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1. Introduction

In last few years different types of generalized metric spaces have been developed
by different authors in different approach. Some generalized metric spaces are D-
metric space [6], D∗-metric space [3, 19], Cone metric space [14] etc. Guang & Xian
[14] generalized the notion of metric space by considering a real Banach space as
the range set of the metric space which is known as Cone metric space. Many fixed
point results of different types of contraction mappings have been established in
generalized metric spaces specially in cone metric spaces ( for reference please see
[1, 2, 5, 8, 9, 10, 11, 13, 15, 17, 18, 20, 21] ).

Recently the idea of fuzzy cone metric space has been introduced by present
author [4] and some basic properties and fixed point theorems for different types of
contraction mappings have been developed in fuzzy cone metric spaces.
In this paper, some fixed and periodic point theorems for generalized contraction
mappings are established in fuzzy cone metric space by using normal fuzzy cone and
the main theorem is justified by an example. It is to be noted that here fuzzy normal
cone is used to simplify the method for solving the problem. On then other hand, if
the results exist without using fuzzy normal cone then study will be more general.

The organization of the paper is as follows:
Section 1, comprises some preliminary results which are used in this paper.
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In Section 2, a fixed point theorem for generalized contraction mapping is established
in fuzzy cone metric space. Some periodic point results are studied in fuzzy cone
metric spaces in Section 3.

2. Preliminaries

A fuzzy real number is a mapping x : R → [0 , 1] over the set R of all reals.
A fuzzy real number x is convex if x(t) ≥ min (x(s) , x(r)) where s ≤ t ≤ r.
α-level set of a fuzzy real number x is defined by {t ∈ R : x(t) ≥ α} where α ∈ (0, 1].
If there exists a t0 ∈ R such that x(t0) = 1, then x is called normal. For 0 < α ≤
1, α-level set of an upper semi continuous convex normal fuzzy real number η (
denoted by [η]α) is a closed interval [aα , bα], where aα = −∞ and bα = +∞
are admissible. When aα = −∞, for instance, then [aα , bα] means the interval
(−∞ , bα]. Similar is the case when bα = +∞.
A fuzzy real number x is called non-negative if x(t) = 0, ∀t < 0.
Each real number r is considered as a fuzzy real number denoted by r̄ and defined
by
r̄(t) = 1 if t = r and r̄(t) = 0 if t 6= r.
Kaleva [12] ( Felbin [7] ) denoted the set of all convex, normal, upper semicontinuous
fuzzy real numbers by E ( R(I)) and the set of all non-negative, convex, normal,
upper semicontinuous fuzzy real numbers by G(R∗(I)).

A partial ordering ” ¹ ” in E is defined by η ¹ δ if and only if a1
α ≤ a2

α and
b1
α ≤ b2

α for all α ∈ (0 , 1] where [η]α = [a1
α , b1

α] and [δ]α = [a2
α , b2

α]. The
strict inequality in E is defined by η ≺ δ if and only if a1

α < a2
α and b1

α < b2
α for each

α ∈ (0 , 1].
According to Mizumoto and Tanaka [16], the arithmetic operations ⊕, ª ,¯ on

E × E are defined by
(x⊕ y)(t) = Sups∈Rmin {x(s) , y(t− s)}, t ∈ R
(xª y)(t) = Sups∈Rmin {x(s) , y(s− t)}, t ∈ R
(x¯ y)(t) = Sups∈R,s 6=0min {x(s) , y( t

s )}, t ∈ R

Proposition 2.1 ([12]). Let η , δ ∈ E(R(I)) and [η]α = [a1
α , b1

α], [δ]α = [a2
α , b2

α],
α ∈ (0 , 1]. Then

[η
⊕

δ]α = [a1
α + a2

α , b1
α + b2

α]
[η ª δ]α = [a1

α − b2
α , b1

α − a2
α]

[η ¯ δ]α = [a1
αa2

α , b1
αb2

α]

Definition 2.2 ([12]). A sequence {ηn} in E is said to be convergent and converges
to η denoted by lim

n→∞
ηn = η if lim

n→∞
an

α = aα and lim
n→∞

bn
α = bα where [ηn]α =

[an
α, bn

α] and [η]α = [aα, bα] ∀α ∈ (0, 1].

