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Abstract. In this paper, the operations like join, ringsum, cartesian
product, lexicographic product, tensor product, strong product, α− prod-
uct, β− product, γ− product on two Intuitionistic Fuzzy Graphs (IFGs)
are defined. Also we investigate some domination parameters such as, in-
dependent domination, connected domination, total domination on join,
cartesian product, lexicographic product, tensor product and strong prod-
uct of two IFGs.
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1. Introduction

Every branch of mathematics employs some notion of product that enables the
combination or decomposition of the structure of its elements. The operations on
two fuzzy graphs were defined by J.N.Mordeson and C.S.Peng [5] in 1994. The dom-
ination in product fuzzy graphs was introduced by A.Somasundaram [10] in 2005.
The concept of intuitionistic fuzzy graph was introduced by Krasmmir T.Atanassov
[3] in 1994. Krasmmir T.Atanassov and A.Shannon [2] defined IFG using five types
of Cartesian products. R.Parvathi and S.Thilagavathi [8] defined IFHG, using six
types of Cartesian products of n vertices of IFHG. The aim of this paper is to intro-
duce and analyze the theory of domination on join, cartesian product, lexicographic
product, tensor product and strong product of two IFGs.
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2. Preliminaries

In this section, some basic definitions relating to IFGs are given. Also, the defi-
nition of tensor product, strong product, α− product, β− product and γ− product
in IFGs are introduced. Simple IFGs are taken into consideration throughout this
paper.

Definition 2.1 ([1]). Let a set E be fixed. An Intuitionistic Fuzzy set (IFS) A in
E is an object of the form A = {(x, µA(x), νA(x)) | x ∈ E}, where the function
µA : E → [0, 1] and νA : E → [0, 1] determine the degree of membership and the
degree of non - membership of the element x ∈ E, respectively and for every x ∈ E,
0 ≤ µA(x) + νA(x) ≤ 1.

Notations

1. Hereafter, ⟨µ(vi), (ν(vi)⟩ or simply ⟨µi, νi⟩ denotes the degrees of member-
ship and non-membership of the vertex vi ∈ V such that 0 ≤ µi + νi ≤ 1.

2. ⟨µ(vij), (ν(vij)⟩ or simply ⟨µij , νij⟩ denotes the degrees of membership and
non-membership of the edge (vi, vj) ∈ V × V such that 0 ≤ µij + νij ≤ 1.

Definition 2.2 ([8]). Let X be a universal set and let V be an IFS over X in the
form V = {⟨vi, µi, νi⟩ |vi ∈ V } such that 0 ≤ µi + νi ≤ 1. Six types of cartesian
products of n elements of V over X are defined as

v1 ×1 v2 ×1 v3 ×1 · · · ×1 vn

=

{⟨
⟨v1, v2, · · · , vn⟩ ,

n∏
i=1

µi,
n∏

i=1

νi

⟩
| ⟨v1, v2, · · · , vn⟩ ∈ V

}

v1 ×2 v2 ×2 v3 ×2 · · · ×2 vn =


⟨
⟨v1, v2, . . . , vn⟩ ,

n∑
i=1

µi −
n∑

i ̸=j

µiµj

+
n∑

i ̸=j ̸=k

µiµjµk − · · ·+ (−1)n−2
n∑

i ̸=j ̸=k ̸=n

µiµjµk · · ·µn

+(−1)n−1
n∏

i=1

µi,
n∏

i=1

νi

⟩
| ⟨v1, v2, · · · , vn⟩ ∈ V

}

v1 ×3 v2 ×3 v3 ×3 · · · ×3 vn =


⟨
⟨v1, v2, · · · , vn⟩ ,

n∏
i=1

µi,
n∑

i=1

νi −
n∑

i̸=j

νiνj

+
n∑

i ̸=j ̸=k

νiνjνk − · · ·+ (−1)n−2
n∑

i ̸=j ̸=k ̸=n

νiνjνk · · · νn

+(−1)n−1
n∏

i=1

νi

⟩
| ⟨v1, v2, · · · , vn⟩ ∈ V

}
404
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v1 ×4 v2 ×4 v3 ×4 · · · ×4 vn = {⟨⟨v1, v2, · · · , vn⟩ ,min(µ1, µ2, · · · , µn),

