Annals of Fuzzy Mathematics and Informatics Volume 9, No. 3, (March 2015), pp. 473–487 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On generalized fuzzy ordered AG-groupoids

ASAD ALI, FU-GUI SHI, FAISAL YOUSAFZAI

Received 27 May 2014; Revised 9 July 2014; Accepted 21 September 2014

ABSTRACT. We introduce and use the concept of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy (left, right, bi-) ideals to study the structural properties of a non-associative algebraic ordered structure. We characterize an intra-regular ordered \mathcal{AG} -groupoid by these generalized fuzzy ideals.

2010 AMS Classification: 06F05, 20M12, 08A72

Keywords: Ordered \mathcal{AG} -groupoid, Left invertive law, Medial law, Paramedial law and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideal.

Corresponding Author: Asad Ali (asad_maths@hotmail.com)

1. INTRODUCTION

 \mathbf{T} he fundamental concept of a fuzzy set, introduced by Zadeh in his classic paper [24] of 1965, provides a natural framework for generalizing some of the basic notions of algebra. Kuroki [6] introduced the notion of fuzzy bi-ideals in semigroups. A new type of fuzzy subgroup, that is (α, β) -fuzzy subgroup, was introduced in an earlier paper of Bhakat and Das [1] by using the notions of "belongingness and quasi-coincidence" of fuzzy points and fuzzy sets. The concepts of an $(\in, \in \lor q)$ -fuzzy subgroup is a useful generalization of Rosenfeld's fuzzy subgroups [14]. It is now natural to investigate similar type of generalizations of existing fuzzy sub-systems of other algebraic structures. The concept of an $(\in, \in \lor q)$ -fuzzy sub-near rings of a near ring introduced by Davvaz in [2]. In [7] Kazanchi and Yamak studied $(\in, \in \lor q)$ -fuzzy bi-ideals of a semigroup. In [15] Shabir et. al. characterized regular semigroups by the properties of $(\in, \in \lor q)$ -fuzzy ideals, fuzzy bi-ideals and fuzzy quasi-ideals. In [7] Kazanchi and Yamak defined $(\overline{\epsilon}, \overline{\epsilon} \vee \overline{q})$ -fuzzy bi-ideals in semigroups. Many other researchers used the idea of generalized fuzzy sets and gave several characterizations results in different branches of algebra. Generalizing the concept of $x_t q f$ Shabir and Jun [16], defined $x_t q_k f$ as f(x) + t + k > 1, where $k \in [0, 1)$. In [16], semigroups are characterized by the properties of their $(\in, \in \lor q_k)$ -fuzzy ideals.

Yousafzai and Khan have introduced the concept of an ordered \mathcal{AG} -groupoid and provided the basic theory for an ordered \mathcal{AG} -groupoid in terms of fuzzy subsets [9].

The generalization of an ordered \mathcal{AG} -groupoid was also given by Yousafzai et. al. and they introduced the notion of an ordered Γ - \mathcal{AG}^{**} -groupoid [23].

The concepts of " \in_{γ} " and " q_{δ} " of fuzzy points and fuzzy sets were first introduced in [18] for studying fuzzy filters of BL-algebras, and then continued in [19, 20, 21, 22]. Besides, in ordered semigroups the concept of intuitionistic fuzzy interior ideal is introduced by Khan et. al [10]. In addition, ordered semigroups are further characterised interms of interval-valued fuzzy filters and fuzzy generalised bi-ideals in [3] and [11].

In this paper we have introduced $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals in an ordered \mathcal{AG} -groupoid and introduced some new results. We have characterized an intra-regular ordered \mathcal{AG} -groupoid by the properties of its $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals.

The concept of a left almost semigroup $(\mathcal{LA}$ -semigroup)[8] was first introduced by Kazim and Naseeruddin in 1972. In [4], the same structure was called a left invertive groupoid. Protic and Stevanovic [13] called it an Abel-Grassmann's groupoid $(\mathcal{AG}$ groupoid). An \mathcal{AG} -groupoid is a groupoid \mathcal{S} whose elements satisfy the left invertive law $(ab)c = (cb)a, \forall a, b, c \in \mathcal{S}$. In an \mathcal{AG} -groupoid, the medial law [8] (ab)(cd) = $(ac)(bd), \forall a, b, c, d \in \mathcal{S}$ holds. An \mathcal{AG} -groupoid may or may not contains a left identity. The left identity of an \mathcal{AG} -groupoid contains a left identity, then it is unique [12]. In an \mathcal{AG} -groupoid \mathcal{S} with left identity, the paramedial law (ab)(cd) = $(dc)(ba), \forall a, b, c, d \in \mathcal{S}$ holds. If an \mathcal{AG} -groupoid contains a left identity, then by using medial law, we get $a(bc) = b(ac), \forall a, b, c \in \mathcal{S}$. If an \mathcal{AG} -groupoid \mathcal{S} satisfy $a(bc) = b(ac), \forall a, b, c, c \in \mathcal{S}$ without left identity, then \mathcal{S} is called an \mathcal{AG}^{**} -groupoid. Several examples and interesting properties of \mathcal{AG} -groupoids can be found in [12] and [17].

2. Preliminaries

An ordered \mathcal{AG} -groupoid (\mathfrak{po} - \mathcal{AG} -groupoid) is a structure (G, \cdot, \leq) in which the following conditions hold [9]:

(i) (G, \cdot) is an \mathcal{AG} -groupoid.

(ii) (G, \leq) is a poset.

(iii) $\forall a, b, x \in G, a \leq b \Rightarrow ax \leq bx \ (xa \leq xb).$

Example 2.1. Define a new binary operation " \circ_e " (*e*-sandwich operation) on an ordered \mathcal{AG} -groupoid $(\mathcal{S}, \cdot, \leq)$ with left identity *e* as follows:

$$a \circ_e b = (ae)b \ \forall \ a, b \in \mathcal{S}.$$

Then (S, \circ_e, \leq) becomes an ordered semigroup.

Example 2.2. Let $G = \{a, b, c\}$ be an ordered \mathcal{AG} -groupoid with the following multiplication table and two different orders below:

	a	b	c		
a	a	a	a		
b	a	a	c		
c	a	a	a		
474					

(1)
$$\leq := \{(a, a), (b, b), (c, c), (c, a), (c, b)\}$$

(2)
$$\leq := \{(a, a), (b, b), (c, c), (a, c), (a, b)\}$$

An ordered \mathcal{AG} -groupoid is the generalization of an ordered semigroup. If an ordered \mathcal{AG} -groupoid has a right identity, then it becomes an ordered semigroup.

Let A be a non-empty subset an of ordered \mathcal{AG} -groupoid G, then

$$(A] = \{t \in S \mid t \le a, \text{ for some } a \in A\}$$

For $A = \{a\}$, we usually written as (a].