Note 2.3 ([12]). If η, δ ∈ G(R∗(I)) then η ⊕ δ ∈ G(R∗(I)).

Note 2.4 ([12]). For any scalar t, the fuzzy real number tη is defined as tη(s) = 0
if t=0 otherwise tη(s) = η( s

t ).

Definition of fuzzy norm on a linear space as introduced by C. Felbin is given
below:
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Definition 2.5 ([7]). Let X be a vector space over R.
Let || || : X → R∗(I) and let the mappings
L,U : [0 , 1] × [0 , 1] → [0 , 1] be symmetric, nondecreasing in both arguments
and satisfy
L(0 , 0) = 0 and U(1 , 1) = 1.
Write
[||x||]α = [||x||1α , ||x||2α] for x ∈ X, 0 < α ≤ 1 and suppose for all x ∈ X, x 6= 0,
there exists α0 ∈ (0 , 1] independent of x such that for all α ≤ α0,

(A) ||x||2α < ∞
(B) inf||x||1α > 0.
The quadruple (X , || ||, L , U) is called a fuzzy normed linear space and || || is

a fuzzy norm if
(i) ||x|| = 0̄ if and only if x = 0 ;
(ii)||rx|| = |r|||x||, x ∈ X, r ∈ R ;
(iii) for all x, y ∈ X,
(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s + t ≤ ||x + y||11,

||x + y||(s + t) ≥ L(||x||(s) , ||y||(t)),
(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s + t ≥ ||x + y||11,

||x + y||(s + t) ≤ U(||x||(s) , ||y||(t))
Remark 2.6 ([7]). Felbin proved that,
if L =

∧
(Min) and U =

∨
(Max) then the triangle inequality (iii) in the Definition

1.1 is equivalent to
||x + y|| ¹ ||x|| ⊕ ||y||.
Further || ||iα; i = 1, 2 are crisp norms on X for each α ∈ (0 , 1].

Definition 2.7 ([4]). Let (E, || ||) be a fuzzy real Banach space where || || : E →
R∗(I).
Denote the range of || || by E∗(I). Thus E∗(I) ⊂ R∗(I).

Definition 2.8 ([4]). A member η ∈ A ⊂ R∗(I) is said to be an interior point if
∃ r > 0 such that
S(η, r) = {δ ∈ R∗(I) : η ª δ ≺ r̄} ⊂ A.
Set of all interior points of A is called interior of A.

Definition 2.9 ([4]). A subset of F of E∗(I) is said to be fuzzy closed if for any
sequence {ηn} such that lim

n→∞
ηn = η implies η ∈ F.

Definition 2.10 ([4]). A subset P of E∗(I) is called a fuzzy cone if
(i) P is fuzzy closed, nonempty and P 6= {0̄};
(ii) a, b ∈ R, a, b ≥ 0, η, δ ∈ P ⇒ aη ⊕ bδ ∈ P .

Note 2.11. If η ∈ P then ªη ∈ P ⇒ η = 0̄.
For, suppose [η]α = [η1

α , η2
α], α ∈ (0, 1].

Since η ∈ P ⊂ E∗(I), we have η1
α, η2

α ≥ 0 ∀α ∈ (0, 1].
Now [ªη]α = [−η2

α , −η1
α], α ∈ (0, 1].

If η 6= 0̄, then η1
α, η2

α > 0 ∀α ∈ (0, 1].
i.e. −η2

α ≤ −η1
α < 0 ∀α ∈ (0, 1].

This implies that ªη does not belong to P. Hence η = 0̄.
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Given a fuzzy cone P ⊂ E∗(I), define a partial ordering ≤ with respect to P by
η ≤ δ iff δ ª η ∈ P and η < δ indicates that η ≤ δ but η 6= δ while η ¿ δ will stand
for δ ª η ∈IntP where IntP denotes the interior of P.

The fuzzy cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,
with 0̄ ≤ ||x|| ≤ ||y|| implies ||x|| ¹ K||y||. The least positive number satisfying
above is called the normal constant of P.
The fuzzy cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is if {xn} is a sequence in E such that ||x1|| ≤
||x2|| ≤ ........ ≤ ||xn|| ≤ .... ≤ ||y|| for some y ∈ E, then there is x ∈ E such that
||xn − x|| → 0̄ as n →∞.
Equivalently, the fuzzy cone P is regular if every decreasing sequence which is
bounded below is convergent.