max(ν1, ν2, · · · , νn)⟩ | ⟨v1, v2, · · · , vn⟩ ∈ V }

v1 ×5 v2 ×5 v3 ×5 · · · ×5 vn = {⟨⟨v1, v2, · · · , vn⟩ ,max(µ1, µ2, · · · , µn),

min(ν1, ν2, · · · , νn)⟩ | ⟨v1, v2, · · · , vn⟩ ∈ V }

v1 ×6 v2 ×6 v3 ×6 · · · ×6 vn

=


⟨
⟨v1, v2, . . . , vn⟩ ,

n∑
i=1

µi

n
,

n∑
i=1

νi

n

⟩
| ⟨v1, v2, · · · , vn⟩ ∈ V


It must be noted that vi ×t vj is an IFS , where t = 1, 2, 3, 4, 5, 6.

Definition 2.3 ([4, 9]). An intuitionistic fuzzy graph (IFG) is of the formG = (V,E)
where
(i) V = {v1, v2, ..., vn} , such that µi : V → [0, 1] and νi : V → [0, 1] denote the
degree of membership and non-membership of the element vi ∈ V respectively and
0 ≤ µi + νi ≤ 1 for every vi ∈ V, i = 1, 2, · · · , n
(ii) E ⊂ V × V where µij : V × V → [0, 1] and νij : V × V → [0, 1] are such that

µij ≤ µi ⊘ µj ,

νij ≤ νi ⊘ νj

and

0 ≤ µij + νij ≤ 1

where µij and νij are the membership and non- membership values of the edge
(vi, vj); the values µi ⊘µj and νi ⊘ νj can be determined by one of the six cartesian
products ×t, t = 1, 2, 3, 4, 5, 6 for all i and j given in Definition 2.2.

Note 1. When µij = νij = 0 for some i and j, there is no edge between vi and vj .
Otherwise, there exists an edge between vi and vj .

Definition 2.4 ([7]). Let G = (V,E) be an IFG, then the vertex cardinality of V is

defined by
∑
vi∈V

(
1 + µi − νi

2

)
.

Definition 2.5 ([7]). An edge (vi, vj) is said to be a strong edge of an IFG G =
(V,E), if µij ≥ µ∞

ij and νij ≥ ν∞ij .

Definition 2.6 ([7]). An IFG, G = (V,E) is said to be connected IFG if there exist
a path between every pair of vertices vi, vj in V . Connected IFG is also defined using
strength of connectedness as follows:

(i) µ∞
ij > 0, and ν∞ij > 0

(ii) µ∞
ij = 0, and ν∞ij > 0

(iii) µ∞
ij > 0, and ν∞ij = 0 for all vi, vj ∈ V.
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Definition 2.7 ([6]). The join of two IFGs G1 = (V1, E1) and G2 = (V2, E2), de-

noted by G1 +G2, is an IFG G =
(
V1 ∪ V2, E1 ∪ E2 ∪ E

′
, ⟨µr, νr⟩ , ⟨µrs, νrs⟩

)
where

(i) E
′
is the set of edges joining the vertices of V1 and V2

(ii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ =


⟨µi, νi⟩ if vr ∈ V1

⟨µp, νp⟩ if vr ∈ V2

⟨max(µi, µp),min(νi, νp)⟩ if vr ∈ V1 ∩ V2, V1 ∩ V2 ̸= ϕ

(iii) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges
of G, and is given by