Let G be an ordered \mathcal{AG} -groupoid. By a left (right) ideal of G, we mean a nonempty subset A of G such that $(GA] \subseteq A$ ($(AG] \subseteq A$). By two-sided ideal or simply ideal, we mean a non-empty subset A of G which is both a left and a right ideal of G.

An \mathcal{AG} -subgroupoid A of G is called a bi-ideal of G if $((AG)A] \subseteq A$. A non-empty subset A of G is called a generalized bi-ideal of G if $((AG)A] \subseteq A$.

A non-empty subset A of G is called an interior-ideal of G if $((GA)G] \subseteq A$.

An element *a* of an ordered \mathcal{AG} -groupoid *G* is called intra-regular element of *G* if there exists $x \in G$ such that $a \leq (xa^2)y$ and *G* is called an intra-regular, if every element of *G* is intra-regular or equivalently, $A \subseteq ((GA^2)G], \forall A \subseteq G$ [9]. A fuzzy subset *f* of a given set *G* is described as an arbitrary function $f: G \longrightarrow [0, \infty]$

1], where [0, 1] is the usual closed interval of real numbers. For any two fuzzy subsets f and g of G, $f \subseteq g$ means that, $f(x) \leq g(x)$, $\forall x \in G$.

Let f and g be any fuzzy subsets of an ordered \mathcal{AG} -groupoid G, then the product $f \circ g$ is defined by

$$(f \circ g)(a) = \begin{cases} \lim_{a \le bc} \{f(b) \land g(c)\}, \text{ if there exist } b, c \in G, \text{ such that } a \le bc \\ 0, & \text{otherwise.} \end{cases}$$

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy ordered \mathcal{AG} -subgroupoid of G if $f(xy) \ge f(x) \land f(y), \forall x, y \in G$.

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy left (right) ideal of G if $f(xy) \ge f(y)$ $(f(xy) \ge f(x)), \forall x, y \in G$.

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy ideal of G if it is both fuzzy left and fuzzy right ideal of G.

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy generalized bi-ideal of G if $f((xy)z) \ge f(x) \land f(z), \forall x, y \text{ and } z \in G$.

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy interior-ideal of G if $f((xy)z) \ge f(y), \forall x, y, z \in G$.

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called a fuzzy quasi-ideal of G if $f \circ G \cap G \circ f \subseteq f$.

Let $\mathcal{F}(G)$ denotes the collection of all fuzzy subsets of an ordered \mathcal{AG} -groupoid G. Then $(\mathcal{F}(G), \circ)$ becomes an ordered \mathcal{AG} -groupoid [9]. The characteristic function χ_A for a non-empty set A of an ordered \mathcal{AG} -groupoid G is defined as follow:

$$\chi_A(x) = \begin{cases} 1, \text{ if } x \in A, \\ 0, \text{ if } x \notin A. \end{cases}$$

A fuzzy subset f of an ordered \mathcal{AG} -groupoid G which is defined as follow:

$$f(y) = \begin{cases} r(\neq 0), & \text{if } y \le x \\ 0, & \text{otherwise} \end{cases}$$

is said to be a fuzzy point with support x and value r and is denoted by x_r , where $r \in (0, 1]$.

In what follows let $\gamma, \delta \in [0,1]$ be such that $\gamma < \delta$. For any $B \subseteq A$, we define $X_{\gamma B}^{\delta}$ be the fuzzy subset of X by $X_{\gamma B}^{\delta}(x) \geq \delta$ if $x \in B$ and $X_{\gamma B}^{\delta}(x) \leq \gamma, \forall x \notin B$. Otherwise, clearly $X_{\gamma B}^{\delta}$ is the characteristic function of B if $\gamma = 0$ and $\delta = 1$.

For a fuzzy point x_r and a fuzzy subset f of an ordered \mathcal{AG} -groupoid G, we say that:

(i) $x_r \in_{\gamma} f$ if $f(x) \ge r > \gamma$.

(*ii*) $x_r q_\delta f$ if $f(x) + r > 2\delta$.

(*iii*) $x_r \in_{\gamma} \lor q_{\delta} f$ if $x_r \in_{\gamma} f$ or $x_r q_{\delta} f$.

Now we introduce a new relation on $\mathcal{F}(G)$, denoted as " $\subseteq \lor q_{(\gamma,\delta)}$ ", as follows:

For any $f, g \in \mathcal{F}(G)$, by $f \subseteq \lor q_{(\gamma,\delta)}g$, we mean that $x_r \in_{\gamma} f \Longrightarrow x_r \in_{\gamma} \lor q_{\delta}g, \forall x \in G$ and $r \in (\gamma, 1]$.

Moreover f and g are said to be (γ, δ) -equal, denoted by $f =_{(\gamma, \delta)} g$, if $f \subseteq \lor q_{(\gamma, \delta)}g$ and $g \subseteq \lor q_{(\gamma, \delta)}f$.

Lemma 2.3 ([5]). In an ordered \mathcal{AG} -groupoid G, the following are true.

(i) $A \subseteq (A], \forall A \subseteq G.$

(*ii*) $A \subseteq B \subseteq G \Longrightarrow (A] \subseteq (B], \forall A, B \subseteq G.$ (*iii*) $(A] (B] \subseteq (AB], \forall A, B \subseteq G.$

 $(iv) \ (A] = ((A]], \ \forall \ A \subseteq G.$

 $(vi) ((A] (B]] = (AB], \forall A, B \subseteq G.$

Lemma 2.4 ([5]). A non-empty subset A of an ordered \mathcal{AG} -groupoid G with left identity is a left ideal of $G \iff$ it is a right ideal of G.

Definition 2.5. A non-empty subset A of an ordered \mathcal{AG} -groupoid G is called semiprime if $a^2 \in A \implies a \in A$. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called semiprime if $\max f(a) \geq \min f(a^2), \forall a \in G$.

Lemma 2.6 ([5]). Every right ideal of an intra-regular ordered \mathcal{AG} -groupoid G with left identity is semiprime.

3. $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy ideals of ordered \mathcal{AG} -groupoids

Lemma 3.1. Let $f, g, h \subseteq \mathcal{F}(G)$ and $\gamma, \delta \in [0, 1]$. Then

 $\begin{array}{l} (i) \ f \subseteq \lor q_{(\gamma,\delta)}g \ (f \supseteq \lor q_{(\gamma,\delta)}g) \Leftrightarrow \max\{f(x),\gamma\} \leq \min\{g(x),\delta\} \ (\max\{f(x),\gamma\} \geq \min\{g(x),\delta\}), \forall x \in G.\\ (ii) \ \text{If} \ f \subseteq \lor q_{(\gamma,\delta)}g \ \text{and} \ g \subseteq \lor q_{(\gamma,\delta)}h, \ \text{then} \ f \subseteq \lor q_{(\gamma,\delta)}h. \end{array}$

Proof. It is simple.