In the following we always assume that E is a fuzzy real Banach space, P is a
fuzzy cone in E with IntP 6= φ and ≤ is a partial ordering with respect to P.

Definition 2.12 ([4]). Let X be a nonempty set. Suppose the mapping
d : X ×X → E∗(I) satisfies

(Fd1) 0̄ ≤ d(x, y) ∀x, y ∈ X and d(x, y) = 0̄ iff x = y;
(Fd2) d(x, y) = d(y, x) ∀x, y ∈ X;
(Fd3) d(x, y) ≤ d(x, z)⊕ d(z, y) ∀x, y, z ∈ X.

Then d is called a fuzzy cone metric and (X, d) is called a fuzzy cone metric space.

Definition 2.13 ([4]). Let (X, d) be a fuzzy cone metric space. Let{xn} be a
sequence in X and x ∈ X. If for every c ∈ E with 0̄ ¿ ||c|| there is a positive integer
N such that for all n > N, d(xn, x) ¿ ||c||, then {xn} is said to be convergent and
converges to x and x is called the limit of {xn}. We denote it by lim

n→∞
xn = x.

Definition 2.14 ([4]). Let (X, d) be a fuzzy cone metric space and {xn} be a
sequence in X. If for any c ∈ E with 0̄ ¿ ||c||, there exists a natural number N such
that ∀m,n > N, d(xn, xm) ¿ ||c||, then {xn} is called a Cauchy sequence in X.

Definition 2.15 ([4]). Let (X, d) be a fuzzy cone metric space. If every Cauchy
sequence is convergent in X, then X is called a complete fuzzy cone metric space.

Proposition 2.16 ([4]). Let (X, d) be a fuzzy cone metric space with fuzzy normal
cone and {xn} be a sequence in X. Then
(i) {xn} converges to x iff d(xn, x) → 0̄ as n →∞.
(ii) {xn} is a Cauchy sequence iff d(xn, xm) → 0̄ as m, n →∞.

3. Fixed point theorem in fuzzy cone metric spaces

In this Section a fixed point theorem is established for generalized contraction
mapping.

Theorem 3.1. Let (X , d) be a complete fuzzy cone metric space and P be a normal
fuzzy cone with normal constant K. Suppose the mappings f, g : X → X satisfying
d(fx , gy) ≤ pd(x, y)⊕ q[d(x, fx)⊕ d(y, gy)]⊕ r[d(x, gy)⊕ d(y, fx)] (3.1.1)
∀x, y ∈ X where p, q, r ≥ 0 and p + 2q + 2r < 1.
Then f and g have a unique common fixed point in X.
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Proof. Let x0 be an arbitrary point of X. Define a sequence {xn} in X by
x2n+1 = fx2n, x2n+2 = gx2n+1, n = 0, 1, 2, ...
Now,
d(x2n+1 , x2n+2) = d(fx2n , gx2n+1)
≤ pd(x2n , x2n+1) ⊕ q[d(x2n , fx2n) ⊕ d(x2n+1 , gx2n+1)] ⊕ r[d(x2n , gx2n+1) ⊕
d(x2n+1 , fx2n)] by (3.1.1).
i.e. d(x2n+1 , x2n+2) ≤ (p + q + r)d(x2n , fx2n+1)⊕ (q + r)d(x2n+1 , x2n+2).
⇒ d(x2n+1 , x2n+2) ≤ δd(x2n , x2n+1) where δ = p+q+r

1−(q+r) < 1.

Similarly it can be shown that,
d(x2n+3 , x2n+2) ≤ δd(x2n+2 , x2n+1).
Thus for all n,
d(xn+1 , xn+2) ≤ δd(xn , xn+1) ≤ ...... ≤ δn+1d(x0 , x1).
Now for any m > n,
d(xm , xn) ≤ d(xn , xn+1)⊕ d(xn+1 , xn+2)⊕ .....⊕ d(xm−1 , xm).
i.e. d(xm , xn) ≤ (δn + δn+1 + ... + δm−1d(x1 , x0).
i.e. d(xm , xn) ≤ δn

1−δ d(x1 , x0).
Since P is a fuzzy normal cone we have,
d(xn , xm) ¹ δn

1−δ Kd(x1 , x0)
⇒ di

α(xn , xm) ≤ δn

1−δ Kdi
α(x1 , x0) ∀α ∈ (0, 1] and i = 1, 2.