⟨µrs, νrs⟩ =



⟨µij , νij⟩ if (vr, vs) ∈ E1

⟨µpq, νpq⟩ if (vr, vs) ∈ E2

⟨min(µi, µp),max(νi, νp)⟩ if

{
r ̸= s, vr ∈ V1, vs ∈ V2,

(vr, vs) /∈ E1 ∪ E2

⟨max(µij , µpq),min(νij , µpq)⟩ if (vr, vs) ∈ E1 ∩ E2

⟨0, 0⟩ otherwise

Definition 2.8. The ringsum of two IFGs G1 = (V1, E1) and G2 = (V2, E2), de-
noted by G1 ⊕G2, is an IFG G = (V1 ∪ V2, E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) E = ((E1 ∪ E2)− (E1 ∩ E2))
(ii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices

of G, and is given by

⟨µr, νr⟩ =


⟨µi, νi⟩ if vr ∈ V1

⟨µp, νp⟩ if vr ∈ V2

⟨max(µi, µp),min(νi, νp)⟩ if vr ∈ V1 ∩ V2

(iii) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges
of G, and is given by

⟨µrs, νrs⟩ =


⟨µij , νij⟩ if (vr, vs) ∈ E1

⟨µpq, νpq⟩ if (vr, vs) ∈ E2

⟨0, 0⟩ if (vr, vs) ∈ E1 ∩ E2
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Note 2. In the following definitions, the vertex sets under consideration are distinct.

Definition 2.9. The cartesian product of two IFGs G1 = (V1, E1) and G2 =
(V2, E2), denoted by G12G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1∩V2 = ϕ, i = 1, 2, . . .m, p = 1, 2, . . . n
(ii) E = (viup, vjuq), such that either one of the following is true :

• (up, uq) ∈ E2, when i = j
• (vi, vj) ∈ E1, when p = q

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges

of G, and is given by

⟨µrs, νrs⟩ =


⟨min(µi, µpq),max(νi, νpq)⟩ if i = j, (up, uq) ∈ E2

⟨min(µp, µij),max(νp, νij)⟩ if p = q, (vi, vj) ∈ E1

⟨0, 0⟩ otherwise

Definition 2.10. The lexicographic product of two IFGs G1 = (V1, E1) and G2 =
(V2, E2), denoted by G1 ◦G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1∩V2 = ϕ, i = 1, 2, . . .m, p = 1, 2, . . . n
(ii) E = (viup, vjuq), such that either one of the following is true :

• (vi, vj) ∈ E1, when i ̸= j
• (up, uq) ∈ E2, when i = j

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges

of G, and is given by

⟨µrs, νrs⟩ =


⟨min(µi, µpq),max(νi, νpq)⟩ if i = j, (up, uq) ∈ E2

⟨min(µp, µij),max(νp, νij)⟩ if p = q, (vi, vj) ∈ E1

⟨min(µp, µq, µij),max(νp, νq, νij)⟩ if i ̸= j, p ̸= q, (vi, vj) ∈ E1

⟨0, 0⟩ otherwise

Definition 2.11. The tensor product of two IFGs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 ⊗G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1∩V2 = ϕ, i = 1, 2, . . .m, p = 1, 2, . . . n
(ii) E = (viup, vjuq) if i ̸= j, p ̸= q, (vi, vj) ∈ E1 and (up, uq) ∈ E2

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
407
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(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges
of G, and is given by

⟨µrs, νrs⟩ =

⟨min(µij , µpq),max(νij , νpq)⟩ if

{
i ̸= j, p ̸= q, (vi, vj) ∈ E1,

(up, uq) ∈ E2

⟨0, 0⟩ otherwise

Definition 2.12. The strong product of two IFGs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 ⊠G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1 ∩ V2 = ϕ, i = 1, 2, . . .m,
p = 1, 2, . . . n

(ii) E = (viup, vjuq), such that either one of the following is true :
• (up, uq) ∈ E2, when i = j, p ̸= q
• (vi, vj) ∈ E1, when p = q, i ̸= j
• (vi, vj) ∈ E1 and (up, uq) ∈ E2, when i ̸= j, p ̸= q

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges

of G, and is given by

⟨µrs, νrs⟩ =


⟨min(µi, µpq),max(νi, νpq)⟩ if i = j, (up, uq) ∈ E2

⟨min(µp, µij),max(νp, νij)⟩ if p = q, (vi, vj) ∈ E1

⟨min(µij , µpq),max(νij , νpq)⟩ if

{
i ̸= j, p ̸= q, (vi, vj) ∈ E1,

(up, uq) ∈ E2

Definition 2.13. The α-product of two IFGs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 ⊙G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1∩V2 = ϕ, i = 1, 2, . . .m, p = 1, 2, . . . n
(ii) E = (viup, vjuq), such that either one of the following is true:

