
If possible, let G be not fuzzy G-connected in X. Then there exist two non null
fuzzy sets A and B which are fuzzy G-separated in X and G = A∨B. Now for each
α ∈ Λ, Gα is a fuzzy G-connected set and also Gα ≤ A∨B. Then by Theorem 3.13,
either Gα ≤ A and Gα ∧ B = 0X or else Gα ≤ B and Gα ∧ A = 0X . If possible,
let for some α, β ∈ Λ with α 6= β, Gα ≤ A and Gβ ≤ B. Then Gα and Gβ , being
non null subsets of fuzzy G-separated sets, are also fuzzy G-separated [by Lemma
3.12] which is not the case. Thus either Gα ≤ A and Gα ∧ B = 0X for each α ∈ Λ
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or else Gα ≤ B and Gα ∧ A = 0X for each α ∈ Λ. In the first case B = 0X [since
B ≤ G] and in the second case A = 0X , none of which is true. Thus G is fuzzy
G-connected. ¤

Corollary 3.18. Let {Gα : α ∈ Λ} be a family of fuzzy G-connected sets in a fuzzy
G-space (X, τ,G) such that Gα ∧ Gβ 6= 0X for any α, β ∈ Λ. Then

∨

α∈Λ

Gα is fuzzy

G-connected.

Proof. Follows from Theorem 3.17. ¤

Corollary 3.19. Let {Gα : α ∈ Λ} be a non-null family of fuzzy G-connected sets
in a fuzzy G-space (X, τ,G) with

∧

α∈Λ

Gα 6= 0X , then
∨

α∈Λ

Gα is fuzzy G-connected.

Proof. Follows from Theorem 3.17. ¤

Theorem 3.20. Let A be a family of fuzzy G-connected sets in a fuzzy G-space
(X, τ,G) such that there is a non null member A0 of A with the property that A0

and A are not fuzzy G-separated for each A ∈ A. Then
∨{A : A ∈ A} is fuzzy

G-connected.

Proof. By use of Theorem 3.17, A ∨ A0 is fuzzy G-connected, for all A ∈ A ⇒∨{A ∨A0 : A ∈ A} i.e.,
∨{A : A ∈ A} is fuzzy G-connected. ¤

However intersection of even two fuzzy G-connected sets may not be fuzzy G-
connected as shown by the following:

Example 3.21. Consider the fuzzy G-space (X, τ,G), where X = {a, b}, τ =
{0X , 1X , U} with U(a) = 1 and U(b) = 0.5; and G = {G ∈ IX/0.6 ≤ G(x) ≤
1, x ∈ X}. Consider two fuzzy sets A and B in X where A(a) = 0.2 and A(b) = 1;
B(a) = 1 and B(b) = 0.3. We show that A and B are fuzzy G-connected in X.
Indeed, if A = G ∨H for any two non-null fuzzy sets G and H in X, then we claim
that G ∧ clH 6= 0X 6= clG ∧ H. In fact, clH is either 1X or 1 − U . If clH = 1X

then G ∧ clH 6= 0X . Otherwise clH = 1 − U , then clH(b) = (1− U)(b) = 0.5. But
A(b) = 1, so G(b) = 1[since A(b) = G(b) ∨H(b) and H(b) ≤ clH(b) = 0.5]. In this
case G(b) ∧ clH(b) 6= 0 and hence G ∧ clH 6= 0X . Again G is non-null, so clG is
either 1X or 1− U . By similar argument we get clG ∧H 6= 0X . Thus G and H are
not fuzzy G-separated and hence A is fuzzy G-connected.
To show B to be fuzzy G-connected, let us assume to the contrary that B = Y ∨Z,
where Y and Z are two non-null fuzzy G-separated sets in X. Then clY = 1 − U
[since if clY = 1X then clY ∧Z 6= 0X ]. Thus clY (a) = (1−U)(a) = 0. But B(a) = 1
⇒ Z(a) = 1 and B(b) = 0.3 ⇒ max(Y (b), Z(b)) = 0.3.
Now if Y (b) 6= 0 6= Z(b), then clY (b) ∧ Z(b) 6= 0 ⇒ clY ∧ Z 6= 0X .
If Y (b) = 0, then Y = 0X which contradicts that Y is non-null.
If Z(b) = 0, then since Z(a) = 1, clZ 6= 1 − U and hence clZ = 1X so that
clZ ∧ Y 6= 0X .
Thus in each case we arrive at a contradiction. Thus Y and Z are not fuzzy G-
separated and hence B is also fuzzy G-connected.
But we claim that A ∧ B is not fuzzy G-connected. Here (A ∧ B)(a) = 0.2;
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(A ∧ B)(b) = 0.3. We write A ∧ B = P ∨ Q, where P (a) = 0.2 and P (b) = 0;
Q(a) = 0 and Q(b) = 0.3. Then P and Q are non-null fuzzy sets in X. We want
to show that τG-clP ∧ Q = 0X = P ∧ clQ. We see that φ(P ) = 0X since for any
fuzzy point xλ in X and for any Ux ∈ Q(xλ), P + Ux − 1 6∈ G ⇒ xλ 6≤ φ(P ). Thus
τG-clP ∧Q = P ∧Q = 0X . Again clQ = 1− U . So P ∧ clQ = P ∧ (1− U) = 0X .