Corollary 3.2. Let $\mathcal{F}(G)$ denote the set of all fuzzy sub sets of G. Then " $=_{(\gamma,\delta)}$ " is an equivalence relation on $\mathcal{F}(G)$.

By Lemma 3.1, it is also notified that $f = \forall q_{(\gamma,\delta)}g \Leftrightarrow \max\{\min\{f(x),\delta\},\gamma\} =$ $\max\{\min\{g(x), \delta\}, \gamma\}, \forall x \in G, \text{ where } \gamma, \delta \in [0, 1].$

Lemma 3.3. Let A and B be any subsets of an ordered \mathcal{AG} -groupoid G, where $r \in (\gamma, 1]$ and $\gamma, \delta \in [0, 1]$. Then

- (1) $A \subseteq B \Leftrightarrow \chi^{\delta}_{\gamma(A)} \subseteq \lor q_{(\gamma,\delta)}\chi^{\delta}_{\gamma(B)}.$
- $(2) \quad \chi^{\delta}_{\gamma(A)} \cap \chi^{\delta}_{\gamma(B)} = (\gamma, \delta) \quad \chi^{\delta}_{\gamma(A\cap B)}.$ $(3) \quad \chi^{\delta}_{\gamma(A)} \circ \chi^{\delta}_{\gamma(B)} = (\gamma, \delta) \quad \chi^{\delta}_{\gamma(AB)}.$

Proof. (1): Assume that A and B are any subsets of an ordered \mathcal{AG} -groupoid G. Let for any $x \in G$ such that $x \in A \subseteq B$. Then $\chi^{\delta}_{\gamma(B)} \geq \delta \to (i)$. Let $x_r \in_{\gamma} \chi^{\delta}_{\gamma(A)}$, it follows $\chi^{\delta}_{\gamma(A)}(x) \ge r > \gamma$. Now either $\delta \ge r$ or $\delta < r$, and by using (i), we have $\chi^{\delta}_{\gamma(A)} \subseteq \lor q_{(\gamma,\delta)}\chi^{\delta}_{\gamma(B)}.$

Conversely, let $\chi^{\delta}_{\gamma(A)} \subseteq \forall q_{(\gamma,\delta)}\chi^{\delta}_{\gamma(B)}$ and $x \in A$, it follows $\chi^{\delta}_{\gamma(A)} \geq \delta$. Let $x_r \in \gamma$ $\chi_{\gamma(A)}^{\delta} \subseteq \forall q_{(\gamma,\delta)} \chi_{\gamma(B)}^{\delta}, \text{ where } \chi_{\gamma(A)}^{\delta} \text{ and } \chi_{\gamma(B)}^{\delta} \text{ are any fuzzy subsets of } G. \text{ Thus } x_r \in_{\gamma} \chi_{\gamma(A)}^{\delta}, x_r \in_{\gamma} \chi_{\gamma(B)}^{\delta} \text{ or } x_r q_{\delta} \chi_{\gamma(B)}^{\delta}. \text{ As } x_r \in_{\gamma} \chi_{\gamma(A)}^{\delta} \Longrightarrow \chi_{\gamma(A)}^{\delta}(x) \ge r > \gamma \text{ and } \chi_{\gamma(B)}^{\delta}(x) \ge r > \gamma \text{ or } \chi_{\gamma(B)}^{\delta}(x) + \delta > 2\delta \to (ii). \text{ We have to discuss two cases for } (ii).$ Case (a) : if $r < \delta$, then

$$(ii) \Rightarrow \chi^{\delta}_{\gamma(B)}(x) \ge 2\delta - r > \delta \Longrightarrow \chi^{\delta}_{\gamma(B)}(x) > \delta \Longrightarrow x_r \in_{\gamma} \chi^{\delta}_{\gamma(B)}.$$

Case(b) : if $r \geq \delta$, then

$$(ii) \Rightarrow \chi^{\delta}_{\gamma(B)}(x) \geq r \geq \delta \Longrightarrow \chi^{\delta}_{\gamma(B)}(x) \geq \delta \Longrightarrow x \in B.$$

Hence, $A \subseteq B$.

(2): It is simple.

(3): It is simple.

Corollary 3.4. Let G be an ordered \mathcal{AG} -groupoid and γ , γ_1 , δ , $\delta_1 \in [0,1]$ such that $\gamma < \delta, \gamma_1 < \delta_1, \gamma < \gamma_1 \text{ and } \delta_1 < \delta.$ Then any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of G is an $(\in_{\gamma_1}, \in_{\gamma_1} \lor q_{\delta_1})$ -fuzzy left ideal over G.

Definition 3.5. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called an $(\in_{\gamma}, \in_{\gamma})$ $\forall q_{\delta}$)-fuzzy \mathcal{AG} -subgroupoid of G if for all $a, b \in G$ and $s, t \in (\gamma, 1]$, the following conditions hold:

(i) If $a \leq b$ and $b_t \in_{\gamma} f \Longrightarrow a_t \in_{\gamma} \lor q_{\delta} f$.

(*ii*) If $a_t \in_{\gamma} f$ and $b_t \in_{\gamma} f \Longrightarrow (ab)_{\min\{t,s\}} \in_{\gamma} \lor q_{\delta} f$.

Let us consider an example 2.2 of an ordered \mathcal{AG} -groupoid with order (1). Let $\gamma = 0.45$ and $\delta = 0.49$. Define a fuzzy subset $f: G \rightarrow [0, 1]$ as follows:

$$f(x) = \begin{cases} 0.9 \text{ for } x = a \\ 0.99 \text{ for } x = b \\ 0.84 \text{ for } x = c \\ 477 \end{cases}$$

(1) Let us consider all the possible cases for $t \in (0.45, 1]$ as follows:

(i) When $t \in (0.45, 0.84]$, it follows $x_t \in_{\gamma} f$. It is easy to see that $x_t \in_{\gamma} f$ and $y \leq x \Longrightarrow y_t \in_{\gamma} f$ for all $x \in G$.

(ii) When $t \in (0.84, 0.9]$, it follows $c_t \bar{\in}_{\gamma} f$ while $a_t \in_{\gamma} f$ and $b_t \in_{\gamma} f$. Now $c \leq a$ and $a_t \in_{\gamma} f \Longrightarrow f(a) \geq t > \gamma$. Consider $f(c) + t > 0.84 + 0.84 = 1.64 > 2\delta$. Hence $c \leq a$ and $a_t \in_{\gamma} f \Longrightarrow c_t q_{\delta} f$. Similarly $b_t \in_{\gamma} f$ and $c \leq b \Longrightarrow c_t q_{\delta} f$.

(iii) When $t \in (0.9, 0.99]$, it follows $b_t \in_{\gamma} f$ while $a_t \in_{\gamma} f$ and $c_t \in_{\gamma} f$. It is easy to verify that $b_t \in_{\gamma} f$ and $c \leq b \Longrightarrow c_t q_{\delta} f$.