• (vi, vj) ∈ E1 and (up, uq) /∈ E2

• (up, uq) ∈ E2 and (vi, vj) /∈ E1

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges

of G, and is given by

⟨µrs, νrs⟩ =


⟨min(µi, νj , µpq),max(νi, νj , νpq)⟩ if (vi, vj) /∈ E1 and (up, uq) ∈ E2

⟨min(µp, µq, µij),max(νp, νq, νij)⟩ if (vi, vj) ∈ E1 and (up, uq) /∈ E2

⟨0, 0⟩ if (vi, vj) ∈ E1 and (up, uq) ∈ E2

Definition 2.14. The β-product of two IFGs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 ∗G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1∩V2 = ϕ, i = 1, 2, . . .m, p = 1, 2, . . . n
(ii) E = (viup, vjuq), such that either one of the following is true:

• (vi, vj) ∈ E1, when p ̸= q, i ̸= j
408
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• (up, uq) ∈ E2, when i ̸= j, p ̸= q
(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices

of G, and is given by
⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n

(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges
of G, and is given by

⟨µrs, νrs⟩ =



⟨min(µi, µj , µpq),max(νi, νj , νpq)⟩ if

{
i ̸= j, (vi, vj) /∈ E1,

(up, uq) ∈ E2

⟨min(µp, µq, µij),max(νp, νq, νij)⟩ if

{
p ̸= q, (up, uq) /∈ E2,

(vi, vj) ∈ E1

⟨min(µij , µpq),max(νij , νpq)⟩ if

{
i ̸= j, p ̸= q, (vi, vj) ∈ E1,

(up, uq) ∈ E2

⟨0, 0⟩ otherwise

Definition 2.15. The γ-product of two IFGs G1 = (V1, E1) and G2 = (V2, E2),
denoted by G1 ⊡G2, is an IFG G = (V,E, ⟨µr, νr⟩ , ⟨µrs, νrs⟩) where

(i) V = viup for all vi ∈ V1 and up ∈ V2, V1 ∩ V2 = ϕ, i = 1, 2, . . .m, p =
1, 2, . . . n

(ii) E = (viup, vjuq), such that either (vi, vj) ∈ E1 or (up, uq) ∈ E2

(iii) ⟨µr, νr⟩ denote the degrees of membership and non-membership of vertices
of G, and is given by

⟨µr, νr⟩ = ⟨min(µi, µp),max(νi, νp)⟩ for all vr ∈ V, r = 1, 2, 3, . . .m.n
(iv) ⟨µrs, νrs⟩ denote the degrees of membership and non-membership of edges

of G, and is given by

⟨µrs, νrs⟩ =


⟨min(µi, µj , µpq),min(νi, νj , νpq)⟩ if(vi, vj) /∈ E1 and (up, uq) ∈ E2

⟨min(µp, µq, µij),min(νp, νq, νij)⟩ if (up, uq) /∈ E2 and (vi, vj) ∈ E1

⟨min(µij , µpq),max(νij , νpq)⟩ if (vi, vj) ∈ E1 and (up, uq) ∈ E2

⟨0, 0⟩ otherwise

Example 2.16. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2), where
V1 = {v1, v2} , E1 = {(v1, v2)} and V2 = {u1, u2, u3} , E2 = {(u1, u2), (u2, u3)} in
Figure 1.

The graph of G1 +G2 is shown in Figure 2.

Example 2.17. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2), in Figure 1.
The graph of G12G2 is displayed in Figure 3. Figure 4 depicts the graph of G1 ◦G2.

Example 2.18. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2), in
Figure 1. The graph of G1 ⊗G2 is displayed in Figure 5.