Letting m,n →∞ and since δ < 1 we get,
lim

m,n→∞
di

α(xn , xm) = 0 ∀α ∈ (0, 1] and i = 1, 2.

⇒ lim
m,n→∞

d(xn , xm) = 0̄.

Thus {xn} is a Cauchy sequence. Since X is complete, ∃x ∈ X such that
lim

m,n→∞
d(xn , x) = 0̄.

Now from (2.1.1), we have
d(x, gx) ≤ d(x, x2n+1)⊕ d(x2n+1, gx) ( Triangle inequality )
i.e. d(x, gx) ≤ d(x, x2n+1)⊕ d(fx2n, gx).
i.e. d(x, gx) ≤ d(x, x2n+1) ⊕ pd(x2n , x) ⊕ q[d(x2n , x2n+1) ⊕ d(x , gx)] ⊕
r[d(x2n , gx)⊕ d(x , x2n+1)].
i.e. d(x, gx) ≤ d(x, x2n+1) ⊕ pd(x2n , x) ⊕ q[d(x2n , x2n+1) ⊕ d(x , gx)] ⊕
r[d(x2n , x)⊕ d(x , gx)⊕ d(x , x2n+1)].
i.e. d(x, gx) ≤ 1

1−q−r [d(x, x2n+1)⊕ pd(x2n , x)⊕ qd(x2n , x2n+1)⊕ r{d(x2n , x)⊕
d(x, x2n+1)}].
i.e. d(x, gx) ≤ 1

1−q−r [d(x, xn+1)⊕d(xn+1, x2n+1)⊕pd(x2n , xn+1)⊕pd(xn+1 , x)⊕
qd(x2n , x2n+1)⊕ r{d(x2n , xn)⊕ d(xn , x)⊕ d(xn , x)⊕ d(xn , x2n+1)}].
Since P is normal we have,
d(x, gx) ¹ 1

1−q−r K[d(x, xn+1)⊕ d(xn+1, x2n+1)⊕ pd(x2n , xn+1)⊕ pd(xn+1 , x)⊕
qd(x2n , x2n+1)⊕ r{d(x2n , xn)⊕ d(xn , x)⊕ d(xn , x)⊕ d(xn , x2n+1)}].
Thus,
di

α(x, gx) ≤ 1
1−q−r K[di

α(x, xn+1)+di
α(xn+1, x2n+1)+pdi

α(x2n , xn+1)+pdi
α(xn+1 , x)+

qdi
α(x2n , x2n+1)+r{di

α(x2n , xn)+di
α(xn , x)+di

α(xn , x)+di
α(xn , x2n+1)}] ∀α ∈

(0, 1] and i = 1, 2.
If we take limit as n →∞, then right hand side tends to zero ( as {xn} is Cauchy ).
So di

α(x, gx) = 0 ∀α ∈ (0, 1] and i = 1, 2.
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Hence d(x, gx) = 0̄. So x = gx.
Now,
d(fx, x) = d(fx, gx) ≤ pd(x, x)⊕ q[d(x, fx)⊕ d(x, gx)]⊕ r[d(x, gx)⊕ d(x, fx)].
i.e. d(fx, x) ≤ (q + r)d(x, fx)
⇒ ((q + r)− 1)d(x, fx) ∈ P (3.1.2).
Since q + r < 1, so q + r − 1 < 0. From properties of P, from (3.1.2), it follows that
d(fx, x) = 0̄. So, fx = x.
For uniqueness, suppose that y is another fixed point of f and g.
Then d(x, y) = d(fx, gy) ≤ pd(x, y)⊕ q[d(x, fx)⊕ d(y, gy)]⊕ r[d(x, gy)⊕ d(y, fx)]
⇒ d(x, y) ≤ (p + 2r)d(x, y)
⇒ d(x, y) = 0̄ ( since p + 2r < 1 ).
Hence x = y. This completes the proof. ¤

The above Theorem 3.1 is justified by the following Example.

Example 3.2. Let us consider the metric space X = [0, 4] with the usual metric
ρ(x, y) = |x− y| ∀x, y ∈ X.
Clearly it is a complete metric space.
We choose E = R and define || || : R → R∗(I) by

||x||(t) =
{

1 if t ≥ |x|
0 if t < |x| .