(iv) When $t \in (0.99, 1]$, it follows $x_t \in \gamma f$ for all $x \in G$. Hence nothing to show in this case.

(2) Now let us consider some basic comparisons as follows:

(i) $a_t \in_{\gamma} f, a_s \in_{\gamma} f \Longrightarrow (aa)_{\min\{s,t\}} \in_{\gamma} f.$ (ii) $a_t \in_{\gamma} f, b_s \in_{\gamma} f \Longrightarrow (ab)_{\min\{s,t\}} \in_{\gamma} f.$ (iii) $a_t \in_{\gamma} f, c_s \in_{\gamma} f \Longrightarrow (ac)_{\min\{s,t\}} q_{\delta} f.$ (iv) ba = ab in the table. (v) $b_t \in_{\gamma} f, b_s \in_{\gamma} f \Longrightarrow (bb)_{\min\{s,t\}} \in_{\gamma} f.$ (vi) $b_t \in_{\gamma} f, c_s \in_{\gamma} f \Longrightarrow (bc)_{\min\{s,t\}} \in_{\gamma} f.$ (vii) ca = ac in the table. (viii) $c_t \in_{\gamma} f, b_s \in_{\gamma} f \Longrightarrow (cb)_{\min\{s,t\}} \in_{\gamma} f.$ (ix) $c_t \in_{\gamma} f, c_s \in_{\gamma} f \Longrightarrow (cc)_{\min\{s,t\}} \in_{\gamma} f.$ Hence, f is $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy \mathcal{AG} -subgroupoid of G.

Theorem 3.6. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ fuzzy \mathcal{AG} -subgroupoid if for all $a, b \in G$ and $t \in (\gamma, 1]$, the following conditions hold: (1) max $\{f(a), \gamma\} \ge \min\{f(b), \delta\}$ with $a \le b$.

(2) $\max\{f(ab), \gamma\} \ge \min\{f(a), f(b), \delta\}.$

Proof. It is simple.

Definition 3.7. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of G if for all $a, b \in G$ and $t \in (\gamma, 1]$, the following conditions hold:

(i) If $a \leq b$ and $b_t \in_{\gamma} f$, it follows $a_t \in_{\gamma} \lor q_{\delta} f$.

(*ii*) If $b_t \in_{\gamma} f$, it follows $(ab)_t \in_{\gamma} \lor q_{\delta} f$ $(a_t \in_{\gamma} f \Longrightarrow (ab)_t \in_{\gamma} \lor q_{\delta} f)$.

Let us consider an example 2.2 of an ordered \mathcal{AG} -groupoid with order (2). Let $\gamma = 0.4$ and $\delta = 0.5$. Define a fuzzy subset $f : G \to [0, 1]$ as follows:

$$f(x) = \begin{cases} 0.7 \text{ for } x = a \\ 0.8 \text{ for } x = b \\ 0.9 \text{ for } x = c \end{cases}.$$

(1) Let us consider all the possible cases for $t \in (0.4, 1]$ as follows:

(i) When $t \in (0.4, 0.7]$, it follows $x_t \in_{\gamma} f$ for all $x \in G$. It is easy to see that $x_t \in_{\gamma} f$ and $y \leq x \Longrightarrow y_t \in_{\gamma} f$ for all $x \in G$.

(ii) When $t \in (0.7, 0.8]$, it follows $a_t \in \gamma f$ while $c_t \in \gamma f$ and $b_t \in \gamma f$. Now $a \leq c$ and $c_t \in \gamma f \Longrightarrow f(a) \geq t > \gamma$. Proceeding in the same way as in above example we get $a_t q_{\delta} f$, and Similar solution for $a \leq b$.

(iii) When $t \in (0.8, 0.9]$, it follows $c_t \in_{\gamma} f$ while $a_t \in_{\gamma} f$ and $b_t \in_{\gamma} f$. It is easy to verify that $c_t \in_{\gamma} f$ and $a \leq c \Longrightarrow a_t q_{\delta} f$.

(iv) When $t \in (0.9, 1]$, it follows $\bar{x}_t \in_{\gamma} f$ for all $x \in G$. Nothing to show in this case.

(2) Again considering all possible cases for $t \in (0.4, 1]$

(i) When $t \in (0.4, 0.7]$, it follows $x_t \in_{\gamma} f$ for all $x \in G$. It is easy see that $(xy)_t \in_{\gamma} f$ for all $x \in G$ in this case.

(ii) When $t \in (0.7, 0.8]$, it follows $a_t \in f$ while $c_t \in f$ and $b_t \in f$. Now $b_t \in f$ $f \Longrightarrow (ab)_t q_\delta f$, $(bb)_t q_\delta f$ and $(bc)_t q_\delta f$. Similarly $c_t \in f \Longrightarrow (ac)_t q_\delta f$, $(bc)_t \in f$ and $(cc)_t q_\delta f$.

(*iii*) When $t \in (0.8, 0.9]$, it follows $c_t \in_{\gamma} f$ while $a_t \in_{\gamma} f$ and $b_t \in_{\gamma} f$. Now $c_t \in f \Longrightarrow (ac)_t q_{\delta} f$, $(bc)_t \in_{\gamma} f$ and $(cc)_t q_{\delta} f$.

(iv) When $t \in (0.9, 1]$, it follows $\bar{x}_t \in_{\gamma} f$ for all $x \in G$. Again nothing to solve in this case.

Hence, f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of G.

Theorem 3.8. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of G if for all $a, b \in G$ and $\gamma, \delta \in [0, 1]$, the following conditions hold:

(1) $\max\{f(a), \gamma\} \ge \min\{f(b), \delta\}$ with $a \le b$.

(2) $\max\{f(ab), \gamma\} \ge \min\{f(b), \delta\}.$

Proof. $(i) \Leftrightarrow (1)$: It is same as in Theorem 3.6.

 $(ii) \Rightarrow (2)$: If there exists $a, b \in G$ such that

$$\max\{f(ab),\gamma\} < \min\{f(b),\delta\}.$$

Then

$$\max\{f(ab), \gamma\} < t \le \min\{f(b), \delta\} \text{ for some } t \in (\gamma, 1].$$

It follows that $b_t \in_{\gamma} f$ but $(ab)_t \in_{\gamma} f$ and $(ab)_t \overline{q_{\delta}} f$, a contradiction and hence $\max\{f(ab), \gamma\} \geq \min\{f(b), \delta\}$ for all $a, b \in G$.

 $(2) \Rightarrow (ii)$: Assume that $a, b \in G$ and $t, s \in (\gamma, 1]$ such that $b_t \in_{\gamma} f$, then by definition we can write $f(b) \ge t > \gamma$, therefore

$$\max\{f(ab), \delta\} \ge \min\{f(b), \delta\} \ge \min\{t, \delta\}.$$

We have to consider two cases here:

Case(a): If $t \leq \delta$, then

$$f(ab) \ge t > \gamma \Longrightarrow (ab)_t \in_{\gamma} f_{\tau}$$

Case(b): If $t > \delta$, then

$$f(ab) + t > 2\delta \Longrightarrow (ab)_t q_\delta f$$

From both cases, we have $(ab)_t \in_{\gamma} \lor q_{\delta} f, \forall a, b \in G$.