The graph of G1 ⊠G2 is displayed in Figure 6

409



R. Parvathi et al./Ann. Fuzzy Math. Inform. 9 (2015), No. 3, 403–419

b

b

b

b

b

v1(0.4, 0.2)

v2(0.6, 0.1)

u1(0.5, 0.3)

u2(0.1, 0.7)

u3(0.3, 0.4)

(0.3, 0.1)

(0.1, 0.5)

(0.1, 0.6)

G1 G2

Figure 1.

b b

b

bb

v1(0.4, 0.2) u1(0.5, 0.3)

u2(0.1, 0.7)

u3(0.3, 0.4)v1(0.6, 0.1)

(0.3, 0.1)

(0.1, 0.5)

(0.1, 0.6)

(0.1, 0.7)(0.3, 0.4)

(0.4, 0.3)

(0
.5,
0.3
)

(0.1
, 0.7

)

(0.3, 0.4)

Figure 2. G1 +G2

v1u1(0.4, 0.3)
v1u2(0.1, 0.7) v1u3(0.3, 0.4)

v2u1(0.5, 0.3)
v2u2(0.1, 0.7)

v2u3(0.3, 0.4)

(0.1, 0.5)

(0.1, 0.6)

(0.3, 0.4)
(0.3, 0.3)

(0
.1
,0
.7
)

(0.1, 0.5) (0.1, 0.6)

b b b

bbb

Figure 3. G12G2

Example 2.19. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2), in Figure 1.
The graph of G1 ⊙G2 is displayed in Figure 7. The graph of G1 ∗G2 is displayed in
Figure 8.

Example 2.20. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2), in Figure 1.
The graph of G1 ⊡G2 is displayed in Figure 9.
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Figure 6. G1 ⊠G2

3. Domination in products of intuitionistic fuzzy graphs

Definition 3.1 ([7]). Let G = (V,E) be an IFG on V . Let u, v ∈ V , u is said to
dominate v in G if there exists a strong edge between them.

Definition 3.2 ([7]). A subset S of V is called a dominating set in G if for every
v ∈ V − S, there exists u ∈ S such that u dominates v.

Definition 3.3 ([7]). A dominating set S of an IFG is said to be a minimal domi-
nating set if no proper subset of S is a dominating set.
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Figure 9. G1 ⊡G2

Definition 3.4 ([7]). Minimum cardinality among all minimal dominating set is
called lower domination number of G, and is denoted by d(G).
Maximum cardinality among all minimal dominating set is called upper domination
number of G, and is denoted by D(G).

Definition 3.5 ([7]). Two vertices in an IFG, G = (V,E) are said to be independent
if there is no strong edge between them.

Definition 3.6 ([7]). A subset S of V is said to be independent set of G if µij < µ∞
ij

and νij < ν∞ij for all vi, vj ∈ S. An independent set S of G in an IFG is said to
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be maximal independent, if for every vertex vj ∈ V − S, the set S ∪ {vj} is not
independent.

Definition 3.7. The minimum cardinality among all maximal independent set is
called lower independence number of G, and it is denoted by i(G).
The maximum cardinality among all maximal independent set is called upper inde-
pendence number of G, and it is denoted by I(G).

Definition 3.8 ([7]). Let G = (V,E) be an IFG without isolated vertices. A subset
D of V is a total dominating set if for every vertex vi ∈ V , there exists a vertex
vj ∈ D, vi ̸= vj , such that vj dominates vi.

Definition 3.9 ([7]). The minimum cardinality of a total dominating set is called
total domination number of G, and it is denoted by dt(G).

Definition 3.10 ([11]). Let G be a connected IFG. A subset V ′ of V is called a
connected dominating set of G, if

(i) For every vj ∈ V - V ′, there exists vi ∈ V ′ such that µij ≥ µ∞
ij and νij ≥ ν∞ij

(ii) The sub graph H = (V ′, E′) of G=(V,E) induced by V ′ is connected.

Definition 3.11 ([7]). The minimum cardinality of a connected dominating set is
called the connected domination number of G, and is denoted by dc(G).