Then [||x||]α = [|x| , |x|] ∀α ∈ (0, 1].
It can be verified that || || satisfies (N1) − (N3). So (E , || ||) is a fuzzy normed
linear space (Felbin’s sense ). Again since (R , | |) is complete, thus (R , || ||) is a
complete fuzzy normed linear space.
Now define d : X ×X → E∗(I) by

d(x, y)(t) =
{

ρ(x,y)
t if t ≥ ρ(x, y)
0 if t < ρ(x, y).

Now d(x, y)(t) ≥ α ⇒ ρ(x,y)
t ≥ α ⇒ t ≤ ρ(x,y)

α .

So [d(x, y)]α = [ρ(x, y) , ρ(x,y)
t ] ∀α ∈ (0, 1] (3.2.1).

If we choose the ordering ≤ as ¹ and define P = {η ∈ E∗(I) : η º 0̄},
then P is a fuzzy cone ( please see []) and (X , d) is a fuzzy cone metric space.
Define f : X → X by f(x) = x

3 and g : X → X by g(x) = x
7 .

We choose p = 1
2 , q = r = 1

16 .

Then p + 2(q + r) = 1
2 + 2( 1

16 + 1
16 ) = 3

4 < 1.
Now we verify that
d(fx , gy) ¹ pd(x, y)⊕ q[d(x, fx)⊕d(y, gy)]⊕ r[d(x, gy)⊕d(y, fx)] holds ∀x, y ∈ X.
We have,
d1

α(fx , gy) = d1
α(x

3 , y
7 ) = ρ(x

3 , y
7 ) = |x3 − y

7 | by (3.2.1) (3.2.2).
Now,
pd1

α(x, y) + q[d1
α(x, fx) + d1

α(y, gy)] + r[d1
α(x, gy) + d1

α(y, fx)]
= 1

2ρ(x, y) + 1
16 [ρ(x, fx) + ρ(y, gy) + ρ(x, gy) + ρ(y, fx)]

= 1
2 |x− y|+ 1

16 [|x− x
3 |+ |y − y

7 |+ |x− y
7 |+ |y − x

3 |]
= 1

4 |x− y|+ 1
16 [|4x− 4y|+ | 2x

3 |+ | 6y
7 |+ |x− y

7 |+ |y − x
3 |]

≥ 1
4 |x− y|+ 1

16 |4x− 4y + 2x
3 + 6y

7 + x− y
7 + y − x

3 |
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= 1
4 |x− y|+ 1

16 |4x + 2x
3 + x− x

3 − 4y + 6y
7 − y

7 + y|
= 1

4 |x− y|+ 1
16 | 12x+2x+3x−x

3 − 28y−6y+y−7y
7 |

= 1
4 |x− y|+ 1

16 | 16x
3 − 16y

7 | = 1
4 |x− y|+ |x3 − y

7 |
≥ |x3 − y

7 | = d1
α(fx, gy). by (3.2.2)

Thus,
pd1

α(x, y) + q[d1
α(x, fx) + d1

α(y, gy)] + r[d1
α(x, gy) + d1

α(y, fx)]
≥ d1

α(fx, gy) ∀α ∈ (0, 1] (3.2.3).
Similarly we get,
pd2

α(x, y) + q[d2
α(x, fx) + d2

α(y, gy)] + r[d2
α(x, gy) + d2

α(y, fx)]
≥ d2

α(fx, gy) ∀α ∈ (0, 1] (3.2.4).
From (3.2.3) and (3.2.4) we get,
d(fx , gy) ¹ pd(x, y)⊕ q[d(x, fx)⊕ d(y, gy)]⊕ r[d(x, gy)⊕ d(y, fx)] ∀x, y ∈ X.
Thus f and g satisfy all the conditions of Theorem 3.1.
From definition of f and g, it follows that x = 0 is the unique common fixed point
of f and g.

4. Periodic Point Theorems

It is obvious that, if f is a mapping which has a fixed point p, then it is a fixed
point of fn for every natural number n. However the converse may not be true. For
example consider X = [0, 1] and f defined by fx = 1−x. Then f has a unique fixed
point at 1

2 , but every iterate of f is the identity mapping, which has every point of
[0, 1] is a fixed point. On the other hand, if X = [0, π], fx = cos x, then iterate
of f has the same fixed point as f [8, 11, 20]. If a map satisfies F (f) = F (fn) for
each n ∈ N, where F (f) denotes the set of all fixed points of f , then it is said to
have property S( instead of P[11]). We shall say that f and g have property Q [11]
if F (f)

⋂
F (g) = F (fn)

⋂
F (gn).