Lemma 3.9. Let f be a fuzzy subset of an ordered \mathcal{AG} -groupoid G and $\gamma, \delta \in [0, 1]$. Then f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right) ideal of G if and only if f satisfies the following conditions.

(i)
$$x \leq y \Rightarrow \max\{f(x), \gamma\} \geq \min\{g(x), \delta\}, \forall x, y \in G.$$

(ii) $S \circ f \subseteq \lor q_{(\gamma,\delta)}f$ and $f \circ S \subseteq \lor q_{(\gamma,\delta)}f$ $(S \circ f \subseteq \lor q_{(\gamma,\delta)}f$ and $f \circ S \subseteq \lor q_{(\gamma,\delta)}f).$

Proof. It is simple.

Definition 3.10. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is called an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G if for all $x, y, z \in G$ and $s, t \in (\gamma, 1]$, the following conditions hold:

- (i) $a \leq b$ and $b_t \in_{\gamma} f \Longrightarrow a_t \in_{\gamma} \lor q_{\delta} f$.
- (*ii*) $x_t \in_{\gamma} f$ and $y_s \in_{\gamma} f \Longrightarrow (xy)_{\min\{t,s\}} \in_{\gamma} \lor q_{\delta} f$.
- (*iii*) $x_t \in_{\gamma} f$ and $z_s \in_{\gamma} f \Longrightarrow ((xy)z)_{\min\{t,s\}} \in_{\gamma} \lor q_{\delta}f$.

Theorem 3.11. A fuzzy subset f of an ordered \mathcal{AG} -groupoid G is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G if for all $x, y, z \in G$, $s, t \in (\gamma, 1]$ and $\gamma, \delta \in [0, 1]$, the following conditions hold:

- (1) $\max\{f(a), \gamma\} \ge \min\{f(b), \delta\}$ with $a \le b$.
- (2) $\max\{f(xy),\gamma\} \ge \min\{f(x),f(y),\delta\}.$
- (3) $\max\{f((xy)z),\gamma\} \ge \min\{f(x), f(z),\delta\}.$

Proof. It is simple.

Lemma 3.12. A non-empty subset B of an ordered \mathcal{AG} -groupoid G is a bi-ideal of $G \Leftrightarrow \chi^{\delta}_{\gamma B}$ is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G, where $\gamma, \delta \in [0, 1]$.

Proof. Let *B* be a bi-ideal of *G* and assume that $x, y \in B$. Then for any $a \in G$, we have $(xa)y \in B$, thus $\chi^{\delta}_{\gamma B}((xa)y) \geq \delta > \gamma$ and therefore $\chi^{\delta}_{\gamma B}(x) \geq \delta, \chi^{\delta}_{\gamma B}(y) \geq \delta$, this shows that $\chi^{\delta}_{\gamma B}(x) \wedge \chi^{\delta}_{\gamma B}(y) \geq \delta$. Thus

$$\chi^{\delta}_{\gamma B}((xa)y) \vee \gamma \geq \chi^{\delta}_{\gamma B}((xa)y)\chi^{\delta}_{\gamma B}(x) \wedge \chi^{\delta}_{\gamma B} \wedge \delta = \delta.$$

Hence, $\chi^{\delta}_{\gamma B}((xa)y) \lor \gamma \ge \chi^{\delta}_{\gamma B}(x) \land \chi^{\delta}_{\gamma B}(y) \land \delta$. Let $x \in B, y \notin B$.Then

 $(xa)y \notin B, \forall \ a \in G \Longrightarrow \chi^{\delta}_{\gamma B}((xa)y) \leq \gamma < \delta, \ \chi^{\delta}_{\gamma B}(x) \geq \delta > \gamma \text{ and } \chi^{\delta}_{\gamma B}(y) < \gamma < \delta.$ Therefore

$$\chi_{\gamma B}^{\delta}((xa)y) \vee \gamma \geq \gamma \text{ and } \chi_{\gamma B}^{\delta}(x) \wedge \chi_{\gamma B}^{\delta}(y) \wedge \delta = \chi_{\gamma B}^{\delta}(y).$$

Hence, $\chi_{\gamma B}^{\delta}((xa)y) \vee \gamma \geq \chi_{\gamma B}^{\delta}(x) \wedge \chi_{\gamma B}^{\delta}(y) \wedge \delta.$

Let $x \notin B, y \in B$. Then

$$\begin{array}{ll} (xa)y & \notin \quad B, \forall \; a \in G \Longrightarrow \chi_{\gamma B}^{\delta}((xa)y) \lor \gamma \geq \delta > \gamma, \\ \chi_{\gamma B}^{\delta}(x) & < \quad \delta, \chi_{\gamma B}^{\delta}(y) \geq \delta \; \text{and} \; \chi_{\gamma B}^{\delta}(x) \land \chi_{\gamma B}^{\delta}(y) \land \delta = \chi_{\gamma B}^{\delta}(x). \end{array}$$

Therefore

$$\chi^{\delta}_{\gamma B}((xa)y) \lor \delta \ge \chi^{\delta}_{\gamma B}(x) \land \chi^{\delta}_{\gamma B}(y) \land \delta$$

Let $x, y \notin B$. Then

$$(xa)y \notin B, \forall \ a \in G \Longrightarrow \chi^{\delta}_{\gamma B}(x) \land \chi^{\delta}_{\gamma B}(y) \leq \gamma \text{ and } \chi^{\delta}_{\gamma B}((xa)y) \leq \gamma.$$

Thus

$$\chi_{\gamma B}^{\delta}((xa)y) \vee \gamma = \gamma \text{ and } \chi_{\gamma B}^{\delta}(x) \wedge \chi_{\gamma B}^{\delta}(y) \wedge \delta \leq \chi_{\gamma B}^{\delta}(x) \wedge \chi_{\gamma B}^{\delta}(y) \leq \gamma.$$

Hence, $\chi_{\gamma B}^{\delta}((xa)y) \vee \gamma \geq \chi_{\gamma B}^{\delta}(x) \wedge \chi_{\gamma B}^{\delta}(y) \wedge \delta.$ Converse is simple.

Lemma 3.13. Let A be a non-empty set of an ordered \mathcal{AG} -groupoid G. Then A is a left (right, two-sided) ideal of $G \Leftrightarrow \chi^{\delta}_{\gamma A}$ is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left (right, two-sided) ideal of G, where $\gamma, \delta \in [0, 1]$.

Proof. It is simple.

Example 3.14. Let $S = \{0, 1, 2, 3\}$ be an ordered \mathcal{AG} -groupoid. Define the following multiplication table and ordered below.