Theorem 3.22. A non-null fuzzy set A in a fuzzy G-space (X, τ,G) is fuzzy G-
connected iff for any two fuzzy points xα and yβ in A, where xα 6= yβ, there is a
fuzzy G-connected set B such that B ≤ A and xα, yβ ≤ B.

Proof. The condition is necessary because in that case we can take B = A.
Conversely, suppose that A is not fuzzy G-connected. Then there exist two fuzzy
G-separated sets P and Q in X such that A = P ∨ Q. As P and Q are non-null,
let us choose any two fuzzy points xα and yβ such that xα ≤ P and yβ ≤ Q. Then
xα, yβ ≤ A and hence by hypothesis there exists a fuzzy G-connected set B such
that B ≤ A and xα, yβ ≤ B. Then B ∧ P and B ∧Q are two non-null fuzzy sets in
X and by Lemma 3.12, they are fuzzy G-separated. Also B = (B ∧ P ) ∨ (B ∧ Q),
which contradicts the fact that B is fuzzy G-connected. ¤

Next we want to discuss briefly about the behavior of fuzzy G-separated sets
and fuzzy G-connected sets under fuzzy continuous function. For this we first recall
that a function f : X → Y (where X, Y are fts’s) is called fuzzy continuous [2], if
f−1(V ) is fuzzy open in X, for each fuzzy open set V in X. Some of the well known
characterizations of fuzzy continuity are given below.

Result 3.23 ([10]). Let f : (X, τ) → (Y, σ) be a function. Then the following are
equivalent:
a) f is fuzzy continuous.
b) For any fuzzy set A in X, f(clA) ≤ clf(A).
b) For any fuzzy set B in Y , cl(f−1(B)) ≤ f−1(clB).

Theorem 3.24. Let (X, τ,G1) and (Y, σ,G2) be two fuzzy G-spaces and f : X → Y be
a fuzzy continuous function. If C and D be any two τG2-dense-in-itself, G-separated
sets in Y , then f−1(C) and f−1(D) are fuzzy G-separated sets in X.

Proof. If possible, let f−1(C) and f−1(D) be not fuzzy G-separated sets in X. Then
(τG1 -cl(f

−1(C)) ∧ f−1(D) 6= 0X or f−1(C) ∧ clf−1(D) 6= 0X) and (cl(f−1(C)) ∧
f−1(D) 6= 0X or f−1(C) ∧ τG1-clf

−1(D) 6= 0X).

Case-I: τG1 -cl(f
−1(C)) ∧ f−1(D) 6= 0X .

In this case cl(f−1(C)) ∧ f−1(D) 6= 0X [since τG1 -clA ≤ clA for A ∈ IX ] ⇒
f−1(clC) ∧ f−1(D) 6= 0X [by Result 3.23(c)] ⇒ f [f−1(clC) ∧ f−1(D)] 6= 0Y ⇒
f(f−1(clC)) ∧ f(f−1(D)) 6= 0Y ⇒ clC ∧ D 6= 0Y . From this we also get τG2-
clC∧D 6= 0Y , because C ≤ φ(C) and Proposition 1.1(v) imply that clC ≤ clφ(C) =
φ(C) = C ∨ φ(C) = τG2 -clC ≤ clC. Thus C and D are not fuzzy G-separated sets
in Y , a contradiction.

Case-II: If f−1(C)∧clf−1(D) 6= 0X , then f−1(C)∧f−1(clD) 6= 0X ⇒ f [f−1(C)∧
f−1(clD)] 6= 0Y ⇒ f(f−1(C)) ∧ f(f−1(clD)) 6= 0Y ⇒ C ∧ clD 6= 0Y ⇒ C ∧ τG2-
clD 6= 0Y (since clD = τG2-clD, as above) which contradicts again the fact that C
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and D are fuzzy G-separated sets in Y .
Thus f−1(C) and f−1(D) are fuzzy G-separated sets in X. ¤
Theorem 3.25. Let (X, τ,G1) and (Y, σ,G2) be two fuzzy G-spaces such that each
fuzzy set in Y is τG2-dense-in-itself. Let f : X → Y be a fuzzy continuous and
one-to-one. If A is a fuzzy G-connected set in X then f(A) is fuzzy G-connected in
Y .

Proof. If possible, let f(A) be not fuzzy G-connected in Y . Then f(A) = B ∨ C,
where B and C are two non-null fuzzy G-separated sets in Y . Since each fuzzy
set in Y is τG2 -dense-in-itself, by Theorem 3.24, f−1(B) and f−1(C) are also fuzzy
G-separated sets in X. Since f is one-to-one, A = f−1f(A) = f−1(B ∨ C) =
f−1(B)∨f−1(C) which shows that A is not fuzzy G-connected in X and contradicts
our hypothesis. Hence f(A) is fuzzy G-connected in Y . ¤
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