Theorem 3.12. Let G1 = (V1, E1) and G2 = (V2, E2) be two IFGs with V1∩V2 = ϕ.
Then

(i) d(G1 + G2) = min
(
d(G1), d(G2),

1+µi−νi

2 +
1+µp−νp

2

)
where vi ∈ V1, up ∈

V2.
(ii) di(G1 +G2) = min (di(G1), di(G2))

(iii) dt(G1+G2) = min
(
dt(G1), dt(G2),

1+µi−νi

2 +
1+µp−νp

2

)
where vi ∈ V1, up ∈

V2.
(iv) If both G1 and G2 have isolated vertices, then dt(G1 +G2) =

min
vi∈V1

(
1 + µi − νi

2

)
+ min

up∈V2

(
1 + µp − νp

2

)
.

(v) If G1 and G2 be a connected IFG, then dc(G1 +G2) =

min
(
dc(G1), dc(G2),

1+µi−νi

2 +
1+µp−νp

2

)
where vi ∈ V1, up ∈ V2.

(vi) If both G1 and G2 be a disconnected IFG, then dc(G1 +G2) =

min
vi∈V1

(
1 + µi − νi

2

)
+ min

up∈V2

(
1 + µp − νp

2

)
.

Proof. (i) From the definition of G1 + G2, it is obvious that any edge of the
form (vi, up), where vi ∈ V1, up ∈ V2 is a strong edge. Hence, any vertex of
V1 dominates all the vertices of V2. Let D be any minimal dominating set of
G1 +G2. Then D takes either one of the following forms:

(1) D = D1, if D1 is the minimal dominating set of G1,

(2) D = D2, if D2 is the minimal dominating set of G2,
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(3) D = vi, up, where vi ∈ V1, up ∈ V2, {vi} is not a dominating set of G1

and {up} is not a dominating set of G2.
Hence
d(G1 + G2) = min

(
d(G1), d(G2),

1+µi−νi

2 +
1+µp−νp

2

)
where vi ∈ V1,

up ∈ V2.
(ii) By the definition of G1 + G2, every vertex of V1 dominates every vertex of

V2, any independent set in G1 + G2 is either a subset of V1 or a subset of
V2. Hence any minimal independent dominating set D of G1 +G2 is of the
forms:
(1) D = D1, if D1 is the minimal independent dominating set of G1,

(2) D = D2, if D2 is the minimal independent dominating set of G2.
Thus di(G1 +G2) = min (di(G1), di(G2)).

(iii) Both G1 and G2 have no isolate vertices, dt(G1) and dt(G2) exists. Any
minimal total dominating set D of G1 +G2, is of the following forms:
(1) D = D1, if D1 is the minimal total dominating set of G1,

(2) D = D2, if D2 is the minimal total dominating set of G2.

(3) D = vi, up where vi ∈ V1, up ∈ V2, {vi} is not a dominating set of G1

and {up} is not a total dominating set of G2.
Hence

dt(G1 + G2) = min
(
dt(G1), dt(G2),

1+µi−νi

2 +
1+µp−νp

2

)
where vi ∈

V1, up ∈ V2.

In, (1), (2) & (3) of all the above cases, ′ =′ refers to crisp set equality.
(iv) If G1 and G2 have isolated vertices. Then dt(G1) and dt(G2) do not ex-

ist. Hence any total dominating set of G1 + G2, has nonempty intersec-

tion with both V1 and V2. Thus dt(G1 + G2) = min
vi∈V1

(
1 + µi − νi

2

)
+

min
up∈V2

(
1 + µp − νp

2

)
.

(v) For any two IFGs G1 and G2, the IFG G1 + G2 is connected and hence
dc(G1 +G2) exists. The proof of (v) and (vi) is similar to that of (iii) and
(iv).

□

Theorem 3.13. Let D1 and D2 be dominating sets of two IFGs G1 = (V1, E1) and
G2 = (V2, E2) respectively. Then D1 ×D2 is a dominating set of G1 ◦G2, where

′×′

refers to the cartesian product, in crisp sense.