•	0	1	2	3
0	0	0	0	0
1	0	0	0	0
$\frac{2}{3}$	0	0	0	1
3	0	0	1	2

$$\leq := \{(0,0), (1,1), (2,2), (3,3), (0,1)\}$$

Define a fuzzy subset $f: S \rightarrow [0,1]$ as follows:

$$f(x) = \begin{cases} 0.75 \text{ for } x = 0\\ 0.65 \text{ for } x = 1\\ 0.7 \text{ for } x = 2\\ 0.5 \text{ for } x = 3 \end{cases}$$

Then clearly f is an $(\in_{0.3}, \in_{0.3} \lor q_{0.4})$ -fuzzy left ideal of S.

 $\leq := \{(a,b), (a,c), (a,d)\}$

Again define a fuzzy subset $f: S \rightarrow [0,1]$ as follows:

$$f(x) = \begin{cases} 0.9 \text{ for } x = 0\\ 0.7 \text{ for } x = 1\\ 0.6 \text{ for } x = 2\\ 0.5 \text{ for } x = 3 \end{cases}$$

Then f is an $(\in_{0.2}, \in_{0.2} \lor q_{0.5})$ -fuzzy bi-ideal.

4. Characterizations of intra-regular ordered AG-groupoids in terms of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals

Lemma 4.1. Let G be an ordered \mathcal{AG} -groupoid, then the following are true.

(i) Every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal of an intra-regular G with left identity is semiprime.

(ii) A non-empty subset R of G is a right ideal of $G \iff \chi_R$ is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal of G.

Proof. It is simple.

Theorem 4.2. The following conditions are equivalent for an ordered \mathcal{AG} -groupoid G with left identity.

(i) G is intra-regular.

(ii) $R \cap L = (RL]$, where R is any right ideal and L is any left ideal of G such that R is semiprime.

(iii) $f \cap g = \lor q_{(\gamma,\delta)} f \circ g$, where f is any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal and g is any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of G such that f is semiprime.

Proof. $(i) \implies (iii)$: Let f be any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right ideal and g be any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideal of G with left identity. Now for $a \in G$ there exist $b, c \in G$ such that $a \leq (ba^2)c$. Therefore

$$\begin{aligned} a &\leq (b(aa))c = (a(ba))c = (c(ba))a \leq (c(b(ba^2)c)))a = (c((ba^2)(bc)))a \\ &= (c((cb)(a^2b)))a = (c(a^2((cb)b)))a = (a^2(c((cb)b)))a. \end{aligned}$$

Thus $(a^2(c((cb)b)), a) \in A_a$, since $A_a \neq \emptyset$, therefore

$$\max\{(f \circ g)(a), \gamma\} = \max\left[\lim_{(a^2(c((cb)b)), a) \in A_a} \{f(a^2(c((cb)b))) \land g(a)\}, \gamma\right]$$

$$\geq \max\left[\min\{f(a^2(c((cb)b))), g(a)\}, \gamma\right]$$

$$= \min\left[\max\{f(a^2(c((cb)b))), \gamma\}, \max\{g(a), \gamma\}\right]$$

$$\geq \min\left[\min\{f(a), \delta\}, \min\{g(a)\}, \delta\right]$$

$$= \min\{(f \cap g)(a), \delta\},$$

This shows that $f \circ g \supseteq \lor q_{(\gamma,\delta)} f \cap g$. Now by using Lemma 3.9, $f \circ g \subseteq \lor q_{(\gamma,\delta)} f \cap g$, and by using Lemma 4.1, f is semiprime.

 $(iii) \implies (ii)$: Let R be any right ideal and L be any left ideal of G, then by Lemma 3.13, $C_{\gamma R}^{\delta}$ and $C_{\gamma L}^{\delta}$ are the $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy right and $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideals of G respectively such that $C_{\gamma R}^{\delta}$ is semiprime. $(RL] \subseteq R \cap L$ is obvious [9]. Let $a \in R \cap L$, then $a \in R$ and $a \in L$. Now by using Lemma 3.3 and given assumption, we have

$$C^{\delta}_{\gamma_{(RL]}}(a) =_{(\gamma,\delta)} (C^{\delta}_{\gamma R} \circ C^{\delta}_{\gamma L})(a) =_{(\gamma,\delta)} (C^{\delta}_{\gamma R} \cap C^{\delta}_{\gamma L})(a) =_{(\gamma,\delta)} C^{\delta}_{\gamma R}(a) \wedge C^{\delta}_{\gamma L}(a) = 1,$$

This implies that $a \in (RL]$ and therefore $R \cap L = (RL]$. Now by using Lemma 2.6, R is semiprime.

 $(ii) \implies (i)$: Clearly (Ga] and $(a^2G]$ are the left and right ideals of G with left identity [9] such that $a \in (Ga]$ and $a^2 \in (a^2G]$. Since by assumption, $(a^2G]$ is semiprime, therefore $a \in (a^2G]$. Now by using Lemma 2.3, we have

$$\begin{array}{rcl} a & \in & (a^2G] \cap (Ga] = ((a^2G](Ga]] \subseteq ((a^2G)(Ga)] = ((aG)(Ga^2)] \\ & = & (((Ga^2)G)a] = (((Ga^2)(eG))a] \subseteq (((Ga^2)(GG))a] \\ & = & (((GG)(a^2G))a] = ((a^2((GG)G))a] \subseteq ((a^2G)G] \\ & = & ((GG)(aa)] = ((aa)(GG)] \subseteq ((aa)G] = ((Ga)a] \\ & \subseteq & ((Ga)(a^2G)] = (((a^2G)a)G] = (((aG)a^2)G] \subseteq ((Ga^2)G], \end{array}$$

This shows that G is intra-regular.

Theorem 4.3. The following conditions are equivalent for an ordered \mathcal{AG} -groupoid G with left identity.

(i) G is intra-regular.

(ii) $f \cap g \subseteq \forall q_{(\gamma,\delta)}g \circ f$, where both f and g are any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideals of G.

(iii) Every $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G is idempotent.

(iv) Every bi-ideal of G is idempotent.