In this Section, we establish some fixed point theorems in fuzzy cone metric spaces
which satisfy the properties S and Q.

Theorem 4.1. Let f be a self-map of a fuzzy cone metric space (X , d) and P be
a fuzzy normal cone with normal constant K satisfying,
(i) d(fx , f2x) ≤ λd((x , fx) ∀x ∈ X where 0 ≤ λ < 1.
or
(ii) d(fx , f2x) < d((x , fx) ∀x ∈ X, x 6= fx.
If F (f) 6= φ, then f has the property S.

Proof. We shall always assume that n > 1, since the statement for n = 1 is trivial.
Let u ∈ F (fn). Suppose f satisfies (i). Then
d(u , fu) = d(f(fn−1u) , f2(fn−1u)) ≤ λd(fn−1u , fnu) ≤ λ2d(fn−2u , fn−1u) ≤
... ≤ λnd(u , fu).
Since P is a fuzzy normal cone with normal constant K, we get
d(u, fu) ¹ Kλnd(u, fu)
⇒ di

α(u, fu) ≤ Kλndi
α(u, fu) for i = 1, 2 and α ∈ (0, 1]

⇒ lim
n→∞

di
α(u, fu) = 0 for i = 1, 2 and α ∈ (0, 1] ( since λ < 1)

⇒ d(u , fu) = 0̄.
So fu = u.
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Next suppose that f satisfies (ii). If fu = u, then the theorem is clear.
Suppose if possible that fu 6= u. Then from the argument of (i), we have d(u, fu) <
d(u, fu) which is a contradiction.
Thus in all cases fu = u and hence F (fn) = F (f). ¤
Theorem 4.2. Let (X , d) be a complete fuzzy cone metric space and P be a fuzzy
normal cone with normal constant K. Suppose the mappings f, g : X → X satisfy
(3.1.1).
Then f and g have the property Q.

Proof. From Theorem 4.1, it follows that f and g have a common fixed point in X.
Let u ∈ F (fn)

⋂
F (gn).

Now,
d(u , gu) = d(f(fn−1u) , g(gn−1u)) ≤ pd(fn−1u , fnu) ⊕ q[d(fn−1u , fnu) ⊕
d(fnu , gn+1u)]⊕ r[d(fn−1u , gn+1u)⊕ d(gnu , fnu)]
i.e. d(u , gu) ≤ pd(fn−1u , u) ⊕ q[d(fn−1u , u) ⊕ d(u , gu)] ⊕ r[d(fn−1u , u) ⊕
d(u , gu)]
⇒ d(u , gu) ≤ δd(fn−1u , u) where δ = p+q+r

1−q−r < 1.

We have,
d(u , gu) = d(fnu , gn+1u) ≤ δd(fn−1u , u) ≤ .... ≤ δnd(u , fu).
Since P is a fuzzy normal cone with normal constant K we have,
d(u , gu) ¹ δnKd(u , fu)
⇒ di

α(u , gu) ≤ δnKdi
α(u , fu) for i = 1, 2 and α ∈ (0, 1)

⇒ lim
n→∞

di
α(u , gu) = 0 for i = 1, 2 and α ∈ (0, 1) ( since δ < 1)

⇒ d(u , gu) = 0̄.
So gu = u. Hence gu = fu = u by Theorem 4.1.
This implies that F (f)

⋂
F (g) = F (fn)

⋂
F (gn).

Thus f and g have the property Q. ¤

5. Conclusion

In last few years, different types of generalized metric spaces have been developed
by many authors. Cone metric space is one such development. Many fixed point
results for contraction mappings have been established.
Recently idea of fuzzy cone metric space is introduced some basic properties. In this
paper, some fixed and periodic point theorems are established in fuzzy cone metric
spaces.
I think that this paper could be of interest to the researchers to study fixed point
theory for different types of contraction mappings in fuzzy cone metric spaces and
specially fixed point results can be applied to find out the existence and uniqueness
of the solutions of fuzzy integral equations.
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