Proof. Let D1 ⊆ V1 be a dominating set of G1 and D2 ⊆ V2 be a dominating set of
G2. Let viup /∈ D1 ×D2, then vi /∈ D1 or up /∈ D2.
Case(i) vi /∈ D1 and up ∈ D2.
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Let vj ∈ D1 be such that vj dominates vi. Then

µij ≥ µ∞
ij ≥ max (min (µij)) , νij ≥ ν∞ij ≥ min (max (νij))

Now vjup ∈ D1 ×D2 and

µip,jp = µij ∧ µp

≥ max(min(µij)) ∧ µp

= max (min (µi ∧ µj ∧ µp))

= max (min ((µi ∧ µp), (µj ∧ µp)))

= max (min (µip, µjp))

That is, µip,jp ≥ max (min (µip,jq))

νip,jp = νij ∨ νp

≥ min (max(νij)) ∨ νp

= min (max (νi ∨ µj ∨ νp))

= min (max ((νi ∨ νp), (νj ∨ νp)))

= min (max (νip, νjp))

That is, νip,jp ≥ min(max(νip,jp))

Hence vjup dominates viup in G1 ◦G2.
Case(ii) vi ∈ D1 and up /∈ D2.
Let uq ∈ D2 be such that uq dominates up. Then

µpq ≥ µ∞
pq ≥ max(min(µpq)), νpq ≥ ν∞pq ≥ min(max(νpq))

Now viuq ∈ D1 ×D2 and

µip,iq = µi ∧ µpq

≥ µi ∧max(min(µpq))

= µi ∧max(min(µp ∧ µq))

= max(min(µi ∧ µp ∧ µq))

= max(min((µi ∧ µp), (µi ∧ µq)))

≥= (min(µip, µiq))

That is, µip,iq ≥ max(min(µip,iq))
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νip,iq = νi ∨ νpq

≥ µi ∨max(min(µpq))

= νi ∨max(min(νp ∨ νq))

= min (max (νi ∨ νq ∨ νq))

= min (max ((νi ∨ νq), (νi ∨ νq)))

= min (max (νip, νiq))

That is, νip,iq ≥ min (max (νip,iq))

Hence viuq dominates viup in G1 ◦G2.
Case(iii) vi /∈ D1 and up /∈ D2.
Let vj ∈ D1 and up ∈ D2 be such that vj dominates vi in G1 and uq dominates
up. Then µij ≥ µ∞

ij ≥ max(minµij), νij ≥ ν∞ij ≥ min(maxνij) and µpq ≥ µ∞
pq ≥

max(min(µpq), νpq ≥ ν∞pq ≥ min(max(νpq)
. Now vjuq ∈ D1 ×D2 and

µip,jq = µij ∧ µp ∧ µq

≥ max(min(µij ∧ µp ∧ µq))

= max (min (µi ∧ µj ∧ µp ∧ µq))

= max (min ((µi ∧ µp), (µj ∧ µq)))

= max (min (µip, µjq))

That is, µip,jq ≥ max (min (µip,jq))

νip,jp = νij ∨ νp ∨ νq

≥ min (max (νij ∨ νp ∨ νq))

= min (max (νi ∨ µj ∨ νp ∨ νq))

= min (max ((νi ∨ νp), (νi ∨ νq)))

= min (max (νip, νjq))

That is, νip,jp ≥ min (max (νip,jq))

Hence (vjuq) dominates (viup) in G1 ◦G2.
Thus D1 ×D2 is a dominating set of G1 ◦G2.

□

Theorem 3.14. Let D1 and D2 be minimum dominating sets of the IFGs G1 =
(V1, E1) and G2 = (V2, E2). Then d(G12G2) ≤ min {|D1 × V2| , |V1 ×D2|} ,where
′×′ refers to the cartesian product, in crisp sense.

Proof. Let D1 ⊆ V1 be a dominating set of G1 and D2 ⊆ V2 be a dominating set of
G2.We first prove that D1×V2 is a dominating set of d(G1×G2). Let viup /∈ D1×V2.
Hence vi /∈ D1. Since D1 is a dominating set of G1 there exist vj ∈ D1 suchthat
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µij ≥ µ∞
ij ≥ max(min(µij)) and νij ≥ ν∞ij ≥ min(max(νij)).