Proof. (i) \implies (ii) : Let f and g be both $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideals of an intraregular ordered \mathcal{AG} -groupoid G with left identity. Then for every $a \in G$, there exist $b, c \in G$ such that $a \leq (ba^2)c$.

$$\begin{array}{lll} a & \leq & (ba^2)c = (b(aa))c = (a(ba))c = (c(ba))a \\ & \leq & (c(b((ba^2)c)))a = (c(b((b(aa))c)))a \\ & = & (c(b((a(ba))c)))a = (c(a((ba))(bc)))a \\ & = & ((a(ba))(c(bc)))a = (((c(bc))(ba))a)a \\ & \leq & (((c(bc))(b((ba^2)c)))a)a = (((c(bc))((ba^2)(bc)))a)a \\ & = & (((ba^2)((c(bc))(bc)))a)a = ((((bc)(c(bc)))(a^2b))a)a \\ & = & ((a^2(((bc)(c(bc)))b))a)a = (((aa)(((bc)(c(bc)))b))a)a \\ & = & (((b((bc)(c(bc))))(aa))a)a = ((a(b((bc)(c(bc))))a))a)a. \end{array}$$

Thus $((a((bc)(c(bc))))a))a, a) = (v, a) \in A_a$. Since $A_a \neq \emptyset$,

$$\max\{(g \circ f)(a), \gamma\} = \max\left[\lim_{(v,a) \in A_a} \{g(v) \land f(a)\}, \gamma\right]$$

$$\geq \max\left[\min\{g(v), f(a)\}, \gamma\right]$$

$$\geq \min\left[\max\{g(v, \gamma\}, \max\{f(a), \gamma\}\right]$$

$$\geq \min\left[\min\{g(a), \delta\}, \min\{f(a)\}, \delta\right]$$

$$= \min\{(g \cap f)(a), \delta\},$$

thus

$$g \circ f \supseteq \lor q_{(\gamma,\delta)}g \cap f = \lor q_{(\gamma,\delta)}f \cap g \Rightarrow f \cap g \subseteq \lor q_{(\gamma,\delta)}g \circ f.$$

(*ii*) \implies (*iii*) : Since f is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G,

$$f \cap f \subseteq \lor q_{(\gamma,\delta)} f \circ f \subseteq \lor q_{(\gamma,\delta)} f \implies f = \lor q_{(\gamma,\delta)} f \circ f.$$

This implies that f is idempotent.

 $(iii) \implies (iv)$: Let B be a bi-ideal of G such that $b \in B$. Then by using Lemma 3.12, $C_{\gamma B}^{\delta}$ is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G. Now by using Lemma 3.3, we have

$$1 = C^{\delta}_{\gamma B}(b) = \forall q_{(\gamma,\delta)}(C_B \circ C_B)(b) = \forall q_{(\gamma,\delta)}C_{(B^2]}(b),$$

This shows that $b \in (B^2]$, therefore $B \subseteq (B^2]$ and $(B^2] \subseteq B$ is obvious. Hence $B = (B^2]$.

 $(iv) \implies (i)$: Clearly (Ga] is a bi-ideal of G with left identity, therefore by using given assumption and Lemma 2.3, we have

$$a \in (Ga] = ((Ga](Ga]] = ((Ga)(Ga)] = ((aG)(aG)]$$

= ((aa)(GG)] = ((ea²)(GG)] \sum ((Ga²)G].

Therefore, G is intra-regular.

Theorem 4.4. The following conditions are equivalent for an ordered \mathcal{AG} -groupoid G with left identity.

(i) G is intra-regular.

(ii) $A \cap B \subseteq (BA]$, where both A and B are any left ideals of G.

(iii) $f \cap g \subseteq \forall q_{(\gamma,\delta)}g \circ f$, where both f and g are any $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy left ideals of G.

Proof. (i) \implies (iii) : Let f and g be both $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideals of an intra-regular ordered \mathcal{AG} -groupoid G with left identity. Now for any $a \in G$, there exist $b, c \in G$ such that $a \leq (ba^2)c$, then

$$a \le (ba^2)c = (b(aa))c = (a(ba))c = (c(ba))a.$$

Thus $(c(ba), a) \in A_a$. Since $A_a \neq \emptyset$,

$$\max\{(g \circ f)(a), \gamma\} = \max \left\lfloor \lim_{(c(ba), a) \in A_a} \left\{g(c(ba)) \land f(a)\right\}, \gamma \right\rfloor$$

$$\geq \max \left[\min\{g(c(ba)), f(a)\}, \gamma\right]$$

$$= \min \left[\max\{g(c(ba)), \gamma\}, \max\{f(a), \gamma\}\right]$$

$$\geq \min \left[\min\{g(a), \delta\}, \min\{f(a)\}, \delta\right]$$

$$= \min\{(f \cap g)(a), \delta\},$$

This shows that $g \circ f \subset \lor q_{(\gamma,\delta)} f \cap g$.

 $(iii) \implies (ii)$: Let A and B be any left ideals of G. Then by Lemma 3.13, $C_{\gamma A}^{\delta}$ and $C_{\gamma B}^{\delta}$ are any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left ideals of G. Let $x \in A \cap B$, then by using Lemma 3.3, we have

$$1 = C^{\delta}_{\gamma A \cap B}(x) = \forall q_{(\gamma,\delta)}(C^{\delta}_{\gamma A} \cap C_B)(x) \le (C_B \circ C^{\delta}_{\gamma A})(x) = \forall q_{(\gamma,\delta)}C^{\delta}_{\gamma(BA]}(x),$$

This implies that $a \in (BA]$ and therefore $A \cap B \subseteq (BA]$.

 $(ii) \implies (i)$: Since (Ga] is a left ideal of G with left identity [9] such that $a \in (Ga]$, by using given assumption and Lemma 2.3, we have

$$a \in (Ga] \cap (Ga] \subseteq ((Ga](Ga]] = ((Ga)(Ga)] = ((aG)(aG)] = ((aG)(aG)] = ((aa)(GG)] = ((ea^2)(GG)] \subseteq ((Ga^2)G]$$

Hence, G is intra-regular.

Theorem 4.5. The following conditions are equivalent for an ordered \mathcal{AG} -groupoid G with left identity.

(i) G is intra-regular.

(ii) $f \cap g \cap h \subseteq \forall q_{(\gamma,\delta)}(f \circ g) \circ (f \circ h)$, where f is an $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy left ideal, h is an $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy right ideal and g is an $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy bi-ideal of G. (iii) $f \cap g \subseteq \forall q_{(\gamma,\delta)}(f \circ g) \circ f$, where f is an $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy left ideal and g

is an $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy bi-ideal of G.

(iv) $L \cap B \subseteq ((LB]L]$, where L is a left ideal and B is a bi-ideal of G.

Proof. (i) \implies (ii) : Let f, g and h be any $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy left, right and biideals of an intra-regular G with left identity respectively. Now for any $a \in G$, there exist $b, c \in G$ such that $a \leq (ba^2)c$, therefore

$$\begin{aligned} a &\leq (ba^2)c = (a(ba))c = (c(ba))a \leq (c(b((ba^2)c))a = (c(b(a(ba))c))a \\ &= (c((a(ba))(bc)))a = ((a(ba))(c(bc)))a = (((c(bc))(ba))a)a \\ &\leq (((c(bc))(ba))a)((ba^2)c) = (((c(bc))(ba))a)((b(aa))c) \\ &= (((c(bc))(ba))a)((a(ba))c) = (((c(bc))(ba))a)((c(ba))a), \\ &\quad 484 \end{aligned}$$

This shows that $(((c(bc))(ba))a, (c(ba))a) = (ua, va) \in A_a$. Since $A_a \neq \emptyset$,

$$\begin{aligned} \max\{(f \circ g) \circ (f \circ h)(a), \gamma\} &= \lim_{(ua, va) \in A_a} \{(f \circ g)(ua) \land (f \circ h)(va)\} \\ &\geq \max\left[\min\{f(u), g(a), f(v), h(a), \gamma\}\right] \\ &= \min\left[\max\{f(u), \gamma\}, \max\{g(a), \gamma\}, \max\{f(v), \gamma\}, \max\{h(a), \gamma\}\right] \\ &\geq \min\left[\min\{f(u), \delta\}, \min\{g(a), \delta\}, \min\{f(v), \delta\}, \min\{h(a), \delta\}\right] \end{aligned}$$

$$= \min\{(f \cap q \cap h)(a), \delta\},\$$

This shows that $f \cap g \cap h \subseteq \lor q_{(\gamma,\delta)}(f \circ g) \circ (f \circ h)$.

 $(ii) \implies (iii)$: Since G is a fuzzy right ideal of itself,

$$f \cap g = \lor q_{(\gamma,\delta)} f \cap g \cap G \subseteq \lor q_{(\gamma,\delta)} (f \circ g) \circ (f \circ G) \subseteq \lor q_{(\gamma,\delta)} (f \circ g) \circ f$$

Thus $f \cap g \subseteq \lor q_{(\gamma,\delta)}(f \circ g) \circ f$. (*iii*) \implies (*iv*) is simple.

 $(iv) \implies (i)$: Since (Ga] is both left and bi-ideal of G containing a, therefore by using given assumption and Lemma 2.3, we have

$$a \in (Ga] \cap (Ga] = (((Ga](Ga])(Ga]) = (((Ga)(Ga))(Ga))(Ga))$$

= (((GG)(aa))(Ga)) \le ((Ga^2)G).

Therefore, G is intra-regular.

5. Conclusions

Order theory is a branch of Mathematics which investigates our intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". The study of an algebraic structure using the order theory plays a prominent role in Mathematics with wide ranging applications in many disciplines such as control engineering, computer arithmetics, coding theory, sequential machines and formal languages.

Since we know that an ordered \mathcal{AG} -groupoid is the generalization of an ordered semigroup [9], therefore in this regard, we have applied the order theory on the structure of an \mathcal{AG} -groupoid and generalized the concept of an ordered semigroup in terms of $(\in_{\gamma}, \in_{\gamma} \lor q_{\delta})$ -fuzzy ideals.

The following topics may be considered for further study of ordered \mathcal{AG} -groupoids in more generalized form:

To obtain similar and more generalized results in the structure of ordered Γ - \mathcal{AG}^{**} groupoids (see [5]).

To characterize ordered hyper- \mathcal{AG} -groupoids by introducing the concept of $(\in, \in$ $\forall q$, $(\in, \in \forall q_k)$ and $(\in_{\gamma}, \in_{\gamma} \forall q_{\delta})$ -fuzzy hyperideals by using pure left (right) identity.

Acknowledgements. Authors are deeply grateful to an unknown referee for valuable comments and suggestions.

References

- S. K Bhakat and P.Das, On the definition of a fuzzy subgroups, Fuzzy Sets and Systems 51 (1992) 235–241.
- [2] B. Davvaz, $(\in, \in \lor q)$ -fuzzy subnear-rings and ideals, Soft Computing 10 (2006) 206–211.
- [3] B. Davvaz, A. Khan, N. H. Sarmin and H. Khan, More general forms of interval valued fuzzy filters of ordered semigroups, Int. J. Fuzzy Syst. 15(2) (2013) 110–126.
- [4] P. Holgate, Groupoids satisfying the simple invertive low, The Math. Stud. 1–4 (61) (1992) 101–106.
- [5] M. Khan, U. Ashraf, F. Yousafzai and A. S. Awan, On fuzzy interior ideals of ordered LAsemigroups, Science International 24 (2012) 143–148.
- [6] N. Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and Systems 5 (1981) 203-215.
- [7] O. Kazanci and S. Yamak, Generalized fuzzy bi-ideals of semigroup, Soft Computing 12 (2008) 1119–1124.
- [8] M. A. Kazim and M. Naseeruddin, On almost semigroups, Aligarh Bull. Math. 2 (1972) 1–7
- [9] M. Khan and F. Yousafzai, On fuzzy ordered Abel-Grassmann's groupoids, Journal of Mathematics Research 3 (2011) 27–40.
- [10] H. Khan, N. H. Sarmin, A. Khan and F. M. Khan, New types of intuitionistic fuzzy interior ideals of ordered semigroups, Ann. Fuzzy Math. Inform. 6(3) (2013) 495–519.
- [11] F. M. Khan, N. H. Sarmin and H. Khan, A novel approach toward fuzzy generalized bi-ideals in ordered semigroups, The Scientific World Journal, vol. 2014, Article ID 275947, 9 pages,
- [12] Q. Mushtaq and S. M. Yousuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978) 65–70.
- [13] P. V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl. 6(4) (1995) 371–383.
- [14] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971) 512–517.
- [15] M. Shabir, Y. B. Jun and Y. Nawaz, Characterizations of regular semigroups by (α, β) -fuzzy ideals, Comput. Math. Appl. 59 (2010) 161–175.
- [16] M. Shabir, Y. B. Jun and Y. Nawaz, Semigroups characterized by $(\in, \in \lor q_k)$ -fuzzy ideals, Comput. Math. Appl. 60 (2010) 1473–1493.
- [17] N. Stevanović and P. V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad J. Math. 34(2) (2004) 175–182.
- [18] Y. Yin and J. Zhan, New types of fuzzy filters of BL-algebras, Comput. Math. Appl. 60 (2010) 2115–2125.
- [19] Y. Yin, Y. B. Jun and J. Zhan, Vague soft hemirings, Comput. Math. Appl. 62 (2011) 199–213.
- [20] Y. Yin and J. Zhan, The characterization of ordered semigroups in terms of fuzzy soft ideals, Bull. Malays. Math. Sci. Soc. (2) 35(4) (2012) 997–1015.
- [21] Y. Yin and J. Zhan, The characterizations of hemirings in terms of fuzzy soft h-ideals, Neural Computing & Applications 21 (2012) 43–57.
- [22] Y. Yin, H. Li and Y. B. Jun, On algebraic structure of intuitionistic fuzzy soft sets, Comput. Math. Appl. 64 (2012) 2896–2911.
- [23] F. Yousafzai, A. Khan and B. Davvaz, On fully regular *AG*-groupoids, Afr. Mat. DOI 10.1007/s13370-012-0125-3.
- [24] L. A.Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>ASAD</u> <u>ALI</u>(asad_maths@hotmail.com)

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China

<u>FU-GUI SHI</u>(fuguishi@bit.edu.cn)

School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China

<u>FAISAL YOUSAFZAI</u>(yousafzaimath@gmail.com)

School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui, China