Now, vjup ∈ D1 × V2 and

µip,jp = µp ∧ µij

≥ µp ∧max(min(µij))

= µp ∧max(min(µi ∧ µj))

= max (min (µi ∧ µj ∧ µp))

= max (min ((µi ∧ µp), (µj ∧ µp)))

= max (min (µip, µjp))

That is, µip,jp ≥ max (min (µip,jp))

νip,jq = νp ∨ νij

≥ νp ∨min(max(νij))

= νp ∨min(max(νi ∨ νj))

= min (max (νi ∨ νj ∨ νp))

= min (max ((νi ∨ νp), (νj ∨ νp)))

= min (max (νip, νjp))

That is, νip,jq ≥ min (max (νip,jp))

Thus, viup is dominated in G1×G2, so that D1×V2 is a dominating set of G1×G2.
Similarly V1 ×D2 is also a dominating set of G1 ×G2.
Hence d(G1 ×G2) ≤ min {|D1 × V2| , |V1 ×D2|}

□

Theorem 3.15. Let D1 and D2 be dominating sets of connected IFGs G1 = (V1, E1)
and G2 = (V2, E2) respectively .Then

(i) G1 ⊠G2 is connected

(ii) If D1 is connected, then D1 × V2 is a connected dominating set of G1 ⊠G2.

(iii) If D2 is connected, then V1 ×D2 is a connected dominating set of G1 ⊠G2.

Proof. To prove G1⊠G2 is connected, it is enough to prove that for any two arbitary
distinct vertices viup, vjuq in G1 ⊠G2 such that µip,jq > 0 and νip,jq > 0
Case(i) vi = vj . G2 is a conneced IFG. Then there exist a path p = u1, u2, · · · , up

such that (µpq, νpq) > 0 for each two vertices up, uq of path p. This implies that,

µip,iq = µi ∧µpq > 0 and νip,iq = νi ∨ νpq > 0 and hence p
′
= viup, viu1, viu2 · · · viuq

is the path between viup and viuq in G1 ⊠G2

Case(ii)
up = uq. G1 is a conneced IFG. Then there exist a path q = v1, v2, · · · , vi such

that (µij , νij) > 0 for each two vertices vi, vj of path q. This implies that,

µip,jq = µp∧µij > 0 and νip,jq = νp∨νij > 0 and hence q
′
= v1up, v2up, v3up · · · viup
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is the path between viup and vjup in G1 ⊠G2

Case(iii)
vi ̸= vj , up ̸= uq. By case (i), there exists a path between viup and viuqin G1⊠G2

and by case (ii), there exist a path between viup and vjupin G1 ⊠G2. The union of
these two disjoint paths is a path between viuq, vjup in G1 ⊠G2.
By theorem 3.14, D1 × V2 and V1 × D2 are dominating sets and the proof of con-
nectivity of D1 × V2 and V1 ×D2 is similar. □

Theorem 3.16. Let G1 = (V1, E1 and G2 = (V2, E2) be an IFGs without isolated
vertices. D1 and D2 be minimum total dominating set of G1 and G2. Then dt(G1⊗
G2) ≥ 1+µi−νi

2 +
1+µp−νp

2 , where vi ∈ D1, up ∈ D2

Proof. Let D1 and D2 be minimum total dominating sets of G1 and G2. Let viup be
an arbitrary vertex of G1 ⊗G2. Then there are vertices vj ∈ D1 and uq ∈ D2 such
that (µij , νij) > 0 in E1 and (µpq, νpq) > 0 in E2. Therefore µip,jq > 0 and νip,jq > 0

in G1 ⊗G2 Thus, dt(G1 ⊗G2) ≥ 1+µi−νi

2 +
1+µp−νp

2 , where vi ∈ D1, up ∈ D2 □

4. Conclusion

In this paper, the concepts of domination, total domination and connected domi-
nation on join, lexicographic product, cartesian product, tensor product and strong
product of two IFGs have been defined. Domination in IFGs have found many ap-
plications in network analysis, pattern clustering, routings. Further, the authors
proposed to investigate other domination parameters on product of two IFGs and
bipolar IFGs.
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